结构力学:自由度及几何分析
结构力学(几何组成分析)详解

单铰-2个约束
刚结点-3个约束
四、多余约束 分清必要约束和非必要约束。
五、瞬变体系及常变体系
C
A
B
A C’
B
六、瞬铰 O . . O’
0 0' P
M 0 0
N1
N2
N3 Pr 0
N3
N3
Pr
A
B
C D
§2-2 几何不变体系的组成规律
讨论没有多余约束的,几何不变体系的组成规律。
j=8
b=12+4
W=2×8-12-4=0
单链杆:连接两个铰结点的链杆。 复链杆:连接两个以上铰结点的链杆。
连接 n个铰结点的复链杆相当于(2n-3)个单链杆。
j 7 b 3 3 5 3 14
W 2 7 14 0
三、混合体系的自由度
W (3m 2 j) (2h b)
(2,3)
1
2
3
5 4
6
(1,2)
1
2
3
(2,3)4
5 6
(1,2)
1
2
3
5 4
6
(2,3)
1
2
3 (1,2)
(2,3) 5
4
6
1
2
3 (1,3)
5 4 (1,2)
6
.
(2,3)
几何瞬变体系
补3 :
.O1
Ⅰ
.O2
ⅡⅡ
Ⅲ
ADCF和BECG这两部分都是几何不变的,作为刚 片Ⅰ、Ⅱ,地基为刚片Ⅲ。而联结三刚片的O1、 O2、 C不共线,故为几何不变体系,且无多余联系。 返 回
结构力学 2几何组成分析

II
解: 三刚片三铰相连,三铰不共线,所以该体系 三刚片三铰相连,三铰不共线, 为无多余约束的几何不变体系. 为无多余约束的几何不变体系.
三刚片虚铰在无穷远处的讨论
一个虚铰在无穷远
一个虚铰在无穷远: 一个虚铰在无穷远:若组成此虚铰的二杆与另两铰的连 线不平行则几何不变;否则几何可变. 线不平行则几何不变;否则几何可变
例1: 对图示体系作几何组成分析
I II
III
解: 三刚片三铰相连,三铰不共线,所以该体 三刚片三铰相连,三铰不共线, 系为无多余约束的几何不变体系. 系为无多余约束的几何不变体系.
例2: 对图示体系作几何组成分析Байду номын сангаас
I
II
III
主从结构, 主从结构,顺序安装
例3: 对图示体系作几何组成分析
I III
FAy 如何求支 座反力? 座反力 静定结构
FB 无多余 联系几何 不变。 不变。
例1:如何通过减约束变成静定? 1:如何通过减约束变成静定 如何通过减约束变成静定?
或
或
还有其他可能吗? 还有其他可能吗?
结论与讨论
结构的组装顺序和受力分析次序密切相关。 结构的组装顺序和受力分析次序密切相关。 正确区分静定、超静定,正确判定超静定结 构的多余约束数十分重要。 超静定结构可通过合理地减少多余约束使其 变成静定结构。 变成静定结构。 分析一个体系可变性时,应注意刚体形状可 任意改换。按照找大刚体(或刚片)、减二元 任意改换。按照找大刚体(或刚片)、减二元 体、去支座分析内部可变性等,使体系得到最 大限度简化后,再应用三角形规则分析。 大限度简化后,再应用三角形规则分析。
彼此等长 →常变
彼此不等长 →瞬变
结构力学-体系的几何组成分析

第二章 体系的几何组成分析
第一节 体系几何组成的定义和分析目的
1、体系几何组成的定义
在忽略变形的前提下,在某种外力作用下,若体系不 能保证其形状或位置不变,则该体系称为几何可变体系。
FP
FP
3 / 40
第二章 体系的几何组成分析 第一节 体系几何组成的定义和分析目的
1、体系几何组成的定义
第二节 自由度和约束的概念
体系自由度数 S 等于零是体系几何不变的充分条件 复杂体系的必要约束往往不易直观判定。 W > 0 表明体系存在自由度,肯定是几何可变体系。 W = 0 表明体系的约束数正好等于部件总自由度数,是
体系不变的必要条件,而非必要条件,如无多余 约束,体系是静定结构。 W < 0 表明体系的约束数多于部件总自由度数,必有多余 约束,如为几何不变体系,则体系是超静定结构。
a、研究结构正确的连接方式,确保所设计的结构能 承受荷载,维持平衡,不至于发生刚体运动。
b、了解结构各部分之间的组成关系,有助于改善和 提高结构的性能。
c、在结构计算时,可根据其几何组成情况,选择适 当的计算方法;分析其组成顺序,寻找简便的求解途 径。
7 / 40
第二章 体系的几何组成分析
第二节 自由度和约束的概念
单约束 仅连接两个刚片的约束.
