结构力学几何组成分析-例题

合集下载

02结构的几何组成分析--习题

02结构的几何组成分析--习题
几何不变体系 结构
静定结构 无多余约束几何不变体系
二、无多余约束几何不变体系的组成规则有三个: 无多余约束几何不变体系的组成规则有三个:
①三刚片规则 三刚片用不在一直线上的三个铰两两相连。 三刚片用不在一直线上的三个铰两两相连。 ②两刚片规则 两刚片用一个铰和一根不通过此铰的链杆或 不全平行也不交于一点的三根链杆连接。 不全平行也不交于一点的三根链杆连接。 一刚片和一个点用不共线的两根链杆连接。 ③二元体规则 一刚片和一个点用不共线的两根链杆连接。
无法显示图像。计算机可能没有足够的内存以打开该图像,也可能是该图像已 损坏。请重新启动计算机,然后重新打开该文件。如果仍然显示红色 “x”,则 可能需要删除该图像,然后重新将其插入。
结构力学电子教程
2 结构的几何组成分析 (c)
2.5 分析所示体系的几何构造。 分析所示体系的几何构造。 (a) (b)
结构力学电子教程
2 结构的几何组成分析 2.5
2.4
【解】
【解】
结论: 结论:无多余约束的几何 不变体系。 不变体系。 2.6 【解】 I
结论: 结论:有1个多余约束的几 个多余约束的几 何不变体系。 何不变体系。
III
II 结论:无多余约 结论: 束的几何不变体 系。
无法显示图像。计算机可能没有足够的内存以打开该图像,也可能是该图像已 损坏。请重新启动计算机,然后重新打开该文件。如果仍然显示红色 “x”,则 可能需要删除该图像,然后重新将其插入。
无法显示图像。计算机可能没有足够的内存以打开该图像,也可能是该图像已 损坏。请重新启动计算机,然后重新打开该文件。如果仍然显示红色 “x”,则 可能需要删除该图像,然后重新将其插入。
结构力学电子教程
2 结构的几何组成分析

对图示体系进行几何组成分析(10分)

对图示体系进行几何组成分析(10分)

一、对图示体系进行几何组成分析。

(10分)解:折杆ABC 、CDE 与BD 形成刚片I ,为几何不变体系且无多余约束。

(5分)刚片I 与地面由4链杆相连,整个结构为几何不变且有1个多余约束。

(5分)二、计算图示静定桁架的支座反力及1、2杆的轴力。

(14分)解:求支座反力)(2),(6),(2↑=↑=←=kN R kN Y kN X B A A (6分)求1、2杆的轴力截面法: )(520251011拉kN N N Y ==+⨯-=∑ (4分) 取E 结点: )(240214022压kN N N Y -==⨯--=∑(4分)三、P = 1在图示静定多跨梁ABCD 上移动。

(1)作截面E 的剪力影响线;(2)画出使Q E 达最大值和最小值时可动均布荷载的最不利布置;(3)当可动均布荷载q = 20 kN/m 时,求Q Emax 值。

(16分)(1) Q E 影响线见图(5分)(2)Q Emax 的最不利位置 (3分)Q Emin 的最不利位置 (3分)(3)kN q Q E 38)5332152521(20max =⨯⨯+⨯⨯⨯=∑=+ω(5分)四、用力法计算图示刚架,画M 图。

EI 为常数(20分)解:1、一次超静定结构,基本体系和基本未知量,如图 (2分)A B CDE 0.4 0.6+ -+0.4C ED2、列力法方程 01111=∆+P X δ (1分)3、作图和P M M ___1 (6分) 4、计算系数、自由项EI 14411=δ (3分) EIP 8101-=∆ (3分)5、解方程 kN X 625.51= (1分)6、作M 图 (4分)五、用位移法计算图示刚架,并作M 图。

各杆EI 为常数。

(20分)解:1、以刚结点角位移为基本未知量,得基本体系 (2分);2、绘1M P M 图(图略) (6分)3、列位移法典型方程: 01111=+P F z k (2分)(4分)图(kNm )33.75六、用力矩分配法绘制图示连续梁的弯矩图。

