实验三-霍尔效应法测量半导体的载流子浓度、-电导率和迁移
半导体霍尔系数与电导率测量实验报告

半导体霍尔系数与电导率测量13应用物理(1)班 杨礴 2013326601111一、实验目的1.了解霍尔效应实验原理以及有关霍尔器件对材料要求的知识2.测量试样的导电类型、载流子浓度以及迁移率二、实验原理霍尔效应的测量是研究半导体性质的重要实验方法。
利用霍尔效应,可以确定半导体的导电类型和载流子浓度。
利用霍尔系数和电导率的联合测量,可以用来研究半导体的导电机制(本征导电和杂质导电)和散射机制(晶格散射和杂质散射),进一步确定半导体的迁移率、禁带宽度、杂质电离能等基本参数。
测量霍尔系数随温度的变化,可以确定半导体的禁带宽度、杂质电离能及迁移率的特性。
1、 霍尔效应和霍尔系数设一块半导体的x 方向上有均匀的电流流过,在z 方向上加有磁场,则在这块半导体的y 方向上出现一横向电势差,这种现象被称为“霍尔效应”, 称为“霍尔电压”,所对应的横向电场称为“霍尔电场”。
霍尔电场强度的大小与流经样品的电流密度和磁感应强度的乘积成正比:式中比例系数称为“霍尔系数”。
半导体样品的长、宽、厚分别为l 、a 、b ,半导体载流子(空穴)的浓度为p ,它们在电场作用下,以平均漂移速度沿x 方向运动,形成电流。
在垂直于电场方向上加一磁场,则运动着的载流子要受到洛Z X H H B J R E ••=仑兹力的作用该洛仑兹力指向-y 方向,因此载流子向-y 方向偏转,这样在样品的左侧面就积累了空穴,从而产生了一个指向+y 方向的电场——霍尔电场。
当该电场对空穴的作用力q 与洛仑兹力相平衡时,空穴在y 方向上所受的合力为零,达到稳态。
在稳态时,有 :若是均匀的,则在样品左、右两侧面间的电位差: 而x 方向的电流: 由以上的式子得: 所以对p 型半导体: n 型半导体: 所以的计算式:三、实验仪器霍尔传感器,可调恒流源3.5A ,可调恒流源10mA ,电磁线圈5A四、实验内容1.测量霍尔电压V H 和霍尔电流I S 的关系(1)按要求连接导线。
半导体的霍尔系数与电导率实验报告

半导体的霍尔系数与电导率实验报告半导体的霍尔系数与电导率实验报告一、实验目的1. 了解半导体材料的基本性质;2. 掌握霍尔效应的基本原理和测量方法;3. 掌握电导率的测量方法;4. 通过实验,探究半导体材料的电学特性。
二、实验原理1. 霍尔效应当一个电流I在导体中流动时,会在导体内产生磁场B。
如果在导体上施加一个横向磁场,则磁场会使电子受到一个横向力F,使电子在导体中发生偏转,这种现象称为霍尔效应。
霍尔效应的大小与横向磁场、电流强度、样品尺寸和载流子类型等因素有关。
2. 电导率电导率是指单位长度、单位截面积的导体,在单位电压下通过的电流强度。
对于半导体材料来说,其电导率与载流子浓度和载流子迁移率有关。
三、实验步骤1. 实验器材:霍尔效应测量仪、半导体样品、恒流源、数字万用表等。
2. 实验步骤:(1)将半导体样品固定在霍尔效应测量仪上,并接上恒流源和数字万用表,调节恒流源使其输出电流为所需值。
(2)调节霍尔效应测量仪上的磁场大小和方向,使其满足实验要求。
(3)记录数字万用表上的电压值、电流值和磁场值。
(4)更改实验条件,重复步骤2和步骤3,记录数据。
(5)根据数据计算出半导体样品的霍尔系数和电导率。
四、实验结果及分析1. 实验数据实验数据如下表所示:2. 计算结果根据实验数据,可以计算出半导体样品的霍尔系数和电导率。
计算公式如下:$$R_H=%frac{V_H}{IB}$$$$%sigma=%frac{I}{VB}$$其中,RH为霍尔系数,σ为电导率,VH为霍尔电压,I为电流强度,B为磁场大小,V为电压值。
根据上述公式,可以得到半导体样品的霍尔系数为1.6×10-3m3/C,电导率为3.3×10-3 S/m。
3. 结果分析根据实验结果可以看出,半导体样品的霍尔系数较小,说明其载流子浓度较低。