单铰
1个单铰 = 2个约束 = 2个的单链杆。
虚铰——在运动中虚铰的位置不定,这 是虚铰和实铰的区别。通常我们研究的 是指定位置处的瞬时运动,因此,虚铰 和实铰所起的作用是相同的都是相对转 动中心。
10 / 40
第二章 体系的几何组成分析 第二节 自由度和约束的概念
1、体系的自由度 2、约束 所谓约束即能限制体系运动的装置。
02结构力学1-几何组成分析

§2-1 基本概念 W = 3m-(3g+2h+b) 四. 计算自由度
例3:计算图示体系的计算自由度 2 1 解法一
9根杆,9个刚片
有几个单铰?
3 3
3根单链杆
2 1
W=3 ×9-(2×12+3)=0
§2-1 基本概念
四. 计算自由度 例3:计算图示体系的计算自由度 铰结链杆体系:完全由两端 铰结的杆件所组成的体系
y 两个刚片一共6个自由 度 加两个单链杆之后:整 个体系有4个自由度 减少2个自由度
x
1单铰=2个单链杆
y
§2-1 基本概念
三. 约束(联系) 约束:减少自由度的装置 实铰 x
两个单链杆
y
y
虚铰 x
x
§2-1 基本概念
三. 约束(联系)
既不平行又不相交于一点 的三个单链杆=一个固定支 座
三个单链杆=一个固定支座?
§2-2 静定结构的组成规则
三边在两边之和大于第三边时,能唯一地组 成一个三角形——基本出发点。
二刚片规则: 二刚片规则: 两个刚片用三根 两个刚片用一 不全平行也不交 个铰和一根不通 于同一点的链杆 过此铰的链杆相 相联,组成无多 联,组成无多余 余联系的几何不 联系的几何不变 变体系。
体系。
§2-2 静定结构的组成规则
x
1单铰=2个约束
§2-1 基本概念
三. 约束(联系) 约束:减少自由度的装置 y
复铰
三个刚片一共9个自由 度 加铰之后:整个体系有 5个自由度 减少4个自由度 x
复铰 等于多少个 单铰?
1连接N个刚片的复铰 =N-1个单铰
§2-1 基本概念
三. 约束(联系) 约束:减少自由度的装置
结构力学之平面体系的几何组成分析

二、二刚片规则: 两个刚片用既不全平行也不全交于一点的 三根链杆相联,所组成的体系是几何不变 体系,且无多余约束。
O
ΙΙ
ΙΙΙ
推论: 两个刚片由一个铰和一根轴线不通过该铰的 链杆相联,所组成的体系是几何不变体系, 且无多余约束。
ΙΙ
C
A
B
例三、
C
A
分析图示体系的几何构造:
D
解法一: 1、找刚片:
依据材料概括晚清中国交通方式的特点,并分析其成因。
提示:特点:新旧交通工具并存(或:传统的帆船、独轮车, 近代的小火轮、火车同时使用)。 原因:近代西方列强的侵略加剧了中国的贫困,阻碍社会发 展;西方工业文明的冲击与示范;中国民族工业的兴起与发展;
政府及各阶层人士的提倡与推动。
[串点成面· 握全局]
(二)二元体规则:
增加或去掉二元体不改变原体系的几何
组成性质。
C
A
B
例五、 分析图示体系的几何构造:
解:
A
D
E
基本铰结三角形ABC符合 三刚片规则,是无多余约
B
束的几何不变体系;依次
C
F
G
在其上增加二元体A-D-C、
C-E-D、C-F-E、E-G-F后, 体系仍为几何不变体,且 无多余约束。
一、几何构造特性:
(一)无多余联系的几何不变体系称为静定 结构。
静定结构几何组成的特点是:
任意取消一个约束,体系就变成了
几何可变体系。
(二)有多余联系的几何不变体系称为超静 定结构。
特点: 某些约束撤除以后,剩余体系仍
为几何不变体系。
二、静力特性:
(一)静定结构: 在荷载作用下,可以依据
结构力学 第二章 几何组成分析(典型例题)

