最新恒定磁场的基本方程

合集下载

1恒定磁场方程

1恒定磁场方程
4 V ' R
标量磁位φm
在没有传导电流的区域中, H =0
在这种无传导电流的区域中, 可写为 H m
上式φm称为磁场的标量位, 简称标量磁位或磁标位, 式中负号是 为了与静电场相对应而人为地引入的。
真空中, 可得
B (0H) 0(m) 0
2m 0
积分形式

•磁通连续性定律
•安培环路定律
sB dS 0 H dl I
C

B dl 0 I
C
求磁场思路小结
毕奥-萨伐定律——直接积分求解
线电流
B

0I
dl aR
4 C R2
面电流 体电流

B

0
J S aR dS
4 S R2
库仑规范 A 0(为了计算简便)

A 矢量磁位

B
0 4
C
Idl R2
aR

0I 4
( 1 ) dl CR
aB
0I dl 0Idl A
4 C R
C 4 R
Idl

R
dl 1 dl ( 1 ) dl
R2
真空中磁导率 :
0 4 10 7 (H / m)


F12 I 2dl2 B
C2
B

0
I1dl1 aR
4 C1 R 2
磁通密度 磁感应强度
☆ 磁通密度和“毕奥-沙伐”定

dB

0 4

I源dl源 R源2 场
aR

恒定磁场

恒定磁场

三、恒定磁场电流或运动电荷在空间产生磁场。

不随时间变化的磁场称恒定磁场。

它是恒定电流周围空间中存在的一种特殊形态的物质。

磁场的基本特征是对置于其中的电流有力的作用。

永久磁铁的磁场也是恒定磁场。

1、磁通密度与毕奥-萨伐尔定律磁通密度是表示磁场的基本物理量之一,又称磁感应强度,符号为B。

电流元受到的安培力B l d I f d ⨯''=毕奥——萨伐尔定律⎰⨯=l r r l Id B 2004 πμ对于粗导线,可将导线划分为许多体积元dV 。

⎰⎰⎰⨯=Vr r dV J B 2004πμ2、磁通连续性定理磁场可以用磁力线描述。

若认为磁场是由电流产生的,按照毕奥-萨伐尔定律,磁力线都是闭合曲线。

磁场中的高斯定理 0d =⋅⎰⎰S S B式中,S 为任一闭合面,即穿出任一闭合面的磁通代数和为零。

应用高斯散度定理⎰⎰⎰⎰⎰⋅∇=⋅V S dV B S B d=⎰⎰⎰⋅∇VdV B 由于V 是任意的,故 0=B⋅∇式中⋅∇为散度算符。

这是磁场的基本性质之一,称为无散性。

磁场是无源场。

3、磁场中的媒质磁场对其中的磁媒质产生磁化作用,即在磁场的作用下磁媒质中出现分子电流。

总的磁场由自由电流与分子电流共同产生。

永磁铁本身有自发的磁化,因而不需要外界自由电流也能产生磁场。

磁媒质的磁化程度用磁化强度M来表征,它是单位体积内的磁偶极矩。

磁偶极矩:环形电流所围面积与该电流的乘机为磁偶极矩,其方向与电流环绕方向符合右螺旋关系。

nIS P m =磁场强度 MB H -=0μ 或)(0M H B +=μ 本构方程 由mH M χ =可得 H B μ=,该式称为磁媒质的成分方程或本构方程。

磁媒质的分类:r m μμχμμ00)1(=+=,顺磁质 1>r μ,抗磁质 1<r μ,铁磁质 1>>r μ。

4、安培环路定律 磁场强度H沿闭合回路的积分,等于穿过该回路所限定的面上的自由电流。

回路的方向与电流的正向按右螺旋规则选定。

恒定磁场基本方程的微分形式为

恒定磁场基本方程的微分形式为

恒定磁场基本方程的微分形式引言恒定磁场是指磁场中磁感应强度、磁场强度、磁场偏转角等参数在时间和空间上均保持不变的情况。

恒定磁场具有许多重要应用,例如电动机、发电机、磁共振成像等。

为了深入了解恒定磁场的基本方程,需要进行微分形式的推导和讨论。

恒定磁场基本方程在恒定磁场中,我们可以根据安培定律推导出磁场的基本方程。

安培定律表明,在闭合回路中,电流周围的磁场的环绕方向是闭合回路上的电流方向,其磁感应强度大小与电流大小成正比。

根据安培定律,我们可以得到恒定磁场的基本方程的微分形式:1. 电流元在磁场中受到的磁场力表达式为:dF =I (dl ×B ),其中dF 表示电流元受力的微元,I 表示电流,dl 表示电流元的微元长度,B 表示磁感应强度。