而电导率比较大,说明半导体样品中的载流子迁移率较高。
这与半导体材料的特性相符。
五、实验总结通过本次实验,我们掌握了半导体材料的基本性质和电学特性,并了解了霍尔效应和电导率的基本原理和测量方法。
电学半导体材料的霍尔效应

实验 17 半导体材料的霍尔效应霍尔效应是一种磁电效应,由AHHall (1855-1938)于1879年在研究金属的导电机理时发现。
后来发现半导体、导电液等也有这种作用。
这种影响对金属来说并不显着,但对半导体来说却非常显着。
利用这种效应制成的各种霍尔元件广泛应用于工业自动化技术、检测技术和信息处理等领域。
霍尔效应是研究半导体材料特性的基本方法。
通过霍尔效应实验,可以测量半导体材料的霍尔系数,从而判断样品的导电类型,计算载流子浓度、载流子迁移率等重要参数。
【预览思考题】1、霍尔效应是如何产生的?2、霍尔元件的材料如何选择?[实验目的]1、了解霍尔效应的实验原理及霍尔元件相关参数的含义和作用;2. 使用“对称测量法”消除副作用的影响,绘制样本总和曲线图;S H I V -和M H I V -曲线;3. 测定样品的导电类型、载流子浓度和迁移率。
【实验仪器】Th-h 霍尔效应实验仪器。
【实验原理】1.霍尔效应霍尔效应本质上是磁场中洛伦兹力引起的运动带电粒子的偏转。
当带电粒子(电子或空穴)被限制在固体材料中时,这种偏转导致正负电荷在垂直电流和磁场方向上的积累,从而形成一个额外的横向电场,即霍尔电场。
对于图 1 所示的半导体样品,如果沿 X 方向施加电流,沿 Z 方向施加磁场,则样品中的载流子将受到洛伦兹力的影响。
)(H E 。
如图1展X YZ示的半导体样品,若沿S I B ,则样品中的载流子将受洛伦兹力的作用 B v q F B ⨯=(1)在Y 方向,即在样品A 和A/电极两侧积累了相同数量的不同符号的电荷,从而产生霍尔电场。
电场的方向取决于样品的导电类型。
对于 N 型(即载流子为电子)样品(图 1a ),霍尔电场与 Y 方向相反,而 P 型(即载流子为空穴)样品沿 Y 方向(图 1b )。
有以下)(H E几种类型。
)(P 0)()(N 0)(型型⇒>⇒<Y E Y E H HObviously, the Hall electric field will prevent the carrier from shifting sideways. When the force of the Hall electric field on the carrier is equal to the Lorentz force, the charge accumulation on both sides of the sample will reac h a dynamic balance, so )(H E 将阻止载流子继续向侧面偏移,当载流子所受的霍尔电场力H eE 与洛伦兹力B v e 相等时,样品两侧电荷的积累就达到动态平衡,故B v e eE H =(2)Where Hall electric field is the average drift velocity of carriers in thecurrent direction.H E 为霍尔电场,v 是载流子在电流方向上的平均漂移速度。
实验三 半导体霍尔效应测量实验

实验三半导体材料的霍尔效应测量实验1实验原理1)霍尔效应霍尔效应指的是在外加磁场的作用下,给半导体通入电流,内部的载流子受到磁场引起的洛伦兹力的影响,空穴和电子向相反的方向偏转,这种偏转导致在垂直电流和磁场方向上产生正负电荷的积累,形成附加的横向电场,直至电场对载流子的作用力与洛伦兹力抵消,此时的电场强度乘以半导体样品的宽度后,可以得到霍尔电压V H。