结构力学

结构力学

二、几何组成分析的目的
(1)判别体系是否几何不变; (2)按什么规律组成一个几何不变体系; (3)区分结构是静定的还是超静定的。
返回
§2-2 刚片、约束、体系自由度 和计算自由度
一、体系自由度的定义:
体系自由度:体系的独立运动方式数,或确定体系位置所需的独立坐标数。 例如:平面内一个点有2个自由度,一个刚片有3个自由度。
在某一瞬间可以产生微小运动的体系,称为瞬变体系,它是可变体系 的一种特殊情况。
FN
瞬变体系在工程中不能采用。
FP 2 Sin
如果一个几何可变体系可以发生大位移,则称为常变体系。
法则Ⅱ: 两刚片法则,两刚片用不完全 相交于一点且不完全平行的三 根连杆连接而成的体系,是几 何不变而无多余约束的。
两刚片以一铰及不通过该铰的一个链杆相联,构成几何不变体系。
法则Ⅲ:三刚片六连杆法则,三刚片之间用六连杆彼 此两两相连接,六连杆所组成的三个铰不在 同一条直线上,则所组成的体系是几何不变 而无多余约束的。
讨论
虚铰在无穷远的情形
二元体的概念
二元体的定义:从任意基础上用不共线的两根连杆形成一个 新结点的装置。
2.结论:给定体系为几何不变无多余约束体系。
返回
例六
试分析图示体系是否为几何不变系
解:1.几何组成分析 去除二元体 刚片Ⅰ、Ⅱ、Ⅲ符合三刚片法则。
2.结论:给定体系为几何不变无多余约束体系
返回
例七 试分析图示体系是否为几何不变体系
解:1.几何组成分析 ABEF与基础之间符合两刚片法则,组成新刚片Ⅲ 在刚片Ⅲ上增加一个二元体形成新节点G,由二元体的性质知 体系仍为几何不变,看作刚片Ⅳ CDHI看作刚片Ⅴ,刚片Ⅳ、Ⅴ之间三根连杆交于点D。 2.结论:该体系为几何瞬变体系。

对图示体系进行几何组成分析(10分)

对图示体系进行几何组成分析(10分)

一、对图示体系进行几何组成分析。

(10分)解:折杆ABC 、CDE 与BD 形成刚片I ,为几何不变体系且无多余约束。

(5分)刚片I 与地面由4链杆相连,整个结构为几何不变且有1个多余约束。

(5分)二、计算图示静定桁架的支座反力及1、2杆的轴力。

(14分)解:求支座反力)(2),(6),(2↑=↑=←=kN R kN Y kN X B A A (6分)求1、2杆的轴力截面法: )(52025111拉kN N N Y ==+⨯-=∑ (4分) 取E 结点: )(240214022压kN N N Y -==⨯--=∑(4分)三、P = 1在图示静定多跨梁ABCD 上移动。

(1)作截面E 的剪力影响线;(2)画出使Q E 达最大值和最小值时可动均布荷载的最不利布置;(3)当可动均布荷载q = 20 kN/m 时,求Q Emax 值。

(16分)(1) Q E 影响线见图(5分)(2)Q Emax 的最不利位置 (3分)Q Emin 的最不利位置 (3分)(3)kN q Q E 38)5332152521(20max =⨯⨯+⨯⨯⨯=∑=+ω(5分) 四、用力法计算图示刚架,画M 图。

EI 为常数(20分)解:1、一次超静定结构,基本体系和基本未知量,如图 (2分)A B C D E0.40.6 +-+0.4 C C D2、列力法方程 01111=∆+P X δ (1分)3、作图和P M M ___1 (6分)4、计算系数、自由项 EI 14411=δ (3分) EIP 8101-=∆ (3分) 5、解方程 kN X 625.51= (1分)6、作M 图 (4分)五、用位移法计算图示刚架,并作M 图。

各杆EI 为常数。

(20分)解:1、以刚结点角位移为基本未知量,得基本体系 (2分);2、绘1M P M 图(图略) (6分)3、列位移法典型方程: 01111=+P F z k (2分)(4分)图(kNm )33.75六、用力矩分配法绘制图示连续梁的弯矩图。

