(完整word版)高中文科数学概率知识点.docx
【三维设计】2022届(新课标)高考数学(文)大一轮复习精品讲义:第九章 概率 Word版含答案

第九章 概 率第一节随机大事的概率对应同学用书P141基础盘查一 随机大事及概率 (一)循纲忆知1.了解随机大事发生的不确定性和频率的稳定性. 2.了解概率的意义及频率与概率的区分. (二)小题查验 1.推断正误(1)“物体在只受重力的作用下会自由下落”是必定大事( ) (2)“方程x 2+2x +8=0有两个实根”是不行能大事( ) (3)在大量重复试验中,概率是频率的稳定值( ) (4)不行能大事就是确定不能发生的大事( ) 答案:(1)√ (2)√ (3)√ (4)√2.(人教B 版教材习题改编)某射手在同一条件下进行射击,结果如下:射击次数 10 20 50 100 200 500 击中靶心次数8194492178455这个射手射击一次,击中靶心的概率约是________. 答案:0.903.(2021·温州十校联考)记一个两位数的个位数字与十位数字的和为A .若A 是不超过5的奇数,从这些两位数中任取一个,其个位数为1的概率为________.解析:依据题意,个位数字与十位数字之和为奇数且不超过5的两位数有:10,12,14,21,23,30,32,41,50,共9个,其中个位是1的有21,41,共2个,因此所求的概率为29.答案:29基础盘查二 大事关系与运算 (一)循纲忆知了解两个互斥大事的概率加法公式:当大事A 与B 互斥时,P (A ∪B )=P (A )+P (B ). (二)小题查验1.推断正误(1)对立大事确定是互斥大事,互斥大事不愿定是对立大事(2)一个人打靶时连续射击出两次,大事“至少有一次中靶”的互斥大事是“至多有一次中靶”( ) (3)大事A ,B 为互斥大事,则P (A )+P (B )<1( )(4)大事A ,B 同时发生的概率确定比A ,B 中恰有一个发生的概率小( ) 答案:(1)√ (2)× (3)× (4)×2.(人教A 版教材例题改编)假如从不包括大小王的52张扑克牌中随机抽取一张,那么取到红心的概率是14,取到方块的概率是14,则取到黑色牌的概率是________. 答案:12.3.(2021·赤峰模拟)先后抛掷硬币三次,则至少一次正面朝上的概率是________. 答案:78对应同学用书P141考点一 随机大事的关系(基础送分型考点——自主练透) [必备学问] 1.互斥大事若A ∩B 为不行能大事(记作:A ∩B =∅),则称大事A 与大事B 互斥,其含义是:大事A 与大事B 在任何一次试验中不会同时发生.2.对立大事若A ∩B 为不行能大事,而A ∪B 为必定大事,则大事A 与大事B 互为对立大事,其含义是:大事A 与大事B 在任何一次试验中有且仅有一个发生.[提示] “互斥大事”与“对立大事”的区分:对立大事是互斥大事,是互斥中的特殊状况,但互斥大事不愿定是对立大事,“互斥”是“对立”的必要不充分条件.[题组练透]1.从1,2,3,…,7这7个数中任取两个数,其中: (1)恰有一个是偶数和恰有一个是奇数;(2)至少有一个是奇数和两个都是奇数;(3)至少有一个是奇数和两个都是偶数;(4)至少有一个是奇数和至少有一个是偶数.上述大事中,是对立大事的是()A.(1)B.(2)(4)C.(3) D.(1)(3)解析:选C(3)中“至少有一个是奇数”即“两个奇数或一奇一偶”,而从1~7中任取两个数依据取到数的奇偶性可认为共有三个大事:“两个都是奇数”、“一奇一偶”、“两个都是偶数”,故“至少有一个是奇数”与“两个都是偶数”是对立大事.易知其余都不是对立大事.2.设条件甲:“大事A与大事B是对立大事”,结论乙:“概率满足P(A)+P(B)=1”,则甲是乙的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A若大事A与大事B是对立大事,则A∪B为必定大事,再由概率的加法公式得P(A)+P(B)=1.设掷一枚硬币3次,大事A:“至少毁灭一次正面”,大事B:“3次毁灭正面”,则P(A)=78,P(B)=18,满足P(A)+P(B)=1,但A,B不是对立大事.3.在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若大事“2张全是移动卡”的概率是310,那么概率是710的大事是()A.