21-恒定磁场的基本方程与媒质分界面衔接条件

合集下载

电磁场 恒定磁场

电磁场  恒定磁场

工程电磁场导论:恒定磁场
2)无外场时,各分子环流无规取向,总体磁矩为零,此时无宏观 磁场。有外场时,这些微磁矩受到力矩
的作用,趋于沿外场方向排列(
)。此时,出现
的有
序分布,总磁场不再为零,宏观上呈现磁性。这个过程,称为物 质(媒质)的磁化。 3)磁化的后果,就是媒质产生附加的磁场,叠加于外磁场之上, 空间的磁场,由二者共同决定。
(沿 R 方向)那么前者对后者的磁场作用力可表示为
eR方向由施力者指向
受力者
其中 ,称为真空磁导率。
工程电磁场导论:恒定磁场
• 这个规律没有官方的名称,但常常称为 Ampere 定律,
其在磁场中的地位与 Coulomb 定律在电场中的地位相
当。因此,对于真空中的两个载流回路 的作用力 和 , 对
工程电磁场导论:恒定磁场

也可以定义磁力线( B 线),其微分方程:
工程电磁场导论:恒定磁场
【例3-1】有限长直线电流的磁场问题。

考虑对称性,选取柱坐标,导线中点为坐标原点,导线与 z 轴重 合。显然,磁场与 维度无关。
取元电流
在 z′处,其在 P
点产生的元磁场
其中
工程电磁场导论:恒定磁场 因此

工程电磁场导论:恒定磁场
工程电磁场导论:恒定磁场
• 各向同性线性磁介质,有本构方程
称为磁化率,是一个无量纲的纯数。此时有
其中
为相对磁导率,
为磁导率。
工程电磁场导论:恒定磁场 一些磁介质的性能
工程电磁场导论:恒定磁场
• 对于铁磁介质,情况十分复杂。
等式 仍然成立,但是
不成立。 M~H 间没有线性关系。
工程电磁场导论:恒定磁场

电磁场原理课教案

电磁场原理课教案

课程教案(按章编写)课程名称:电磁场原理适用专业:电气工程及自动化年级、学年、学期:2年级,学年第二学期教材:《电磁场原理》,俞集辉主编,重庆大学出版社,2007.2参考书:《工程电磁场导论》,冯慈璋主编,高等教育出版社2000年6月《电磁场与电磁波》第三版,谢处方、饶克谨编,赵家升、袁敬闳修订,高等教育出版社1999年6月第三版《工程电磁场原理》倪光正主编,,高等教育出版社,2002《电磁场》雷银照编,高等教育出版社2008年6月《Electromagnetic fields and waves》Robert R. G. 等编著,HigherEducation Press, 2006任课教师:汪泉弟俞集辉何为李永明张淮清杨帆徐征编写时间:2010年1月学时分配:矢量分析:6学时;静电场:12学时;恒定电场:4学时;恒定磁场:10学时;时变场:12学时;平面电磁场:8学时;导行电磁波:6学时;电磁能量辐射与天线:6学时。

第1章矢量分析一、教学目标及基本要求1.通过课程的介绍,知道“电磁场原理”课程的学习内容、作用;课程的特点、已具有的基础;学习的重点、难点和解决的办法;教材、参考书和教学时间安排;本课程学习的基本要求等等。

2.对矢量分析章节的学习,要建立起标量场和矢量场的概念,掌握梯度、散度和旋度等“三度”运算,以及此基础上的场函数的高阶微分计算。

3.掌握矢量的基本运算法则和相应的微分、积分方法,学会按矢量场的散度和旋度分析场的基本属性。

4.掌握矢量微分算符的基本应用以及高斯散度定理和斯托克斯定理,了解场的赫姆霍兹定理、两个特殊积分定理的推导和圆柱坐标系与球坐标系中矢量微分算符的情况。

二、教学内容及学时分配1.1矢量代数与位置矢量(0.5学时)1.2标量场及其梯度(1学时)1.3矢量场的通量及散度(1学时)1.4矢量场的环量及旋度(1学时)1.5场函数的高阶微分运算(1学时)1.6矢量场的积分定理(0.5学时)1.7赫姆霍兹定理(0.5学时)1.8圆柱坐标系与球坐标系(0.5学时)三、教学内容的重点和难点重点1.场概念的建立2.标量场的梯度、矢量场的散度和旋度的定义及计算。

