常用晶体材料

合集下载

常用半导体材料有哪些

常用半导体材料有哪些

常用半导体材料有哪些在现代电子领域,半导体材料扮演着至关重要的角色,它们既可以用来制造电子器件,也可以应用在光电学、激光学等领域。

以下是一些常用的半导体材料:硅(Silicon)硅是最常见的半导体材料之一,它具有晶体结构,广泛用于制造各种半导体器件。

硅具有稳定性高、热导率好、便于加工等优点,因此被广泛应用于集成电路(IC)制造。

锗(Germanium)锗是另一种常见的半导体材料,它在半导体早期的发展中起到了关键作用。

锗具有比硅更高的电子迁移率,因此被用于高频器件的制造。

然而,由于成本较高,现在在某些领域已经被硅所取代。

化合物半导体(Compound Semiconductors)化合物半导体是由两种或多种元素化合而成的半导体材料,如氮化镓(GaN)、磷化铟(InP)等。

这些材料具有优异的电子特性,可应用于LED、激光二极管等器件的制造。

硒化镉(Cadmium Selenide)硒化镉是一种II-VI族化合物半导体,具有较宽的能隙,因此在光电学领域有着广泛的应用,如太阳能电池、红外探测器等。

砷化镓(Gallium Arsenide)砷化镓是一种常见的III-V族化合物半导体,具有高速、高频特性,因此广泛用于雷达、微波通信等领域。

硼化铝(Aluminum Boride)硼化铝是一种新型的半导体材料,具有优异的热传导性能,因此被应用于高功率电子器件的散热结构。

总的来说,半导体材料种类繁多,每种材料都有其独特的特性和应用领域。

随着科技的不断发展,半导体材料的研究也在不断进步,为现代电子技术的发展提供了坚实基础。

太赫兹碲化锌晶体

太赫兹碲化锌晶体

太赫兹碲化锌晶体是一种用于太赫兹技术的晶体材料。

太赫兹频段(THz)指的是频率在0.1 THz 到10 THz 之间的电磁波,这个频段的特点是波长短,传输距离短,对材料的透过率高。

碲化锌晶体是一种常用的太赫兹晶体材料,它具有较高的光学纯度、较高的晶体结构稳定性和较高的电磁响应。

碲化锌晶体可以用于太赫兹激光器、太赫兹成像系统、太赫兹光谱仪等太赫兹应用。

碲化锌晶体的制备方法有多种,如摇晶、熔盐法、高温气相沉积等,其中高温气相沉积技术是目前用于制备高质量碲化锌晶体的主要方法之一。

碲化锌晶体还有一些其它特点:
•光学质量高,具有较高的透过率
•热稳定性好,耐高温
•电磁响应好,可用于多种太赫兹应用
•制备方法多样,可以根据应用需求调整晶体质量
由于其优良性能,碲化锌晶体在太赫兹技术领域中有着广泛的应用,如太赫兹激光器、太赫兹成像、太赫兹光谱仪等。

随着太赫兹技术的发展,碲化锌晶体在医学成像、生物医学、安全检查等领域中的应用前景也非常广阔。

非线性晶体

非线性晶体
有机晶体的分类 (1) 有机盐类非线性光学晶体
一水甲酸锂晶体, 苹果酸钾晶体,磺酸水杨酸二钠晶体 L精氨酸磷酸盐晶体, 氘化LAP晶体; (2) 酰胺类晶体—尿素晶体; (3) 苯基衍生物晶体; (4) 吡啶衍生物晶体; (5) 酮衍生物晶体; (6) 有机金属络(配)合物晶体; (7) 聚合物晶体。
1、 激光频率转换(变频)晶体 非线性光学频率转换晶咋主要用于激光倍频、和频、差
频、多次倍频、参量振荡和放大等方面,以拓宽激光辐射 波长的范围,开辟新的激光光源等。
(1)红外波段的频率转换晶体 现有的性能优良的频率转换晶体,大多适用于可见光、 近红外和紫外波段的范围.红外波段,尤其是波段在5μm 以上的频率转换晶体,至今能得到实际应用的较少。
下能实现相位匹配,化学稳定性好,它是迄今为止的激光损
伤阂值最高的非线性光学晶体材料,已实现了光参量振荡输 出,对1. 06μm的Nd:YAG激光的倍频转换效率高达60%。
2、 电光晶体 电光晶体主要用于激光的调制、偏转和Q开关等技术
应用方面。主要的有:磷酸二氘钾[K(DxH1-x)2PO4]、铌酸 锂(LiNbO3),钽酸锂(LiTaO3),氯化亚铜(CuCl)和钽铌酸 钾(KtaxNb1-xO3)等晶体。
光折变晶体的非线性光学系数非常高,已做成增益因子 高达4000的光学放大器。
有应用价值的光折变晶体主要有:钛酸钡(BaTiO3)、铌 酸钾(KNbO3)、铌酸锂(LiNbO3)、以及上述掺Fe离子的三种
(晶B体SO、)晶铌体酸、锶铌钡酸(S锶r1-钡xB钾axN钠b[2KON6)a系(S列r1-、xB硅ax)酸0.9铋Nb(2BOi162,SiKON20S)BN]
三元化合物晶体 AgGaS2 晶体, AgGaSe2晶体, Ag2AsS3 晶体, CdGeAs2 晶体, TlAsSe2晶体, HgCdTe2晶体