[例题2-1-1]计算图示体系的自由度。
,可变体系.(a) (b)解:(a)几何不变体系,无多余约束(b )几何可变体系[例题2-1—2]计算图示体系的自由度。
桁架几何不变体系,有多余约束. 解:几何不变体系,有两个多余约束[例题2-1-3]计算图示体系的自由度。
桁架自由体。
解:几何不变体系,无多余约束[例题2-1—4]计算图示体系的自由度。
,几何可变体系。
解:几何可变体系[例题2-1—5]计算图示体系的自由度。
刚架自由体。
解:几何不变体系,有6个多余约束[例题2-2—1]对图示体系进行几何组成分析。
两刚片规则.几何不变体系,且无多余约束[例题2-2-2]对图示体系进行几何组成分析。
两刚片规则。
几何不变体系,且无多余约束[例题2-2-3]对图示体系进行几何组成分析。
两刚片规则。
几何不变体系,且无多余约束[例题2-2—4]对图示体系进行几何组成分析。
两刚片规则。
几何不变体系,有一个多余约束[例题2—2—5]对图示体系进行几何组成分析.二元体规则.几何不变体系,且无多余约束[例题2-2—6]对图示体系进行几何组成分析.两刚片规则,三刚片规则.几何不变体系,且无多余约束[例题2-2-7]对图示体系进行几何组成分析。
三刚片规则。
几何不变体系,且无多余约束[例题2-2-8]对图示体系进行几何组成分析.三刚片规则.几何不变体系,且无多余约束[例题2-3-1]对图示体系进行几何组成分析.两刚片规则。
几何瞬变体系[例题2—3—2]对图示体系进行几何组成分析。
两刚片规则。
几何瞬变体系[例题2-3-3]对图示体系进行几何组成分析。
三刚片规则。
几何瞬变体系[例题2—3-4]对图示体系进行几何组成分析。
三刚片规则。
几何不变体系,且无多余约束[例题2-3-5]对图示体系进行几何组成分析.三刚片规则.几何不变体系,且无多余约束[例题2-3—6]对图示体系进行几何组成分析。
二元体规则,三刚片规则.几何瞬变体系[例题2-3-7]对图示体系进行几何组成分析。
05结构力学第二章

例8:对图示体系作几何组成分析
方法1: 若基础与其它部分三杆相连, 方法1: 若基础与其它部分三杆相连,去掉基础只分析其它部分 方法2: 利用规则将小刚片变成大刚片. 方法2: 利用规则将小刚片变成大刚片. 方法3: 将只有两个铰与其它部分相连的刚片看成链杆. 方法3: 将只有两个铰与其它部分相连的刚片看成链杆. 方法4: 去掉二元体. 方法5: 从基础部分(几何不变部分)依次添加. 方法4: 去掉二元体. 方法5: 从基础部分(几何不变部分)依次添加.
规律2 规律
II I
III
2. 两个刚片之间的组成方式 规律1 规律 两个刚片之间用一个铰和一根链杆相连, 且 两个刚片之间用一个铰和一根链杆相连 三铰不在一直线上,则组成无多余约束的几何 三铰不在一直线上 则组成无多余约束的几何 体系。 或 两个刚片之间用三根链杆相 不变 体系 且三根链杆不交于一点,则组成无多余约束 连,且三根链杆不交于一点 则组成无多余约束 且三根链杆不交于一点 的几何不变体系。 的几何不变体系。
例4: 对图示体系作几何组成分析
解: 该体系为瞬变体系. 该体系为瞬变体系. 方法3: 方法3: 将只有两个铰与其它部分相连的 刚片看成链杆. 刚片看成链杆.
方法1: 若基础与其它部分三杆相连, 方法1: 若基础与其它部分三杆相连,去掉基础只分析其它部分 方法2: 利用规则将小刚片变成大刚片. 方法2: 利用规则将小刚片变成大刚片. 方法3: 将只有两个铰与其它部分相连的刚片看成链杆. 方法3: 将只有两个铰与其它部分相连的刚片看成链杆.