至多有一张移动卡B.恰有一张移动卡C.都不是移动卡D.至少有一张移动卡解析:选A至多有一张移动卡包含“一张移动卡,一张联通卡”、“两张全是联通卡”两个大事,它是“2张全是移动卡”的对立大事,故选A.[类题通法]利用集合方法推断互斥大事与对立大事1.由各个大事所含的结果组成的集合彼此的交集为空集,则大事互斥.2.大事A的对立大事A所含的结果组成的集合,是全集中由大事A所含的结果组成的集合的补集.考点二随机大事的概率(重点保分型考点——师生共研)[必备学问]概率与频率(1)在相同的条件S下重复n次试验,观看某一大事A是否毁灭,称n次试验中大事A毁灭的次数n A为大事A毁灭的频数,称大事A毁灭的比例f n(A)=n An为大事A毁灭的频率.(2)对于给定的随机大事A,由于大事A发生的频率f n(A)随着试验次数的增加稳定于概率P(A),因此可以用频率f n(A)来估量概率P(A).[典题例析](2022·陕西高考)某保险公司利用简洁随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:(1)若每辆车的投保金额均为2 800元,估量赔付金额大于投保金额的概率;(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估量在已投保车辆中,新司机获赔金额为4 000元的概率.解析:(1)设A表示大事“赔付金额为3 000元”,B表示大事“赔付金额为4 000元”,以频率估量概率得P(A)=1501 000=0.15,P(B)=1201 000=0.12.由于投保金额为2 800元,赔付金额大于投保金额对应的情形是3 000元和4 000元,所以其概率为P(A)+P(B)=0.15+0.12=0.27.(2)设C表示大事“投保车辆中新司机获赔4 000元”,由已知,样本车辆中车主为新司机的有0.1×1 000=100辆,而赔付金额为4 000元的车辆中,车主为新司机的有0.2×120=24辆,所以样本车辆中新司机车主获赔金额为4 000元的频率为24100=0.24,由频率估量概率得P(C)=0.24.[类题通法]求解随机大事的概率关键是精确计算基本大事数,计算的方法有:(1)列举法;(2)列表法;(3)利用树状图法.[演练冲关]假设甲、乙两种品牌的同类产品在某地区市场上销售量相等,为了解它们的使用寿命,现从这两种品牌的产品中分别随机抽取100个进行测试,结果统计如图:(1)估量甲品牌产品寿命小于200小时的概率;(2)这两种品牌产品中,某个产品已使用了200小时,试估量该产品是甲品牌的概率.解:(1)甲品牌产品寿命小于200小时的频率为5+20100=14,用频率估量概率,可得甲品牌产品寿命小于200小时的概率为14.(2)依据频数分布图可得寿命大于200小时的两种品牌产品共有75+70=145(个),其中甲品牌产品有75个,所以在样本中,寿命大于 200小时的产品是甲品牌的频率是75145=1529.据此估量已使用了200小时的该产品是甲品牌的概率为1529.考点三 互斥大事与对立大事的概率(重点保分型考点——师生共研) [必备学问]1.互斥大事的概率加法公式假如大事A 与大事B 互斥,那么P (A ∪B )=P (A )+P (B ); 2.对立大事概率公式若大事B 与大事A 互为对立大事,则P (A )+P (B )=1,即P (A )=1-P (B ).A 的对立大事记为A ,当计算大事A 的概率P (A )比较困难时,可通过P (A )=1-P (A )计算.[典题例析]依据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3. (1)求该地1位车主至少购买甲、乙两种保险中的1种的概率; (2)求该地1位车主甲、乙两种保险都不购买的概率.解:记A 表示大事:该车主购买甲种保险;B 表示大事:该车主购买乙种保险但不购买甲种保险;C 表示大事:该车主至少购买甲、乙两种保险中的1种;D 表示大事:该车主甲、乙两种保险都不购买.(1)由题意得P (A )=0.5,P (B )=0.3, 又C =A ∪B ,所以P (C )=P (A ∪B )=P (A )+P (B )=0.5+0.3=0.8. (2)由于D 与C 是对立大事, 所以P (D )=1-P (C )=1-0.8=0.2. [类题通法]求概率的关键是分清所求大事是由哪些大事组成的,求解时通常有两种方法: (1)将所求大事转化成几个彼此互斥的大事的和大事,利用概率加法公式求解概率;(2)若将一个较简洁的大事转化为几个互斥大事的和大事时,需要分类太多,而其对立面的分类较少,可考虑利用对立大事的概率公式,即“正难则反”.