干货 晶体材料及处理方法相详解

干货  晶体材料及处理方法相详解

目前,高密度和大尺寸芯片需要大直径的晶圆,同时更大直径晶圆能够不断降低芯片成本,更大直径的晶圆对于整个整备过程和晶体结构、电性能一致性等提出了更高的要求。

今天我们来聊聊从自然界的沙石到变成半导体级别的硅,再转变为晶体和晶圆。

01晶体材料半导体材料硅的制备半导体器件或者电路实在半导体材料晶圆表层形成的,用量最广的还是半导体硅,这些晶圆的杂质含量必须很低,必须是指定的晶体结构,必须是光学表面,并达到指定的电气性能和对应的相应规格要求。

我们都知道Si在自然界中大量的存在,半导体制造的第一阶段便是从沙石中选取和提纯半导体材料的原料。

将沙石转化为硅化物,如四氯化硅或者三氯硅烷,再与氢反应形成半导体级的硅原料,这一便达到纯度高达99.9999999%的硅,它是一种我们称为多晶或者多晶硅(polysilicon)的晶体结构。

氢气还原三氯硅烷反应方程式晶体和非晶体材料中原子的组织结构是导致材料不同的一种方式,有些材料,例如硅和锗,原子在整个材料里重复排列或者非常固定的结构,我们将此类材料称为晶体(crystal)。

原子没有固定周期性排列的材料称之为非晶体或者无定形(amorphous),塑料局势无定型材料。

对于晶体材料实际上可能有两个级别的原子组织结构,第一个是单个原子的组织结构,晶体里的原子排列为晶胞(unit cell)结构,晶胞结构在晶体里到处重复。

另一个涉及晶胞结构的术语是晶格(lattice),晶体材料具有特定的晶格结构,并且原子位于晶格结构的特定点。

在晶胞里原子数量、相对位置和原子间的结合能可以带来材料的许多特性,每个晶体材料具有独一无二的晶胞。

硅晶胞具有16个原子排列成金刚石结构:砷化镓晶体具有18个原子的闪锌矿结构:多晶和单晶在本征半导体中,晶胞间不是规则排列的,好似方块杂乱无章地堆起来一样,每个方块代表一个晶胞,我们称之为多晶结构;当晶胞整洁而有规则地排列时,我们称其具有单晶结构。