恒定磁场的基本方程及分界面上的衔接条件

恒定磁场的基本方程及分界面上的衔接条件
4.6 恒定磁场的基本方程及 分界面上的衔接条件
电工基础教研室 由佳欣
恒定磁场的基本方程
微分形式:
H
JC
B 0
恒定磁场是有旋场,电流密度是磁场 的涡旋源
恒定磁场是无源场,磁感应线是无头无尾 的闭合曲线,没有磁荷的存在
积分形式:
l
H
dl
I
S B dS 0
恒定磁场的环路线积分等于与积分路径 相交链的所有自由电流代数和
磁通连续性定理,由任一闭合面穿出的 净磁通等于零
物性方程: B H
各向同性、线性介质的构成方程。
分界面上的衔接条件
1. 磁场强度的切向分量
由场量闭合曲线S I
场量切向分量的衔接关系
n12
H dl l
l2 H2 dl
l1 H1 dl
H dl
取一闭合柱面,上下面分别位于介质1、2 中,且平行于界面,令 d 趋于0
ld
l
H2 t2l H1 t2l
媒质2
d
t2
t1
分界面
(H1 H2 ) t2l
媒质1
取一闭合曲线,上下边分别位于介质1、2中且平行于 界面,令高度 d 趋于0
分界面上的衔接条件
1. 磁场强度的切向分量
由场量闭合曲线的积分方程
场量切向分量的衔接关系
n12
S JCdS K t1l K (t2 n12 )l t2 (n12 K )l
由场量闭合曲面的积分方程
场量法相分量的衔接关系
S B dS 0
n12
左面=
S2 B2 dS
S1 B1 dS
B dS
S3
S2
B2 n12S B1 n12S (B2n B1n )S 右面 0

工程电磁场-恒定磁场

工程电磁场-恒定磁场

例2 分析铁磁媒质与空气分界面情况。
μ0 α2
α1
μfe
铁磁媒质与空 气分界面
解:
tan 2
2 1
tan 1
0 fe
tan 1
0
2 0
表明 只要 1 90 ,空气侧的B
与分界面近似垂直,铁磁媒质表面
近似为等磁面。
2023/10/27
34/119
例 3 在两种媒质分界面两侧,
1 50,2 30
即 H2 H2yey H2xex 10ex 4ey A/m
B2 2H2 0(30ex 12ey ) T
M1 ∆l2
磁化电流是一种等效电流,是大量分子电流磁效应的表示。 有磁介质存在时,场中的 B 是传导电流和磁化电流共同 作用在真空中产生的磁场。
2023/10/27
20/119
4) 磁偶极子与电偶极子对比
模型
电量




p qd
ρp - P p P en
电场与磁场
磁 偶
Jm M
极 子
Bx
0Ky 2
dx (x2 y2)
B
0K
2
ex
0K
2
e
x
y0 y0
2023/10/27
7/119
3.2 安培环路定律 Ampere’s Circuital Law 1. 真空中的安培环路定律
B dl l
l
0 I 2
e
dl
0I d l 2
0I
2
2
0 d 0 I
α
I dΦ
Bdl
解: 平行平面磁场,且轴对称,故
图3.2.19 磁场分布

工程电磁场——恒定磁场——第2讲

工程电磁场——恒定磁场——第2讲

式(1)代入式(2)
Az y
dy
Az x
dx
dAZ
0
AZ const
第三章
4、由微分方程求 A
恒定磁场
例3.4.4 一半径为 a 的带电长直圆柱体,J=Jez,试 求导体内外的磁矢位 A 与 磁感应强度 B。
解: 采用圆柱坐标系,A A ez 且 A f ()
2 A1
2 Ax Jx ; 2 Ay J y ; 2 Az Jz
令无限远处 A = 0(参考磁矢位),方程特解为:

Ax 4π
J xdV ; V R

Ay 4π
J ydV ; V R

Az 4π
J zdV V R
矢量合成后,得
JdV
Adl 0 ,
l
有 A1t A2t (1)

E dl 0 ,
l
E1t E2t
对比,
图 磁矢位 A 的衔接条件
第三章
b) 围绕 P点作一扁圆柱,则
恒定磁场
S A dS V AdV 0
当 L 0 时, A1nS A2nS 0, A1n A2n (2)
0a 2 J 2
e
a a
第三章
3.5.3 磁矢位与电位的比较
位 函 数 电位
比较内容
(有源或无源)
引入位函数依据 E 0
位与场的关系 微分方程
位与源的关系
E
Q
p E dl
2
dV
V 4πr
恒定磁场
磁矢位A
F1x x

F1y y
00 0

恒定磁场

恒定磁场

B dl Bdl cos
2 0 I I d 0 d 2 2 0
0 I
若积分回路没有和电流交链
0 I 0 dθ 0 B dl 2 0
上 页 下 页
第 三 章
恒定磁场
由于积分路径是任意的,所以有一般规律
B dl I
② 电流回路之间的作用力满足牛顿第三定律:F12=F21 ③ 式中0为真空中的磁导率,它与真空电容率和真空中光 速满足关系:
c
1 μ0 ε0
μ0 4π 107 H / m
上 页 下 页
第 三 章
恒定磁场
3.2 磁通连续性原理 • 安培环路定律
Magnetic Flux Continue Theorem & Ampere’s Circuital Law
注意 抗磁体和顺磁体在磁场中所受的力很弱,统
上 页 下 页
第 三 章
恒定磁场
可以用原子模型来解释物质的磁性 1)磁偶极子 (magnetic dipole)
面积为dS的很小的载流回路,场 中任意点到回路中心的距离都远 大于回路的线性尺度。
磁偶极矩 m IdS Am2
( magnetic dipole moment )
返 回
上 页
下 页
第 三 章
恒定磁场
注意
① 磁化曲线与温度有关,磁导率 一般随温度 的升高而下降,高于某一温度时(居里点) 可能完全失去磁性材料的磁性。 ② 磁导率 随H变化,B与H为非线性关系。

返 回
上 页
下 页
第 三 章
恒定磁场
2.铁磁质的分类
软磁材料 磁滞回线较窄,大,HC、Br小,断电后 能立即消磁。 如硅钢、矽钢等 。磁损小,用于电机、 变压器、整流器、继电器等电磁设备的铁心。 硬磁材料 磁滞回线较宽, 小,HC、Br大, 充磁 后剩磁大。如铁氧体 、钕铁硼 。用于永磁电机、电 表、电扇,电脑存储器等器件中的永磁体。

磁感应强度安培环路定律恒定磁场基本方程与分界面上的衔接条件公开课一等奖优质课大赛微课获奖课件

磁感应强度安培环路定律恒定磁场基本方程与分界面上的衔接条件公开课一等奖优质课大赛微课获奖课件

毕奥-沙伐定律

旋度运算后, 得到
B(r
)
0
J
(有电流区) 恒定磁场是有旋场
0 (无电流区)
在直角坐标系中
ex ey ez
B
x
y
z
( Bz y
By z
)ex
(Bx z
Bz x
)e y
(By x
Bx y
)ez
Bx By Bz
返 回 上 页 下 第12页 页
1. 安培环路定律(真空)
以长直导线磁场为例
恒定磁场
例 3.2.5 有一磁导率为 µ, 半径为 a 无限长导磁圆
柱 , 其轴线处有无限长线电流 I , 圆柱外是空气, 磁导
率为 µ0 , 试求 B, H 与 M 分布。
解: 平行平面磁场, 且轴对称, 故
图3.2.19 磁场分布
lΗ dl 2πH I
磁场强度
H
I

e
0
返 回 上 页 下 第29页 页
第三章
B
I 2π
e
0I 2π
e
0 a
a
M B H
0
=
0 0
I 2π
e
0
a a
恒定磁场
图3.2.20 场量分布
返 回 上 页 下 第30页 页
第三章
恒定磁场
3.3 基本方程 、 分界面衔接条件
Basic Equations and Boundary Condition 3.3.1 磁通连续性原理 ( Magnetic Flux Continue Theorem )
磁化电流含有与传导电流相同磁效应。
返 回 上 页 下 第22页 页