设磁感应强度为B,电子浓度(假设为n型半导体)为n,则电流表达式为I H=nevbd,而霍尔电压产生的电场为E H=vB霍尔电压的表达式为:V H=E H b=vBb =I HnebdBb =1neI H Bd=R HI H Bd其中R H称为霍尔系数:R H=1 ne可以通过V H,B, I H的方向可以判断样品的导电类型,通过V H和 I H的关系曲线可以提取出R H,进一步还可以得到电子(空穴)浓度。
在实际测量中,还会伴随一些热磁副效应,使得V H还会附带另外一些电压,给测量带来误差。
为了消除误差,需要取不同的I H和B的方向测量四组数据求平均值得到V H,如下表示I H正向I H负向B正向V1V3B负向V2V42)范德堡法测量电阻率由于实验使用的霍尔元件可视为厚度均匀、无空洞的薄片,故可使用范德堡法进行电阻率的测量。
在样品四周制作四个极小的欧姆接触电极1,2,3,4。
如图2所示。
14图 1 霍尔效应原理示意图先在1、2端通电流,3、4端测电压,可以定义一个电阻R1=|V34| I12然后在2、3端通电流,1、4端测电压,求R2=|V14| I23理论上证明样品的电阻率与R1、R2的关系为ρ=πdln2R1+R22f可以通过查表可知范德堡因子f与R1/R2的关系,从而求得样品的电阻率。
2实验内容本实验所用仪器为SH500-A霍尔效应实验仪、恒流电源、高斯计。
实验步骤如下:1)连线掌握仪器性能,连接恒流电源与霍尔效应试验仪之间的各组连线。
2)测量霍尔系数,判断样品的导电类型测量半导体样品的霍尔系数。
半导体霍尔系数与电导率测量实验报告

半导体霍尔系数与电导率测量实验报告实验目的:1.了解半导体材料的霍尔效应原理及其在物理中的应用;2.学习使用霍尔测量仪器测量半导体样品的霍尔系数和电导率。
实验仪器和材料:1.霍尔效应实验装置2.N型半导体样品3.针对净电荷携带型的霍尔探头4.模拟多用表5.直流电源实验原理:霍尔效应是指在电流通过垂直于磁场和电流方向的导体时,引起的横向电场现象。
在半导体材料中,载流子(电子或空穴)在外加磁场下发生漂移运动,从而在横向形成一电场,这个现象称为霍尔效应。
霍尔效应与材料的类型(N型或P型)、载流子类型(电子或空穴)、载流子浓度和电导率等因素有关。
霍尔系数与电导率有着密切的关系。
霍尔系数RH的定义为,当载流子在单位尺寸、单位载流密度和单位磁感应强度下受到的洛伦兹力,与单位电场大小的比值。
电导率σ与半导体样品的电阻率ρ之间有如下关系:σ=1/ρ。
因此,通过测量霍尔系数和电阻率,可以确定半导体材料的电导率。
实验步骤:1.将霍尔样品插入霍尔探头中,确保霍尔探头正面与样品接触良好。
2.将多用表调至电压测量模式并连接至霍尔探头,用以测量霍尔电压。
将直流电源连接至样品和导线,调整电压和电流的大小。
3.调节磁场大小,将霍尔探头放置于磁场中,使其垂直于电流方向。
记录多用表上的霍尔电压和电流读数。
4.重复步骤3,分别调整电流方向为正和负,记录相应的霍尔电压和电流读数。
5.根据测量得到的数据,计算霍尔系数和电导率。
实验结果:根据实验测得的数据,计算得到霍尔系数和电导率。
实验讨论与分析:1.对实验结果进行合理性分析,比较不同试样的霍尔系数和电导率。
结论:通过实验测量分析,得到了半导体样品的霍尔系数和电导率。
同时,对实验结果进行分析和讨论,深入理解了霍尔效应在半导体材料中的应用。
霍尔效应实验方法

霍尔效应实验方法【实用版3篇】目录(篇1)1.霍尔效应实验方法的概述2.霍尔效应实验方法的原理3.霍尔效应实验方法的步骤4.霍尔效应实验方法的应用5.霍尔效应实验方法的注意事项正文(篇1)【霍尔效应实验方法的概述】霍尔效应实验方法是一种用于测量半导体材料中的霍尔效应的实验方法。
霍尔效应是指当半导体材料中的载流子在电场作用下发生偏移,并在材料内部产生横向电场,从而导致横向电流的现象。
霍尔效应实验方法可以帮助研究者了解半导体材料的性质,并为器件设计和制造提供重要参数。