单晶结构的材料相对于多晶结构来说具有更一致和更可预测的性质,单晶结构允许在半导体里一致和可预测性的电子流动,所以单晶结构是半导体器件所需的。

晶体的五种类型

晶体的五种类型

晶体的五种类型晶体是一种物质,它的分子结构有条不紊地排列成一定的形状。

从电子镜观察,晶体内分子间距小而均匀,而晶体外表面具有规则的线条。

晶体按其机械性能、电学性能和光学性能可分为五类:石英晶体、金刚石晶体、液晶体、半导体晶体和水晶体。

石英晶体是一种具有晶粒的硅原料,是由多种无机物组成的复合晶体,具有优越的电学和机械性能,常用来制造电子元器件。

它具有良好的节流性能,用于控制电子设备中的电流。

常见的石英晶体有熔石英、石英晶振和石英晶滤波器。

金刚石晶体是硅原料,具有极高的硬度,是用于切削金属和硬质合金的最佳材料。

它由单一原子组成,具有极强的化学稳定性和机械强度,可以在绝对真空中稳定运行,可以用来制造各种节流器、滤波器和电子元件。

液晶体是一种可调节光学性能的晶体,由某些类型的有机分子和无机晶体组成,具有很强的可视性。

在偏振光学的应用中,液晶具有调制光学性能的优点,可以在偏振特性中产生不同的变化,用于制造显示器、投影仪和电视机等。

半导体晶体由半导体元素连接而成,常用于电力、电子和光学系统中,具有良好的电气绝缘性能。

它由晶格组成具有极低的电阻,是一种可以传输电子与热量的良好材料,经常用于制作电子元器件、太阳能电,以及可充电储能电池。

水晶体是由杂质包围的硅晶体,具有良好的光学特性,具有吸收、折射、散射和干涉等作用,常用于激发、放大和场晶体激光,以及其他光学仪器和设备。

水晶体有熔融水晶体和熔温水晶体两种,熔融水晶体具有振性,而熔温水晶体则由多种水晶体组成,可以在不同温度下发出不同的光谱。

晶体的五种类型有着各自独特的性能,可以用于制造各种电子器件。

石英晶体、金刚石晶体和水晶体的机械、电学和光学性能优良,可以应用于微电子、光电子和光学仪器设备中;液晶体的可调节光学性能,可以用于投影仪和显示器;半导体晶体的绝缘性,使其可以用于电池和太阳能电池中。

晶体的广泛应用,为现代科技发展及生活提供了最基础的材料和设备。

常用晶体材料

常用晶体材料

Al2O3晶体氧化铝晶体(白宝石,蓝宝石,Al2O3)是一种很重要的光学晶体。

它具有高硬度、高熔点、高强度、高透过率、耐高温和抗腐蚀的特性,广泛地用于航空航天仪器的红外和紫外的窗口、激光工作窗口、高炉测温窗口以及太阳能电池呵护罩和永不磨损手表镜面等。

在窗口应用方面,它具有如下优良的特性:(1)光透过范围从300nm到5.5μm(2)3-5μm波段红外透过率大于85%(3)具有高硬度,高透过率,抗挠曲强度和抗风蚀、雨蚀的能力(4)优良的热传导性能(5)低散射率0.02在λ=26到31μm,880℃CaF2晶体氟化钙晶体是一种很重要的光学晶体,它具有如下优良的特性:折射率:MgF2晶体氟化镁晶体被应用在环境要求很苛刻的光学系统中,它的透过波段为0.11μm--8.5μm。

辐照不会导致色心的发生,它有良好的机械性能,可以承受热和机械震动,很大的外力才干使氟化镁解理。

氟化镁单晶由于有微弱的双折射性能,通常的切向为光轴垂直于晶片概况。

氟化镁是一种应用很广泛的晶体,具有如下特性:(1)、在真空紫外到红外(0.11~8.5μm)波段有很高的透过率.(2)、抗撞击和热动摇以及辐照(3)、良好的化学稳定性.(4)、可用于光学棱透镜、锲角片、窗口和相关光学系统中(5)、四方双折射晶体性能,可用于光通讯.(6)、UV 窗口资料LiF氟化锂晶体是一种很重要的光学晶体,它具有如下优良的特性:1、在真空紫外到红外(0.12-6μm)的波段有很高的透过率,特别是在真空紫外有优良的透过率。

YVO4晶体钒酸钇晶体是一种具有优良的物理和光学特性的双折射单晶。

由于它具有较大的透过范围、透光度高、大的双折射、易于加工等特点,所以广泛应用于光学组件如光纤光隔离器、环形器、分光器,还有其它的偏振光学器件等。

主要特性:钒酸钇是用提拉法生长的正向单轴晶体,具有较好的机械和物理特性,宽的透过范围和大的双折射率使它成为了理想的光偏振组件。

在许多的应用方面,它是方解石和金红石的多种应用优良的人造的替代品,如光纤光学隔离器和循环器、分束器,格兰起偏器以及其它起偏器等。

晶体材料蓝宝石(Al2O3)

晶体材料蓝宝石(Al2O3)