它常用来求“至少”或“至多”型大事的概率.[演练冲关]现有7名数理化成果优秀者,其中A 1,A 2,A 3的数学成果优秀,B 1,B 2的物理成果优秀,C 1,C 2的化学成果优秀,从中选出数学、物理、化学成果优秀者各1名,组成一个小组代表学校参与竞赛.(1)求C 1被选中的概率;(2)求A 1和B 1不全被选中的概率.解:(1)用M 表示“C 1恰被选中”这一大事.从7人中选出数学、物理、化学成果优秀者各1名,其一切可能的结果组成的12个基本大事为: (A 1,B 1,C 1),(A 1,B 1,C 2),(A 1,B 2,C 1),(A 1,B 2,C 2),(A 2,B 1,C 1),(A 2,B 1,C 2),(A 2,B 2,C 1),(A 2,B 2,C 2),(A 3,B 1,C 1),(A 3,B 1,C 2),(A 3,B 2,C 1),(A 3,B 2,C 2).C 1恰被选中有6个基本大事:(A 1,B 1,C 1),(A 1,B 2,C 1),(A 2,B 1,C 1),(A 2,B 2,C 1),(A 3,B 1,C 1),(A 3,B 2,C 1), 因而P (M )=612=12.(2)用N 表示“A 1,B 1不全被选中”这一大事,则其对立大事N 表示“A 1,B 1全被选中”这一大事,由于N ={}(A 1,B 1,C 1),(A 1,B 1,C 2),所以大事N 由两个基本大事组成,所以P (N )=212=16, 由对立大事的概率公式得P (N )=1-P (N )=1-16=56.对应A 本课时跟踪检测(五十五)一、选择题1.在一次随机试验中,彼此互斥的大事A ,B ,C ,D 的概率分别为0.2,0.2,0.3,0.3,则下列说法正确的是( )A .A ∪B 与C 是互斥大事,也是对立大事 B .B ∪C 与D 是互斥大事,也是对立大事 C .A ∪C 与B ∪D 是互斥大事,但不是对立大事 D .A 与B ∪C ∪D 是互斥大事,也是对立大事解析:选D 由于A ,B ,C ,D 彼此互斥,且A ∪B ∪C ∪D 是一个必定大事,故其大事的关系可由如图所示的韦恩图表示,由图可知,任何一个大事与其余3个大事的和大事必定是对立大事,任何两个大事的和大事与其余两个大事的和大事也是对立大事.2.围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为17,都是白子的概率是1235.则从中任意取出2粒恰好是同一色的概率是( )A.17 B.1235 C.1735D .1解析:选C 设“从中取出2粒都是黑子”为大事A ,“从中取出2粒都是白子”为大事B ,“任意取出2粒恰好是同一色”为大事C ,则C =A ∪B ,且大事A 与B 互斥.所以P (C )=P (A )+P (B )=17+1235=1735.即任意取出2粒恰好是同一色的概率为1735.3.从存放的号码分别为1,2,3,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并登记号码,统计结果如下:卡片号码 1 2 3 4 5 6 7 8 9 10 取到次数138576131810119则取到号码为奇数的卡片的频率是( ) A .0.53 B .0.5 C .0.47D .0.37解析:选A 取到号码为奇数的卡片的次数为:13+5+6+18+11=53,则所求的频率为53100=0.53.故选A.4.从某校高二班级的全部同学中,随机抽取20人,测得他们的身高(单位:cm)分别为: 162,153,148,154,165,168,172,171,173,150, 151,152,160,165,164,179,149,158,159,175.依据样本频率分布估量总体分布的原理,在该校高二班级的全部同学中任抽一人,估量该生的身高在155.5 cm ~170.5 cm 之间的概率约为( )A.25B.12C.23D.13解析:选A 从已知数据可以看出,在随机抽取的这20位同学中,身高在155.5 cm ~170.5 cm 之间的同学有8人,频率为25,故可估量在该校高二班级的全部同学中任抽一人,其身高在155.5 cm ~170.5 cm 之间的概率约为25.5.