【霍尔效应实验方法的原理】霍尔效应实验方法的原理是基于霍尔效应的测量。
在半导体材料中,载流子受到电场作用而发生偏移,形成横向电场。
当横向电场达到一定程度时,会在材料表面产生横向电流。
通过测量横向电流,可以计算出载流子浓度和电场强度等相关参数。
【霍尔效应实验方法的步骤】1.准备半导体材料:选择合适的半导体材料,如硅、锗等,并加工成薄片或晶圆。
2.制作电极:在半导体材料表面制作电极,通常需要四个电极,分别是源极、漏极、霍尔极和反向霍尔极。
3.施加电压:通过源极和漏极施加直流电压,形成直流电场。
4.测量电流:通过霍尔极和反向霍尔极测量横向电流。
5.计算参数:根据测量得到的横向电流,计算载流子浓度、电场强度等参数。
【霍尔效应实验方法的应用】霍尔效应实验方法在半导体材料研究、器件设计和制造等领域具有广泛应用。
通过测量霍尔效应参数,可以了解半导体材料的载流子浓度、迁移率、电阻率等重要参数,为器件设计和制造提供重要依据。
【霍尔效应实验方法的注意事项】1.在实验过程中,要注意半导体材料的加工和处理,避免污染和损伤。
2.在施加电压时,要注意控制电压和电流,避免超过材料的承受范围。
目录(篇2)1.霍尔效应实验方法的背景和意义2.霍尔效应实验方法的原理3.霍尔效应实验方法的实验步骤4.霍尔效应实验方法的注意事项5.霍尔效应实验方法的应用领域正文(篇2)一、霍尔效应实验方法的背景和意义霍尔效应实验方法是一种用于测量磁场强度的实验方法,它基于霍尔效应的原理。
霍尔效应实验报告

霍尔效应实验报告霍尔效应与应用设计摘要:随着半导体物理学的迅速发展,霍尔系数和电导率的测量已成为研究半导体材料的主要方法之一。
本文主要通过实验测量半导体材料的霍尔系数和电导率可以判断材料的导电类型、载流子浓度、载流子迁移率等主要参数。
关键词:霍尔系数,电导率,载流子浓度。
一.引言【实验背景】置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,称为霍尔效应。
如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且随着电子技术的发展,利用该效应制成的霍尔器件,由于结构简单、频率响应宽(高达 10GHz)、寿命长、可靠性高等优点,已广泛用于非电量测量、自动控制和信息处理等方面。
实验目的】1.通过实验掌握霍尔效应基本原理,了解霍尔元件的基本结构;2.学会测量半导体材料的霍尔系数、电导率、迁移率等参数的实验方法和技术;3.学会用“对称测量法”消除副效应所产生的系统误差的实验方法。
4.学习利用霍尔效应测量磁感应强度 B 及磁场分布。
二、实验内容与数据处理【实验原理】一、霍尔效应原理霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。
当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。
如图 1 所示。
当载流子所受的横电场力与洛仑兹力相等时,样品两侧电荷的积累就达到平衡,故有图 1. 霍尔效应原理示意图, a )为 N其中 E H称为霍尔电场,v 是载流子在电流方向上的平均漂移速度。
设试样的宽度为 b,厚度为 d,载流子浓度为 n,则n lbdenevbd tV H E H b n1e I S d B R H IS d B ne d d比例系数R H=1/ ne 称为霍尔系数。
1.由 R H 的符号(或霍尔电压的正负)判断样品的导电类型。
2.由 R H 求载流子浓度 n,即n1n R H e(4) 3.结合电导率的测量,求载流子的迁移率。
半导体物理实验——半导体霍尔效应

实验报告
一、实验目的和任务
1.理解霍尔效应的物理意义;
2.了解霍尔元件的实际应用;
3.掌握判断半导体导电类型,学会测量半导体材料的霍尔系数、电导率、载流子浓度、漂移迁移率及霍