晶体材料蓝宝⽯(Al2O3)蓝宝⽯(Sapphire,⼜称⽩宝⽯,分⼦式为Al2O3)单晶是⼀种优秀的多功能材料。

它耐⾼温,导热好,硬度⾼,透红外,化学稳定性好。

⼴泛⽤于⼯业、国防和科研的多个领域(如耐⾼温红外窗⼝等)。

同时它也是⼀种⽤途⼴泛的单晶基⽚材料,是当前蓝、紫、⽩光发光⼆极管(LED)和蓝光激光器(LD)⼯业的⾸选基⽚(需⾸先在蓝宝⽯基⽚上外延氮化镓薄膜),也是重要的超导薄膜基⽚。

除了可制作Y-系,La-系等⾼温超导薄膜外,还可⽤于⽣长新型实⽤MgB2(⼆硼化镁)超导薄膜(通常单晶基⽚在MgB2 薄膜的制作过程中会受到化学腐蚀)。

主要性能参数晶系六⽅晶系晶胞常数 a=4.748Å c=12.97Å密度 3.98(g/cm3)熔点 2040℃莫⽒硬度 9热膨胀系数 7.5 (x10-6/ oC)介电常数 ~ 9.4 @300K at A axis ~ 11.58@ 300K at C axis晶向公差 ±0.5°常规尺⼨及公差 10×3,10×5,10×10,15×15,20×15,20×20,常规厚度及公差 0.5mm,1.0mm抛光单⾯或双⾯表⾯粗糙度 Ra<5Å(5×5µm)包装 100级洁净袋,1000级超净室相关产品供应氟化锂(LiF)Ho:YAGEr:YAGNd:YAGYb:YAG磷酸钛氧钾(KTP)氟化镁晶体 MgF2⾼纯硅靶材 Si氟化钙靶材 CaF2晶体锗单晶 Ge硫化锌颗粒 ZnS硅颗粒 Si硅晶体 Si锑化铟单晶 InSb氧化镁晶体 MgO氧化铝(蓝宝⽯)晶体氟化钙粒zl 01.18。

工业中的常见晶体材料

工业中的常见晶体材料

工业中的常见晶体材料引言:晶体材料是工业中常用的一类材料,其具有优良的物理、化学和电学性能,被广泛应用于电子、光电、通信、光学、能源等领域。

本文将介绍几种常见的晶体材料及其特性和应用。

一、硅(Si)晶体:硅是一种广泛应用的晶体材料,其晶体结构为面心立方结构。

硅晶体具有良好的热稳定性、机械强度和化学稳定性,是集成电路制造中最重要的基础材料之一。

硅晶体的电学性能良好,可用于制造半导体器件,如二极管、晶体管和集成电路等。

二、镁铝酸锂(MgAl2O4)晶体:镁铝酸锂晶体是一种具有高热稳定性和优异光学性能的晶体材料。

其晶体结构为尖晶石结构,具有较高的硬度和抗腐蚀性。

镁铝酸锂晶体可用于制造激光器、光学窗口和光学棱镜等光学器件,广泛应用于光通信、激光加工和光学仪器等领域。

三、锗(Ge)晶体:锗是一种具有良好光电性能的晶体材料,其晶体结构为钻石结构。

锗晶体具有较高的载流子迁移率和较低的能带隙,可用于制造光电探测器、太阳能电池和红外探测器等器件。

此外,锗晶体还可用于制造高纯度的半导体材料,是集成电路和光电子器件的重要衬底材料之一。

四、铝氧化物(Al2O3)晶体:铝氧化物晶体是一种具有高热稳定性和优异机械强度的晶体材料。

其晶体结构为六方最密堆积结构。

铝氧化物晶体具有优良的绝缘性能和抗腐蚀性,可用于制造绝缘体、绝缘子和高温陶瓷等器件。

此外,铝氧化物晶体还具有良好的透明性和光学性能,可用于制造光学窗口和光学棱镜等光学器件。

五、硼酸钡(BaB2O4)晶体:硼酸钡晶体是一种具有非线性光学效应的晶体材料,其晶体结构为四方晶系。

硼酸钡晶体具有高透明性、高光学非线性系数和宽的透明光谱范围,可用于制造倍频器、光学调制器和光学开关等光学器件,广泛应用于激光技术和光通信等领域。

六、锂铌酸锂(LiNbO3)晶体:锂铌酸锂晶体是一种具有优异光学和电学性能的晶体材料,其晶体结构为三方晶系。

锂铌酸锂晶体具有高的电光系数和良好的非线性光学性能,可用于制造光波导器件、光调制器和声表面波滤波器等光电器件,广泛应用于光通信和光学传感等领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