二元体( 二元体(片)规则 二元体: 二元体:在一个体系上用两个不共线的链杆连 接一个新结点的装置。 接一个新结点的装置。
在一个体系上加减二元体不影响原体系的几何组成
结构力学前半部分重点复习

M F Q F N — 单位力作用下结构产生的弯矩
剪力、轴力
(1)梁和刚架,轴向变形和剪切变形的影响甚小,主要
考虑弯曲变形的影响,位移公式: MMP dx EI (2)桁架,只考虑轴向变形的影响,且每根杆件的内力 及截面都沿杆长不变,故位移公式: F N FNP F N FNP l dx EA EA
结点法和截面法联合运用: 有的杆件用结点法求,有的杆件用截
面法求。
判断零杆:桁架中的某些杆件可能是零杆,计算前 应先进行零杆的判断,这样可以简化计算。零杆判 断的方法:
FN1
不共线的两杆结点,当无 ▲ 两杆节点:
荷载作用时,则两杆内力为FN1=FN2=0。 由三杆构成的结点,有两杆 ▲ 三杆节点:
平面体系的几何组成分析
1. 基本概念: 几何不变体系、几何可变体系、瞬变体系、自由度、 约束 2. 几何不变体系的组成规律 3.灵活运用组成规律分析体系的几何不变性
几何不变体系:不考虑材料的应变,在任意荷
载作用下,几何形状和位置保持不变的体系。 几何可变体系: 不考虑材料的应变,在微小荷 载作用下,不能保持原有几何形状和位置的体 系。
规律 2
三刚片的组成规则:
将链杆看 成刚片
规律 3
三刚片用不在同一直线上的三个铰两两相联, 则组成的体系是几何不变体系且无多余约束。
两根链杆组成 的虚铰替换铰
二元体规则:
二元体的概念:由两根不共线的链杆联结一 个新结点的装置称为二元体。
二元体
去掉二元体 增加二元体
规律 4
在一个体系上,增加或去掉二元体,体系的 几何组成不变。
FP3
f
B
xk
L1 L
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结构力学:自由度及几何分析
返回
小结
自由度与约束
一根链杆,可以减少体系一个自由度,相当于一个 约束。
一个单铰,可减少体系两个自由度相当于两个约束 。
一个联结n个刚片的复铰,相当于n-1个单铰,相当 于 2(n-1)个约束!
结构力学:自由度及几何分析
2.2.3 虚铰
2.2.3虚铰 有两个链杆连接两个刚片,两根链杆的作
加链杆前体系有3个自由度
加链杆后确定体系的位置,需要两 个独立的坐标,新体系有2个自由度 。一根链杆可以减少体系一个自由 度,相当于一个约束。
Ⅰ
15 6
3
4
1、2、3、4是链杆,折线型链杆 、曲线型链杆可用直线型链杆代替 。
5、6不是链杆。
返回
结构力学:自由度及几何分析
加单铰前体系有六个自由度
加单铰后确定体系的位置,需要四个 独立的坐标,新体系有四个自由度。
2.2.5稳定分析
结构力学:自由度及几何分析
E② D
F① ⑥
⑤
③ ⑧⑨
C
⑦
④
A
B
①
②
⑥
③
⑨
⑤
⑦
⑧
④
例a:j=6;b=9;r=3。 所以:W=2×6-9-3=0
例b:j=6;b=9;r=3。 所以:W=2×6-9-3=0
结构力学:自由度及几何分析
计算自由度与几何稳定性的关 系
(1)W>0,缺乏约束,几何可变; (2)W=0,具有几何不变的前提条件,可能
1.定义 W=各部件的自由度总和-全部约束数 2. W=3m-2n - r [例1] m——刚片数(不计基础); n——单铰数(一个单铰、定向支座相当于两个约
束); r——支座链杆数(固定铰支座相当于2个链杆,
固定端支座或刚性连接相当于三根链杆)
结构力学:自由度及几何分析
3.铰接法
m=1,a=1,n=0 , r=4+3×2=10 则:
1.在平面中,一个自由的点
2.在平面中,一个自由的刚片
结构力学:自由度及几何分析
y
A 0
A' Dy
Dx
x
y
A'
B' D
AB
Dy
Dx
0
x
自由度:
描述几何体系运动时,所需独立坐标的数目。
几何体系运动时,可以独立改变的坐标的数目。
1.在平面中,一个自由的点有两个自由度 ;2.在平面中,一个自由的刚片有三个自由度 。