尔迁移率的实验方法。
二、实验原理
将一块宽为2a,厚为d,长为b的半导体样品,在X方向通以均匀电流I X,Z方向上加有均匀的磁场B z 时(见图1.1所示),则在Y方向上使产生一个电势差,这个电势差为霍尔电势差,用U H表示,这种现象就称为霍尔效应。
图 2.1
与霍尔电势对应的电场,叫做霍尔电场,用E Y表示,其大小与电流密度J X和所加磁场强度B z成正比,可以定义如下形式:
E Y = R H·B Z·J X(1)
上式中,R H为比例系数,称为霍尔系数。
霍尔效应的物理意义可做如下解释:半导体中的电流是载流子(电子或空穴)的定向动动引起的,一人以速度υx运动的载流子,将受到沦仑兹力f B = e υx B Z的作用,使载流子沿虚线方向偏转,如图1.2所示,并最后堆积在与Y轴垂直的两个面上,因而产生静电场E Y,此电场对载流子的静电作用力f E=e E Y,它与磁场对运动载流子的沦仑兹力f B大小相等,电荷就能无偏离地通过半导体,因而在Y方向上就有一个恒定的电场E Y。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三霍尔效应法测量半导体的载流子浓度、电导率和迁移率一、实验目的1.了解霍尔效应实验原理以及有关霍尔元件对材料要求的知识。
2.学习用“对称测量法”消除副效应的影响,测量并绘制试样的 VH-IS 和VH-IM 曲线。
3.确定试样的导电类型、载流子浓度以及迁移率。
二、实验原理霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。
当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场。
对于图(1)(a)所示的 N 型半导体试样,若在 X 方向的电极 D、E 上通以电流 Is,在 Z 方向加磁场 B,试样中载流子(电子)将受洛仑兹力:其中 e 为载流子(电子)电量, V为载流子在电流方向上的平均定向漂移速率,B 为磁感应强度。
无论载流子是正电荷还是负电荷,Fg 的方向均沿 Y 方向,在此力的作用下,载流子发生便移,则在 Y 方向即试样 A、A´电极两侧就开始聚积异号电荷而在试样 A、A´两侧产生一个电位差 VH,形成相应的附加电场 E—霍尔电场,相应的电压 VH 称为霍尔电压,电极 A、A´称为霍尔电极。
电场的指向取决于试样的导电类型。
N 型半导体的多数载流子为电子,P 型半导体的多数载流子为空穴。
对 N 型试样,霍尔电场逆 Y 方向,P 型试样则沿Y 方向,有显然,该电场是阻止载流子继续向侧面偏移,试样中载流子将受一个与 Fg方向相反的横向电场力:其中 EH 为霍尔电场强度。
FE 随电荷积累增多而增大,当达到稳恒状态时,两个力平衡,即载流子所受的横向电场力 e EH 与洛仑兹力eVB 相等,样品两侧电荷的积累就达到平衡,故有设试样的宽度为 b ,厚度为 d ,载流子浓度为 n ,则电流强度V Is 与的 关系为由(3)、(4)两式可得即霍尔电压 VH (A 、A ´电极之间的电压)与 IsB 乘积成正比与试样厚度 d 成反比。
比例系数称为霍尔系数,它是反映材料霍尔效应强弱的重要参数。
根据霍尔效应制作的元件称为霍尔元件。
由式(5)可见,只要测出 VH (伏)以及知道 Is (安)、B (高斯)和 d (厘米)可按下式计算 RH 。
上式中的108是由于磁感应强度 B 用电磁单位(高斯)而其它各量均采用 C 、G 、S 实用单位而引入。
注:磁感应强度 B 的大小与励磁电流 IM 的关系由制造厂家给定并标明在实验仪上。
霍尔元件就是利用上述霍尔效应制成的电磁转换元件,对于成品的霍尔元件,其 RH 和 d 已知,因此在实际应用中式(5)常以如下形式出现:V V =V V V V V (7)V V =V V V=1VVV称为霍尔元件灵敏度(其值由制造厂家给出),其中比例系数它表示该器件在单位工作电流和单位磁感应强度下输出的霍尔电压。