2. 根据叉乘的性质,可以得到上式的分量形式:{dF x =I(B z dy −B y dz)dF y =I (B x dz −B z dx )dF z =I(B y dx −B x dy)3. 利用矢量分析中的散度和旋度概念,可以进一步将上述方程转化为微分形式:{ ∂B x ∂x +∂B y ∂y +∂B z ∂z =0∂B x ∂t =0∂B y ∂t =0∂B z ∂t =0上述方程描述了恒定磁场的基本特性,其中第一个方程表示磁场的无源性,即磁感应强度的散度为零;后三个方程表示磁场随时间不变,即磁感应强度对时间的偏导数为零。

恒定磁场中的应用和意义恒定磁场具有许多重要的应用和意义,下面将从以下几个方面进行讨论:1. 电动机和发电机在电动机和发电机中,恒定磁场被用于产生磁场,从而实现电动机的旋转和发电机的电能转换。

利用恒定磁场的基本方程,可以对电动机和发电机的性能进行分析和优化。

2. 磁共振成像磁共振成像(MRI)是一种利用恒定磁场和变化磁场的共同作用原理进行医学影像诊断的技术。

MRI利用恒定磁场对人体组织中的原子核进行定向,然后通过应用变化磁场使原子核进入共振状态,进而通过检测共振信号获得影像信息。

3.3恒定磁场的基本方程

3.3恒定磁场的基本方程
o a
r
I I
得 H e
I I , B e 0 2r 2r
Chap.3 恒定电流的电场和磁场— §3.3 恒定磁场的基本方程
【例2】判断矢量函数 B Ay ex Ax ey 是否可能是某区域的磁感应 强度,如果是,求相应的电流分布。
【解】: 由于
Bx By Bz B 0 x y z

c
R (dl dl ) 4π c ' R3
d

0 I
c
4电场和磁场— §3.3 恒定磁场的基本方程
(1)积分回路C不与电流回路相交链
0
C

c
B dl 0
I
A
B
C
(2)积分回路C与电流回路相交链
4 π

c
B dl 0 I
一、 磁通连续性原理
设 B 是由直流回路C产生的磁 B dS 感应强度,S 为一闭合曲面,则 S 0 磁感应强度 B 穿过S 的磁通量为
S
B 就是磁通量的面密
度,又称为磁通密度
4
c
Idl R dS 3 R
( A B) C A (B C)
B 0
2. 安培环路定律

c
B dl 0 I
B 0 J
3. 恒定磁场的基本方程
B dS 0
S
B 0
H dl I
l
H J
Chap.3 恒定电流的电场和磁场— §3.3 恒定磁场的基本方程
作业:P85 3-11、3-12

B d S BdV 0

恒定磁场的基本方程及分界面上的衔接条件

恒定磁场的基本方程及分界面上的衔接条件
4.6 恒定磁场的基本方程及 分界面上的衔接条件
电工基础教研室 由佳欣
恒定磁场的基本方程
微分形式:
H
JC
B 0
恒定磁场是有旋场,电流密度是磁场 的涡旋源
恒定磁场是无源场,磁感应线是无头无尾 的闭合曲线,没有磁荷的存在
积分形式:
l
H
dl
I
S B dS 0
恒定磁场的环路线积分等于与积分路径 相交链的所有自由电流代数和
磁通连续性定理,由任一闭合面穿出的 净磁通等于零
物性方程: B H
各向同性、线性介质的构成方程。
分界面上的衔接条件
1. 磁场强度的切向分量
由场量闭合曲线S I
场量切向分量的衔接关系
n12
H dl l
l2 H2 dl
l1 H1 dl
H dl
取一闭合柱面,上下面分别位于介质1、2 中,且平行于界面,令 d 趋于0
ld
l
H2 t2l H1 t2l
媒质2
d
t2
t1
分界面
(H1 H2 ) t2l
媒质1
取一闭合曲线,上下边分别位于介质1、2中且平行于 界面,令高度 d 趋于0
分界面上的衔接条件
1. 磁场强度的切向分量
由场量闭合曲线的积分方程
场量切向分量的衔接关系
n12
S JCdS K t1l K (t2 n12 )l t2 (n12 K )l
由场量闭合曲面的积分方程
场量法相分量的衔接关系
S B dS 0
n12
左面=
S2 B2 dS
S1 B1 dS
B dS
S3
S2
B2 n12S B1 n12S (B2n B1n )S 右面 0

工程电磁场——恒定磁场——第2讲

工程电磁场——恒定磁场——第2讲

式(1)代入式(2)
Az y
dy
Az x
dx
dAZ
0
AZ const
第三章
4、由微分方程求 A
恒定磁场
例3.4.4 一半径为 a 的带电长直圆柱体,J=Jez,试 求导体内外的磁矢位 A 与 磁感应强度 B。
解: 采用圆柱坐标系,A A ez 且 A f ()
2 A1
2 Ax Jx ; 2 Ay J y ; 2 Az Jz
令无限远处 A = 0(参考磁矢位),方程特解为:

Ax 4π
J xdV ; V R

Ay 4π
J ydV ; V R

Az 4π
J zdV V R
矢量合成后,得
JdV
Adl 0 ,
l
有 A1t A2t (1)

E dl 0 ,
l
E1t E2t
对比,
图 磁矢位 A 的衔接条件
第三章
b) 围绕 P点作一扁圆柱,则
恒定磁场
S A dS V AdV 0
当 L 0 时, A1nS A2nS 0, A1n A2n (2)
0a 2 J 2
e
a a
第三章
3.5.3 磁矢位与电位的比较
位 函 数 电位
比较内容
(有源或无源)
引入位函数依据 E 0
位与场的关系 微分方程
位与源的关系
E
Q
p E dl
2
dV
V 4πr
恒定磁场
磁矢位A
F1x x

F1y y
00 0

4.6 恒定磁场基本方程应用举例

4.6 恒定磁场基本方程应用举例

第 4 章恒定磁场4.2 真空中恒定磁场的基本方程应用举例半径为 a 的无限长直导体圆柱均匀通过电流 I ,计算导体内外的B 。

解: ⑴ 电流分布具有轴对称性,选柱坐标⑵ 分析磁场的分布 zaI⑶ 沿磁感应线取B 的线积分沿ϕ 方向 ∑⎰==∙I B c02d μπρl B ρ ≤ a 时222aIJ I ρπρ==∑2022022aI a I B πρμρπρμϕ==∴ρ ≥ a 时πρμϕ20IB =II =∑例1两相交圆柱,半径同为a ,轴线相距 c ,通过强度相等方向相反的电流 I ,因而相交部分J = 0。

证明相交区域是匀强磁场。

证: ⑴ 两圆柱单独存在时,均具有轴对称性,选两套柱坐标 ⑵ 计算相交区域任取一场点P 的磁感应 22101d a Icρμ=∙⎰l B 201221101221a I a I z πμρπρμϕρa a B ⨯==22202d aIcρμ=∙⎰l B2022222022)(22aI a I z πμρπρμϕρa a B ⨯-=-=202020*******)(a Ica I a I yz z πμπμπμa c a ρρa B B B =⨯=-⨯=+=例2 O 1 O 2 Pρ1 ρ2 ⊗ ⊙ I Iz x无限大平面上均匀分布面电流J s ,求距此平面 r 处的磁感应B 。

解: ⑴ 电流分布具有平面对称性,选直角坐标。

设J s = a z J s⑵ x >0,磁场方向沿 +y 轴;x <0,磁场方向沿 –y 轴⑶ 在xOy 上选取图示矩形回路lJ l B cs 02d μ==∙⎰l B 2s0J B μ=例 0, 20>x J y sa μ0, 20<-x J y sa μ=B z xy J zz xy J zl。

恒定磁场的基本方程

恒定磁场的基本方程

21:08:49
8
5.2 真空中磁场的基本方程
四、空间磁场的求解
1、利用安培环路定律求解
当电流呈轴对称分布时,可利用安培环路定律求解
空间磁场分布。 l B dl 0I
若存在一闭合路径C,使得在其上 B dl 整段或分段
为定值,则可以用安培环路定律求解。
例 求电流面密度为 JS ez JS0的无限大电流薄板产生的B 。
R
RR
已知: J (r) 0
B 0 ( J (r))dV '
4 V '
R
对上式两边分别取旋度,得
B 0 ( J (r))dV '
4 v'
R
21:02:30
4
5.2 真空中磁场的基本方程
B 0 ( J (r))dV '
4 v'
R
A ( A) 2 A
V AdV S A dS
B(r)= 0J(r) 恒定磁场的旋度反映了恒定磁场漩涡源(电流) 的分布情况 空间任意点磁场的旋度只与当地的电流密度有关 恒定电流是恒定磁场的旋涡源,电流激发旋涡状 的恒定磁场,并决定旋涡源的强度和旋涡方向
磁场旋度与磁场是不同的物理量,它们的取值没
有必然联系。没有电流分布的地方,磁场旋度为零,
R
利用矢量恒等式: (A B) B A A B
[J (r)( 1 ) ( 1 ) J (r) J (r) ( 1 )
RR
R
已知: ( 1 ) 0
R

J (r) 0
B 0 磁场散度定理微分形式
由高斯散度定理,有
ቤተ መጻሕፍቲ ባይዱ
SB d S V BdV 0 磁通连续性定律(积分形式)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档