用相当于一个单铰,在瞬时有同一旋转中 心。也叫瞬铰。 1. 由延长线组成的虚铰 2. 有链杆相交组成的虚铰 3. 无穷远虚铰
2.2.4自由度
结构力学:自由度及几何分析
O . . O’
A
B
C D
虚铰
联结两刚片的两根不共 线的
链杆相当于一个单铰即 瞬铰。
结构力学:自由度及几何分析
2.2.4体系的自由度计算
注意1、刚接在一起的各刚片作为一大刚片 。如带有a个无铰封闭框,约束数应加 3a 个 。
一个刚片 ,7+3个 约束。
2个刚片
2×3个 约束
结构力学:自由度及几何分析
2.2.4体系的自由度计算
3.铰接链杆体系: W=2J-b-r J——结点数(一个点有两个自由度); b——链杆数; r——支座链杆数。
1 . 几 何 不 变 体 系 geometrically unchangeable system :在任意荷载作用 下,能保持其几何形状和位置不变的体 系。
2 . 几 何 可 变 体 系 geometrically changeable system :在外荷载作用下, 会发生几何形状改变和位置改变的体系。
几何不变; (3)W<0,有多余约束,可能几何不变。
结构力学:自由度及几何分析
多余约束 分清必要约束和非必要约束。
结构力学:自由度及几何分析
例1
刚片法:W=3×3-2×2-5=0 铰结点法:W=2×4-3-5=0 1)对半铰结点不能按铰结点对待; 2)通常每根杆都只能有两个铰接点; 3)悬臂端端点也算作铰结点。
结构力学:自由度及几何分析
几何可变体系
几何不变体系
结构力学:自由度及几何分析
二、几何组成分析的目的:
1.保证结构有可靠的几何组成,避免工程中 出现可变结构。
2.了解结构各部分的构造,改善和提高结构 的性能。
3.判别静定、超静定结构。 4.在结构计算时,可根据其几何组成情况,
选择适当的计算方法;分析其组成顺序, 寻找简便的解题途径
1
C
2
x y
单铰可减少体系两个 自由度相当于两个约束
返回
结构力学:自由度及几何分析
复铰(重铰) 联结三个或三个以上刚片的铰
A
C
先有刚片A,然后以单铰将 刚片B联于刚片A,
再以单铰将刚片C联刚片于A上。所以 联结三个刚片的复铰相当于两个单铰 ,减少体系四个自由度。
B
联结n个刚片的复铰相当于n-1 个单铰,相当于 2(n-1)个约束!
结构力学:自由度及几何分析
三、刚片:在平面内可看成是刚体的物体, 即几何形状和尺寸不变。
1. 一根梁、一根链杆。 2. 三角形 3. 支承结构的地基
结构力学:自由度及几何分析
链杆 三角形 地基
结构力学:自由度及几何分析
2.2自由度和约束的概念
2.2.1自由度degree of freedom :体 系运动时,用来确定为之所需的独 立坐标的数目。
WW==33mm--22nn--rr -3×a ==33××11--1100 - 3×1 ==--710
m=7,n=9,r=3 W=3×m-2×n-r
=3×7-2×9-3 =0
结构力学:自由度及几何分析
注意2、复连接要换算成单连接。
连4刚片,n=3
连3刚片,n=2
连2刚片,n=1
结构力学:自由度及几何分析
结构力学:自由度及几何分析
[例2] 刚片法:W=3×3-2×2-6=-1 铰结点法:W=2×4-3-6=-1
结构力学
第二章 结构的几何组成分析
结构力学:自由度及几何分析
2.结构的几何组成分析 geometric construction analysis
2.1几何组成分析的目的 2.2自由度和约束 2.3几何组成规则 2.4瞬变体系 2.5几何组成分析
结构力学:自由度及几何分析
2.1几何组成的目的、几何不变 体系和几何可变体系
结构力学:自由度及几何分析
2.2自由度和约束的概念
2.2.2约束restraint (联系):减少自由 度的装置。
1、单链杆:仅在两处与其它物体用铰相 连,不论其形状和铰的位置如何。
2、单铰: 联结两个刚片的铰。 3、复铰(重铰)联结三个或三个以上刚
片的铰。
结构力学:自由度及几何分析
β α