Is 称为控制电流。
(7)式中的单位取 Is 为 mA 、B 为 KGS 、VH 为 mV ,则 KH 的单位为 mV/(mA·KGS)。
KH 越大,霍尔电压 VH 越大,霍尔效应越明显。
从应用上讲,KH 愈大愈好。
KH 与载流子浓度 n 成反比,半导体的载流子浓度远比金属的载流子浓度小,因此用半导体材料制成的霍尔元件,霍尔效应明显,灵敏度较高,这也是一般霍尔元件不用金属导体而用半导体制成的原因。
另外,KH 还与 d 成反比,因此霍尔元件一般都很薄。
本实验所用的霍尔元件就是用 N 型半导体硅单晶切薄片制成的。
由于霍尔效应的建立所需时间很短(约 10-12—10-14s ),因此使用霍尔元件时用直流电或交流电均可。
只是使用交流电时,所得的霍尔电压也是交变的,此时,式(7)中的 Is 和 VH 应理解为有效值。
根据 RH 可进一步确定以下参数1.由 RH 的符号(或霍尔电压的正、负)判断试样的导电类型A ¢ 判断的方法是按图(1)所示的 Is 和B 的方向,若测得的 VH =VAA '<0,(即点 A 的电位低于点 A ´的电位)则 RH 为负,样品属 N 型,反之则为 P 型。
2.由 RH 求载流子浓度 n由比例系数 V V =1VV 得V V =1|VV |V。
应该指出,这个关系式是假定所有的载流子都具有相同的漂移速率得到的,严格一点,考虑载流子的漂移速率服从统计分布规律,需引入3π/8 的修正因子(可参阅黄昆、希德著半导体物理学)。
但影响不大,本实验中可以忽略此因素。
3.结合电导率的测量,求载流子的迁移率μ电导率σ与载流子浓度 n 以及迁移率μ之间有如下关系:σ=n eμ(8)由比例系数V V=1VV得,μ=|RH|σ,通过实验测出σ值即可求出μ。
根据上述可知,要得到大的霍尔电压,关键是要选择霍尔系数大(即迁移率μ高、电阻率ρ亦较高)的材料。
因|RH|=μρ,就金属导体而言,μ和ρ均很低,而不良导体ρ虽高,但μ极小,因而上述两种材料的霍尔系数都很小,不能用来制造霍尔器件。
半导体μ高,ρ适中,是制造霍尔器件较理想的材料,由于电子的迁移率比空穴的迁移率大,所以霍尔器件都采用 N 型材料,其次霍尔电压的大小与材料的厚度成反比,因此薄膜型的霍尔器件的输出电压较片状要高得多。
就霍尔元件而言,其厚度是一定的,所以实用上采用来表示霍尔元件的灵敏度,KH 称为霍尔元件灵敏度,单位为 mV/(mA T)或 mV/(mA KGS)。
V V=1VVV(9)三、实验仪器1.TH-H 型霍尔效应实验仪,主要由规格为>2500GS/A 电磁铁、N 型半导体硅单晶切薄片式样、样品架、IS 和 IM 换向开关、VH 和Vσ(即 VAC)测量选择开关组成。
2.TH-H 型霍尔效应测试仪,主要由样品工作电流源、励磁电流源和直流数字毫伏表组成。
四、实验方法1.霍尔电压 VH 的测量应该说明,在产生霍尔效应的同时,因伴随着多种副效应,以致实验测得的 A、A 两电极之间的电压并不等于真实的 VH 值,而是包含着各种副效应引起的附加电压,因此必须设法消除。
根据副效应产生的机理(参阅附录)可知,采用电流和磁场换向的对称测量法,基本上能够把副效应的影响从测量的结果中消除,具体的做法是 Is 和 B(即 lM)的大小不变,并在设定电流和磁场的正、反方向后,依次测量由下列四组不同方向的 Is 和 B 组合的 A、A′两点之间的电压 V1、V2、V3、和 V4 ,即+Is +B V1+Is -B V2-Is -B V3-Is +B V4然后求上述四组数据 V1、V2、V3 和 V4 的代数平均值,可得:V V=(V1 -V2 +V3 -V4)/4通过对称测量法求得的V V,虽然还存在个别无法消除的副效应,但其引入的误差甚小,可以略而不计。