氧化铝晶体(白宝石,蓝宝石,Al2O3)是一种很重要的光学晶体。

它具有高硬度、高熔点、高强度、高透过率、耐高温和抗腐蚀的特性,广泛地用于航空航天仪器的红外和紫外的窗口、激光工作窗口、高炉测温窗口以及太阳能电池保护罩和永不磨损手表镜面等。

在窗口应用方面,它具有如下优良的特性:
(1)光透过范围从300nm到5.5μm
(2)3-5μm波段红外透过率大于85%
(3)具有高硬度,高透过率,抗挠曲强度和抗风蚀、雨蚀的能力
(4)优良的热传导性能
(5)低散射率0.02在λ=26到31μm,880℃
CaF2晶体
折射率:
氟化镁晶体被应用在环境要求很苛刻的光学系统中,它的透过波段为0.11μm--8.5μm。

辐照不会导致色心的产生,它有良好的机械性能,可以承受热和机械震动,很大的外力才能使氟化镁解理。

氟化镁单晶由于有微弱的双折射性能,通常的切向为光轴垂直于晶片表面。

氟化镁是一种应用很广泛的晶体,具有如下特性:
(1)、在真空紫外到红外(0.11~8.5μm)波段有很高的透过率.
(2)、抗撞击和热波动以及辐照
(3)、良好的化学稳定性.
(4)、可用于光学棱透镜、锲角片、窗口和相关光学系统中
(5)、四方双折射晶体性能,可用于光通讯.
(6)、UV 窗口材料
Ba F2
LiF
氟化锂晶体是一种很重要的光学晶体,它具有如下优良的特性:
1、在真空紫外到红外(0.12-6μm)的波段有很高的透过率,特别是在真空紫外有优良的透过率。

材料性能:
YVO4晶体
钒酸钇晶体是一种具有优良的物理和光学特性的双折射单晶。

由于它具有较大的透过范围、透光度高、大的双折射、易于加工等特点,所以广泛应用于光学组件如光纤光隔离器、环形器、分光
器,还有其它的偏振光学器件等。

钒酸钇是用提拉法生长的正向单轴晶体,具有较好的机械和物理特性,宽的透过范围和大的双折射率使它成为了理想的光偏振组件。

在许多的应用方面,它是方解石和金红石的多种应用优良的人造的替代品,如光纤光学隔离器和循环器、分束器,格兰起偏器以及其它起偏器等。

与其它双折射晶体相比较:
与方解石相比,钒酸钇具有更好的温度稳定性及物理和机械特性。

方解石易潮解和低硬度是使得很难得到高光学质量晶体。

与高硬度的金红石 (TiO 2)相比,钒酸钇更易于进行光学表面加工,这也就相应降低了加工成本,尤其对批量生产来说。

与铌酸锂相比,它们具有相似的机械和物理性能,钒酸钇的双折率确比铌酸锂大三倍,这使得设计更加紧凑。

ZnS 晶体和ZnSe 晶体
硫化锌和硒化锌(ZnS 和
ZnSe )晶体具有如下优良的特性,是一种很重要的光学晶体,特别是应用于远红外波段。

CVD ZnSe 的透光范围为0.5μm --22μm ,用于高能CO2激光。

单晶的ZnSe 具有更低的吸收,从而更适合CO2光学系统。

CVD ZnS 的透光范围为8μm --14μm ,高透过,低吸收。

多光谱级通过热等静压 (HIP) 改进了中红外、可见区的透过。

光学石英晶体
人造石英单晶是用水热法在高压釜中生长的,具有左旋和右旋形态。

石英晶体的应力双折射低且折射率均匀性高,透光范围为0.15-4μm。

由于其压电特性、低热膨胀系数、优良的力学和光学特性,石英晶体被用于电子、精密光学和激光技术、光通信、X-射线光学和压力传感器等方面。

Nd:YAG晶体(掺钕钇铝石榴石)
Nd:YAG单晶是最重要的激光晶体,广泛应用于工业、医疗和科学领域。

主要优点是:低出光阈值、高增益,高效率,低1064 nm损耗;同时还有高光学质量、热传导性好、抗热冲击和机械强度高特性,使得Nd:Y AG成为了连续,脉冲和锁模激光的最合适和商品化的激光晶体。

Nd:Y AG晶体也广泛用于各种固体激光器系统:倍频连续波、高能量Q开关,倒空腔等等。

相关文档
最新文档