南方电网专业课考点总结 电磁场 第三章1

南方电网专业课考点总结 电磁场 第三章1
① 磁力线是一些有方向的曲线,曲线上任一点的切线方向 与该点磁感应强度 B 的方向。 ② 磁力线的疏密程度与磁感应强度的大小成正比。
磁力线的性质:
B线是闭合曲线; B线与电流方向成右螺旋关系; B线不能相交 磁场强处,磁力线密集,否则稀疏。
上 页 下 页
第 二 章
恒定电场
B 线方程
B // dl → B = kdl or B × dl = 0
S
Jm = ∇ × M
可以证明面磁化电流 注意
体磁化电流
Km = M × en
磁化电流是一种等效电流,是大量分子电流磁效应的表示。 有磁介质存在时,场中的 B 是传导电流和磁化电流共同 作用在真空中产生的磁场。
上 页
下 页
第 二 章
恒定电场
T(Wb/m2) 1T=104(GS)
或磁通密度 F B Idl α
上 页 下 页
定义
第 二 章
恒定电场
洛仑兹力 电流是电荷以某一速度运动形成的,所以磁场对
电流的作用可以看作是对运动电荷的作用。
dq dF = Idl × B = (vdt ) × B dt
洛仑兹力
dF B v α
F = qv × B
∫ B ⋅ dl = μ I
l 0
交链多个电流
0
∫ B ⋅ dl = μ ∑ I
l
真空中的安 培环路定律
表明在真空的磁场中,沿任意回路磁感应强度B的线积 分等于真空磁导率乘以穿过回路限定面积上电流的代数和。
注意
① 定律中电流I 的正负取决于电流的方向与积分回路的绕 行方向是否符合右螺旋关系,符合时为正,否则为负。 ② 定律中的B是整个场域中所有电流的贡献。
体电流
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