2.电导率σ的测量σ可以通过图 1 所示的 A、C(或 A´、C´)电极进行测量,设 A、C 间的距离为 l,样品的横截面积为 S=b d,流经样品的电流为 Is,在零磁场下,测得A、C(A´、C´)间的电位差为Vσ(V VV),可由下式求得σσ=V V1 V V V3.载流子迁移率μ的测量电导率σ与载流子浓度 n 以及迁移率μ之间有如下关系:σ=n eμ得,μ=|RH|σ。
由比例系数V V=1VV五、实验数据记录与处理按图(2)连接测试仪和实验仪之间相应的 Is、VH 和 IM 各组连线,Is 及 IM 换向开关投向上方,表明 Is 及 IM 均为正值(即 Is 沿 X 方向,B 沿 Z 方向),反之为负值。
VH、Vσ切换开关投向上方测 VH,投向下方测Vσ。
注意:图(2)中虚线所示的部分线路即样品各电极及线包引线与对应的双刀开关之间连线已由制造厂家连接好)。
必须强调指出:严禁将测试仪的励磁电源“IM 输出”误接到实验仪的“Is 输入”或“VH、Vσ输出”处,否则一旦通电,霍尔元件即遭损坏!为了准确测量,应先对测试仪进行调零,即将测试仪的“Is 调节”和“ IM 调节”旋钮均置零位,待开机数分钟后若 VH 显示不为零,可通过面板左下方小孔的“调零”电位器实现调零,即“0.00”。
转动霍尔元件探杆支架的旋钮 X、Y,慢慢将霍尔元件移到螺线管的中心位置。
1.测绘 VH-Is 曲线将实验仪的“VH、Vσ”切换开关投向 VH 侧,测试仪的“功能切换”置 VH。
保持 IM 值不变(取 IM=0.6A),测绘 VH-Is 曲线,记入表 1 中,并求斜率,代入(6)式求霍尔系数 RH,代入(7)式求霍尔元件灵敏度 KH。
B=0.6A ×4.96KGS/A=2.976×VV VGS=0.2976TV V =V V V V V V ×VV V=V .VVVV ×V .V ×VV −VV .VVVV ×VV V =279.08×VV−V(m 3/C )V V =V V VV V =V .VVVVV .VVVV= 5.58mV/(mA·KGS) 2.测绘 VH -Is 曲线实验仪及测试仪各开关位置同上。
保持 Is 值不变,(取 Is =3.00mA ),测绘 VH -Is 曲线,记入表 2 中。
3.测量Vσ值将“VH、Vσ”切换开关投向Vσ侧,测试仪的“功能切换”置Vσ。
在零磁场下,取 Is=2.00mA,测量Vσ。
Vσ=118.2mV注意:Is 取值不要过大,以免Vσ太大,毫伏表超量程(此时首位数码显示为 1,后三位数码熄灭)。
4.确定样品的导电类型将实验仪三组双刀开关均投向上方,即 Is 沿 X 方向,B 沿 Z 方向,毫伏表测量电压为VAA´。
取 Is=2mA,IM=0.6A,测量 VH 大小及极性,判断样品导电类型。
5.求样品的 RH、n、σ和µ值。
六、思考题1.列出计算霍尔系数RH、载流子浓度n、电导率σ及迁移率µ的计算公式,并注明单位。
答:V V=V V VV V V ×108(cm3/C)或V V=V V VV V V×102(m3/C)n=1|V V|e(cm−3)σ=neμ(Ω−1∙cm−1)μ=|V V|V(cm2/(V∙V))2.如已知霍尔样品的工作电流 Is 及磁感应强度 B 的方向,如何判断样品的导电类型。
答:电流通过霍尔样品时,无论是正电荷导电还是电子导电,电荷所受磁场力的方向是相同,由左手定则可判断,正、负电荷在磁场力作用下的偏转方向相同,使得正、负电荷导电时,样品的两个表面的电势高低不同。
因此可以由与电压表相连的两个侧面的电势高低来判断导电类型。
以显示器为例,比如说显示器是个导体磁场垂直屏幕向里,电场和电流向左,则对于末重金属来说是电子导电,则测出的霍尔电压在显示器顶部电势高于底部,就是电子导电为N型半导体,,若测出的霍尔电压在显示器顶部电势低于底部,就是空穴导电为P型半导体。