结构力学第二章 平面体系的几何组成分析

结构力学第二章 平面体系的几何组成分析

不完全铰节点 1个单铰
13/73
2-1 几何构造分析的几个概念
四、约束 两个互不相连的刚片,若用刚结点连接, 则两者被连为一体成为一个刚片,自由 度由6减少为3。 一个单刚结点相当于3个约束。 单刚结点
三个互不相连的刚片,若用刚结点连接, 自由度由9减少为3。
由此类推:
复刚节点
连接 n 个刚片的复刚结点,它相当于n-1 个单刚结点或3(n- 1)个约束。
A A
1 B
2 C B
1
3
2 C
B 1
A 2
C
几何可变 几何不变 有多余约束
几何不变 无多余约束
规律1 一个刚片与一个点用两根链杆相连,且三个铰不在同一 直线上,则组成几何不变的整体,并且没有多余约束。
23/73
2-2 平面几何不变体系的组成规律
二、两个刚片之间的联结方式
A 2 B I 3 C
A II B I 3 C
16/73
2-1 几何构造分析的几个概念
六、瞬变体系
B 1
I II A
2
I
C
A
II
1 B
2 C
两根链杆彼此共线 1、从微小运动的角度看,这是一个可变体系。 左图两圆弧相切,A点可作微小运动; 右图两圆弧相交,A点被完全固定。
17/73
2-1 几何构造分析的几个概念
六、瞬变体系
B 1
I II A
2
I A 1 B C 2 D
在体系运动的过程中,瞬铰的位臵随之变 化。 用瞬铰替换对应的两个链杆约束,这种约 束的等效变换只适用于瞬时微小运动。
20/73
2-1 几何构造分析的几个概念
八、无穷远处的瞬铰

结构力学之平面体系的几何组成分析

结构力学之平面体系的几何组成分析

二、二刚片规则: 两个刚片用既不全平行也不全交于一点的 三根链杆相联,所组成的体系是几何不变 体系,且无多余约束。
O
ΙΙ
ΙΙΙ

推论: 两个刚片由一个铰和一根轴线不通过该铰的 链杆相联,所组成的体系是几何不变体系, 且无多余约束。
ΙΙ
C
A

B
例三、
C
A

分析图示体系的几何构造:
D
解法一: 1、找刚片:
依据材料概括晚清中国交通方式的特点,并分析其成因。
提示:特点:新旧交通工具并存(或:传统的帆船、独轮车, 近代的小火轮、火车同时使用)。 原因:近代西方列强的侵略加剧了中国的贫困,阻碍社会发 展;西方工业文明的冲击与示范;中国民族工业的兴起与发展;
政府及各阶层人士的提倡与推动。
[串点成面· 握全局]
(二)二元体规则:
增加或去掉二元体不改变原体系的几何
组成性质。
C
A

B
例五、 分析图示体系的几何构造:
解:
A
D
E
基本铰结三角形ABC符合 三刚片规则,是无多余约
B
束的几何不变体系;依次
C
F
G
在其上增加二元体A-D-C、
C-E-D、C-F-E、E-G-F后, 体系仍为几何不变体,且 无多余约束。
一、几何构造特性:
(一)无多余联系的几何不变体系称为静定 结构。
静定结构几何组成的特点是:
任意取消一个约束,体系就变成了
几何可变体系。
(二)有多余联系的几何不变体系称为超静 定结构。
特点: 某些约束撤除以后,剩余体系仍
为几何不变体系。
二、静力特性:
(一)静定结构: 在荷载作用下,可以依据

结构力学习题及答案

结构力学习题及答案

构造力学习题第2章平面体系的几何组成分析2-1~2-6 试确定图示体系的计算自由度。

题2-1图题2-2图题2-3图题2-4图题2-5图题2-6图2-7~2-15 试对图示体系进展几何组成分析。

假设是具有多余约束的几何不变体系,那么需指明多余约束的数目。

题2-7图题2-8图题2-9图题2-10图题2-11图题2-12图题2-13图题2-14图题2-15图题2-16图题2-17图题2-18图题2-19图题2-20图题2-21图2-11=W2-1 9-W=2-3 3-W=2-4 2-W=2-5 1-W=2-6 4-W=2-7、2-8、2-12、2-16、2-17无多余约束的几何不变体系2-9、2-10、2-15具有一个多余约束的几何不变体系2-11具有六个多余约束的几何不变体系2-13、2-14几何可变体系为2-18、2-19 瞬变体系2-20、2-21具有三个多余约束的几何不变体系第3章静定梁和静定平面刚架的内力分析3-1 试作图示静定梁的内力图。