消去相互抵消部分,得 2xH2 et 2xH1 et =2xK e
2019/10/3
华北电力大学电气与电子工程学院
6
工程电磁场
主讲人: 王泽忠
l = 2 x 趋近于 0,但不等于 0,因此得
(H2 H1) et =K e
由图 可知 et e en , et e en
华北电力大学电气与电子工程学院
4
工程电磁场
主讲人: 王泽忠
先讨论磁场强度的分界面衔接条件:
如下图所示,围绕分界面上一点 P
做一个小矩形闭合曲线
abcdefa 。
en 分界面法线方向
et 是选定的切线方向
e 是与 et 垂直
另一个切线方向的单位矢量
2019/10/3
华北电力大学电气与电子工程学院
3
工程电磁场
主讲人: 王泽忠
3.媒质分界面衔接条件
在不同磁媒质的分界面上,存在磁化面电流。
这造成分界面两侧场矢量不连续。
微分形式的基本方程在分界面处遇到困难。 因此必须研究场矢量的分界面衔接条件, 以弥补只考虑体电流造成的不足。
下面根据积分形式的基本方程 推导不同磁媒质分界面衔接条件。
2019/10/3
5
工程电磁场
主讲人: 王泽忠
根据安培环路定理,磁场强度的闭合线积分
H dl I
l
在小矩形各边长趋近于 0 时,可以设在 abcd 上 H2 为常矢量,
在 defa 上 H1 为常矢量;自由面电流分布在分界面上, 面电流密度 K 为常矢量。分段积分可得
yH2 en +2xH2 et yH2 en yH1 en 2xH1 et yH1 en =2xK e
H2 H1 et = H2 H1 e en K e 根据矢量恒等式 a b c b c a
H2 H1 e en e en H2 H1 e K
en H 2 H1 和 K 均为 P 点沿分界面切线方向的矢量,
工程电磁场
主讲人: 王泽忠
工程电磁场
王泽忠
2019/10/3
华北电力大学电气与电子工程学院
1
工程电磁场
主讲人: 王泽忠
4.5 恒定磁场的基本方程与分界面衔接条件
1.恒定磁场基本方程的微分形式
磁通连续性原理与安培环路定理构成恒定磁场的基本方程, 其微分形式为
B 0 H J
在各向同性媒质中,辅助方程为
在真空(相对磁导率为 1)中的均匀二维磁场中,
2019/10/3
华北电力大学电气与电子工程学院
12
工程电磁场
主讲人: 王泽忠
放置一圆形的磁媒质(相对磁导率为 1000)。
图画出了由磁感应强度线
和磁感应强度场矢量箭头合成的场图。
图画出了磁场强度矢量的场图。
观察两图可以得出如下规律:
(1)在垂直于磁感应强度的分界面上
2019/10/3
华北电力大学电气与电子工程学院
9
工程电磁场
主讲人: 王泽忠
根据磁通连续性定理,磁感应强度的闭合面积分
B dS 0
S
在小长方体各边长趋近于 0 时,
设第一种磁媒质中磁感应强度 B1 为常矢量,
第二种磁媒质中磁感应强度 B2 为常矢量。分片积分可得
4zxB2 en 4zxB1 en +2yzB2 et +2yzB1 et 2yzB2 et 2yzB1 et 2xyB2 e 2xyB1 e 2xyB2 e 4xyB1 e
e 可以取为任意的切线方向,所以有
en H2 H1 K
2019/10/3
华北电力大学电气与电子工程学院
7
工程电磁场
若 K 0 ,则
主讲人: 王泽忠
en H2 H1 0
H2t H1t
标量形式的分界面衔接条件,推荐用于二维场情况。
现在讨论磁感应强度 B 应满足的分界面衔接条件。 如下图所示,围绕分界面上一点 P
做一个边长 2x 、 2y 和 2z 的小长方体表面闭合曲面。
移去小长方体表面的前半部分,只画出了后半部分。
2019/10/3
华北电力大学电气与电子工程学院
8
工程电磁场
主讲人: 王泽忠
en 是分界面法线方向的单位矢量。 et 是任意选定的一个切线方向的单位矢量,
e 与 et 垂直的另一个切线方向的单位矢量。
0
2019/10/3
华北电力大学电气与电子工程学院
10
工程电磁场
消掉相互抵消部分,得
主讲人: 王泽忠
4zxB2 en 4zxB1 en 0
令 S 4zx 。考虑到 S 趋近于 0,但不等于 0,得
en B2 B1 0
标量形式为
B2n B1n
就是磁感应强度应满足的分界面法向衔接条件。 这里矢量形式和标量形式容易理解。
2019/10/3
华北电力大学电气与电子工程学院
11
工程电磁场
主讲人: 王泽忠
4.磁媒质分界面场图
磁场定性分析依解面条件
分界面上没有自由面电流的情况下,
恒定磁场不同磁媒质分界面衔接条件,
可以总结为如下两条:
(1)磁场强度切线方向连续。
(2)磁感应强度法线方向连续。
磁场强度连续,磁感应强度发生突变。
分界面两侧磁导率大的磁媒质中磁感应强度数值大。
磁感应强度线趋向于从磁导率大的媒质中通过。
2019/10/3
华北电力大学电气与电子工程学院
14
工程电磁场
主讲人: 王泽忠
磁场强度发生突变。由于磁导率变大 1000 倍,
磁场强度减小 1000 倍,图上圆内部箭头已无法画出。
(2)在垂直于磁感应强度的分界面上
2019/10/3
华北电力大学电气与电子工程学院
13
工程电磁场
磁感应强度连续。 磁感应强度线 连续穿越磁媒质分界面。
主讲人: 王泽忠
(3)在平行于磁感应强度的分界面上
B H
2019/10/3
华北电力大学电气与电子工程学院
2
工程电磁场
主讲人: 王泽忠
2.恒定磁场基本方程的积分形式
根据散度定理和斯托克斯定理,
可得基本方程的积分形式
B dS 0
S
H dl I
l
在各向同性媒质中,辅助方程为
B H
2019/10/3
华北电力大学电气与电子工程学院
相关文档
最新文档