〔a〕〔b〕(c) (d)习题3-1图3-2 试作图示多跨静定梁的内力图。

〔a〕〔b〕(c)习题3-2图3-3~3-9 试作图示静定刚架的内力图。

习题3-3图习题3-4图习题3-5图习题3-6图习题3-7图习题3-8图习题3-9图3-10 试判断图示静定构造的弯矩图是否正确。

(a)(b)(c)(d)局部习题答案3-1〔a 〕m kN M B ⋅=80〔上侧受拉〕,kN F RQB 60=,kN F L QB 60-=〔b 〕m kN M A ⋅=20〔上侧受拉〕,m kN M B ⋅=40〔上侧受拉〕,kN F RQA 5.32=,kN F L QA 20-=,kN F LQB 5.47-=,kN F R QB 20=(c)4Fl M C =〔下侧受拉〕,θcos 2F F L QC =3-2 (a)0=E M ,m kN M F ⋅-=40〔上侧受拉〕,m kN M B ⋅-=120〔上侧受拉〕〔b 〕m kN M RH ⋅-=15(上侧受拉),m kN M E ⋅=25.11〔下侧受拉〕〔c 〕m kN M G ⋅=29(下侧受拉),m kN M D ⋅-=5.8(上侧受拉),m kN M H ⋅=15(下侧受拉) 3-3 m kN M CB ⋅=10〔左侧受拉〕,m kN M DF ⋅=8〔上侧受拉〕,m kN M DE ⋅=20〔右侧受拉〕 3-4 m kN M BA ⋅=120〔左侧受拉〕3-5 m kN M F ⋅=40〔左侧受拉〕,m kN M DC ⋅=160〔上侧受拉〕,m kN M EB ⋅=80(右侧受拉) 3-6 m kN M BA ⋅=60〔右侧受拉〕,m kN M BD ⋅=45〔上侧受拉〕,kN F QBD 46.28=3-7 m kN M C ⋅=70下〔左侧受拉〕,m kN M DE ⋅=150〔上侧受拉〕,m kN M EB ⋅=70(右侧受拉) 3-8 m kN M CB ⋅=36.0〔上侧受拉〕,m kN M BA ⋅=36.0〔右侧受拉〕 3-9 m kN M AB ⋅=10〔左侧受拉〕,m kN M BC ⋅=10〔上侧受拉〕 3-10 〔a 〕错误 〔b 〕错误 〔c 〕错误 〔d 〕正确第4章 静定平面桁架和组合构造的内力分析4-1 试判别习题4-1图所示桁架中的零杆。

结构力学复习题

结构力学复习题
A.对计算和计算结果无影响;
B.对计算和计算结果有影响;
C.对计算无影响;
D.对计算有影响,而对计算结果无影响。
07.在力矩分配法计算中,传递系数 为:()
A.B端弯矩与A端弯矩的比值;
B.A端弯矩与B端弯矩的比值;
C.A端转动时,所产生A端弯矩与B端弯矩的比值;
D.A端转动时,所产生B端弯矩与A端弯矩的比值。
B.只有 时,由于 在附加约束i处产生的约束力;
C. 在附加j处产生的约束力;
D.只有 时,由于 在附加约束j处产生的约束力。
06.杆件杆端转动刚度的大小取决于______________与______________。
07.位移法可解超静定结构,解静定结构,位移法的典型方程体现了___________条件。
20.用力法作图示结构的M图。
21.用力法作M图。各杆EI相同,q=40kN/m,l=3m。
22.用力法作M图。各杆EI相同。
23.用力法作M图。各杆EI相同,杆长均为3m, 28kN/m。
24.用力法求图示桁架支座B的反力。各杆EA相同。
25.用力法求图示桁架支座B的反力。 ,各杆A相同。
26.已知图示结构的 图(仅 杆承受向下均布荷载),求 点竖向位移 。各杆 相同,杆长均为 m。
15.对图示体系进行几何组成分析。
16.对图示体系进行几何组成分析。
17.对图示体系进行几何组成分析。
18.对图示体系进行几何组成分析。
19.对图示体系进行几何组成分析。
二.静定结构内力计算
01.静定结构的全部内力及反力,只根据平衡条件求得,且解答是唯一的。()
02.静定结构受外界因素影响均产生内力。大小与杆件截面尺寸无关。()
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三铰连三个刚片 【例】
() ()
Ⅰ Ⅱ Ⅲ
()
去掉与地基之间的连接。 上部结构为9根杆, 3根为刚片,6根为约束。几何不变体系, 没有 多余约束。
【例】
()
()
去掉与地基之间连接的约束, 上部结构可看成 9个刚片,几何不变体系, 没有多余约束。
【例】
()
()
()
去掉与地基之间连接的约束, 上部结构可看成 9个刚片,几何不变体系, 没有多余约束。
【例】
将刚片画成直杆;

画成
几何不变体系,没有多余约束。
【例】
BCD
A
EF G
从G点开始依次增加二元体,最后判断平行支链杆只 需一根,几何不变体系, 有一个多余约束。
【例】
从两边去掉二元 体, 几何不变体系, 没有多余约束。
【例】 【例】
几何可变体系, 少1个约束
去掉二元体。 几何可变体系,少一个约束。
【例】
从基础开始增加杆件。几何不变体系,有4个多余约束 【例】
去掉与地基相连的约束, 几何不变体系, 没有多余约束。
【例】
【例】
将折杆画成直杆,去掉二元体。 几何不变体系,且没有多余约束
瞬变体系, 无多余约束。
【例】
【例】
几何不变体系,且有一 个多余约束。



几何不变体系且没 有多余约束。
【例】
【例】
Ⅲ Ⅱ

加上地基共有9个刚片, 瞬变体系。
【例】
多余
Ⅲ Ⅱ


画成
有一个多余约束的刚片。 几何瞬变体系,有1个多线相交于一点。瞬变体系。
瞬变体系。
【例】
()
() ()
选两个三角形为刚片,则整个体系可认为 是由9个刚片组成。 瞬变体系,没有多余约束。
【例】 【例】
几何不变体系,没 有多余约束。
1去掉两个二元体。 2 从C、D两点开始增加 二元体CBD,CAD。
AB
几何不变, 有一个多 余约束。
【例】 【例】 A
折杆可以看成连接 两个端点的支链杆。
从上面去掉两个二 元体。
几何不变体系, 有一 个多余约束。
B
折杆可以看成连接两
个端点的支链杆。
C
A、B、C依次去掉
二元体。
几何不变体系, 没有 多余约束。
【例】
C B
去掉A、C两个二 元体。几何可变, 少二个约束。
A
【例】
D
E
AC
F
B
D E
F
■AB 、 AC 看 成 加 到 地 基上的二元体。 ■刚片DEF与地基用三 根支链杆相连。
几何不变体系, 且没有多余约束。
【例】
8
7
9
8
7
9
6
10
6
10
1
3
5
1
3
5
C B A
D E F
几何不变体系,AB 为一个多余约束。
按增加二元体顺序的不同,多余约束可以是AB、 BC、CD、DE、EF中的任意一个。
【例】
去掉一个多余约束。
去掉一个多余约束。
去掉一个必要约束。
#多余约束的个数是一定的,位 置不一定,但也不是任意的。
【例】
1.去掉与地基的几何 不变体系约束。 2.去掉二元体。
结构力学几何组成分析-例题
【例】
A
B
C
D
E
F
1,3
A
2,3
A
2,3
B 1,2 C
D
E
F
1,3 1,2
B
D
F
C
E
几何不变体系
几何瞬变体系
【例】
【例】 A
去掉二元体 可变体系,少一个约束
从A点开始,依次去掉二元体。 几何不变体系且无多余约束。
【例】 C
B A
D E F
从地基开始,依次依 次增加二元体AEF、 ADE、FCD、CBF。
几何不变体系,且 没有多余约束。
【例】
【例】
去掉与地基的连接, 只考虑上部结构 增加二元体
几何不变, 有4个多余 约束。
将折杆用直杆代替。
几何不变, 有多一个与 地基相连的约束。
【例】
1 将折杆用直杆代替,
2 去掉二元体。
几何不变体系, 且有一个多余约束。
【例】
将折杆画成直杆;

画成
上部结构为一个刚片, 用四根杆与地基相连。 几何不变有一个多余 约束。
24
24
去掉与地基的连接, 几何不变体系, 无多余约束。 只考虑上部结构
【例】


去掉与地基的连接, 只考虑上部结构
几何不变体系, 有一个多余约束。
【例】
12


3
【例】
去掉与地基的连接, 只考虑上部结构
用三个链杆相连。几何不变 体系,且没有多余约束。
2
3
4
A
1
5
B
去掉与地基的连接, 只考虑上部结构
【例】
(1.2)

(2.3)

Ⅱ (1.3)
几何不变体系,且没 有多余约束。
几何不变体系且没有多 余约束。
【例】
()
将折杆画成直杆;

画成
瞬变体系
【例】
去掉二元体;

画成
瞬变体系:三杆延长 线交于一点。
【例】
【例】
三杆平行且等长, 几何可变体系
将折杆用直杆
代替,

画成
几何不变体系,且 没有多余约束。
几何可变体系,缺二 个约束。
#缺约束的个数是一定的,位置不一定, 但也不是任意的。
【例】 【例】
多 缺
1.去掉与地基的几何不变体系 约束。 2.去掉二元体。
几何可变体系。缺一个必要约束; 多一个多余约束。
去掉二元体。
可变体系。少一个约束。
【例】
A
1去掉二元体。 2从A点开始增加二元体。
【例】
C
D
() ()
()
几何不变体系, 且,没有多余约束
() ()
()
三铰共线。几何瞬变体系, 没有多余约束。
【例】
() ()
()
去掉二元体。三铰不共线,几何不变体系,没有多余约束。
【例】
瞬变体系
汇报结束
谢谢大家! 请各位批评指正
相关文档
最新文档