已知甲、乙两人下棋,和棋的概率为12,乙胜的概率为13,则甲胜的概率和甲不输的概率分别为( )A.16,16 B.12,23 C.16,23D.23,12解析:选C “甲胜”是“和棋或乙胜”的对立大事,所以甲胜的概率为1-12-13=16.设“甲不输”为大事A ,则A 可看作是“甲胜”与“和棋”这两个互斥大事的和大事,所以P (A )=16+12=23.或设“甲不输”为大事A ,则A 可看作是“乙胜”的对立大事,所以P (A )=1-13=23. 6.若随机大事A ,B 互斥,A ,B 发生的概率均不等于0,且P (A )=2-a ,P (B )=4a -5,则实数a 的取值范围是( )A.⎝⎛⎭⎫54,2 B.⎝⎛⎭⎫54,32 C.⎣⎡⎦⎤54,32D.⎝⎛⎦⎤54,43解析:选D由题意可知⎩⎪⎨⎪⎧0<P (A )<1,0<P (B )<1,P (A )+P (B )≤1⇒⎩⎪⎨⎪⎧0<2-a <1,0<4a -5<1,3a -3≤1⇒⎩⎨⎧1<a <2,54<a <32,a ≤43⇒54<a ≤43. 二、填空题7.据统计,某食品企业在一个月内被消费者投诉的次数为0,1,2的概率分别为0.4,0.5,0.1,则该企业在一个月内被消费者投诉不超过1次的概率为________.解析:法一:记“该食品企业在一个月内被消费者投诉的次数为0”为大事A ,“该食品企业在一个月内被消费者投诉的次数为1”为大事B ,“该食品企业在一个月内被消费者投诉的次数为2”为大事C ,“该食品企业在一个月内被消费者投诉不超过1次”为大事D ,由题意知大事A ,B ,C 彼此互斥,而大事D 包含大事A 与B ,所以P (D )=P (A )+P (B )=0.4+0.5=0.9.法二:记“该食品企业在一个月内被消费者投诉的次数为2”为大事C ,“该食品企业在一个月内被消费者投诉不超过一次”为大事D ,由题意知C 与D 是对立大事,所以P (D )=1-P (C )=1-0.1=0.9.答案:0.98.(2021·潍坊模拟)连续2次抛掷一枚骰子(六个面上分别标有数字1,2,3,4,5,6),记“两次向上的数字之和等于m ”为大事A ,则P (A )最大时,m =________.解析:m 可能取到的值有2,3,4,5,6,7,8,9,10,11,12,对应的基本大事个数依次为1,2,3,4,5,6,5,4,3,2,1,∴两次向上的数字之和等于7对应的大事发生的概率最大.答案:79.某城市2022年的空气质量状况如下表所示:污染指数T 30 60 100 110 130 140 概率P1101613730215130其中污染指数T ≤50时,空气质量为优;50<T ≤100时,空气质量为良;100<T ≤150时,空气质量为略微污染,则该城市2022年空气质量达到良或优的概率为________.解析:由题意可知2022年空气质量达到良或优的概率为P =110+16+13=35.答案:3510.若A ,B 互为对立大事,其概率分别为P (A )=4x ,P (B )=1y ,且x >0,y >0,则x +y 的最小值为________.解析:由题意可知4x +1y =1,则x +y =(x +y )⎝⎛⎭⎫4x +1y =5+⎝⎛⎭⎫4y x +x y ≥9,当且仅当4y x =xy ,即x =2y 时等号成立.答案:9 三、解答题11.有编号为1,2,3的三个白球,编号为4,5,6的三个黑球,这六个球除编号和颜色外完全相同,现从中任意取出两个球.(1)求取得的两个球颜色相同的概率; (2)求取得的两个球颜色不相同的概率. 解:从六个球中取出两个球的基本大事是:(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共计15个.(1)记大事A 为“取出的两个球都是白球”,则这个大事包含的基本大事是(1,2),(1,3),(2,3),共计3个,故P (A )=315=15;记“取出的两个球都是黑球”为大事B ,同理可得P (B )=15.记大事C 为“取出的两个球的颜色相同”,A ,B 互斥,依据互斥大事的概率加法公式,得P (C )=P (A ∪B )=P (A )+P (B )=25.(2)记大事D 为“取出的两个球的颜色不相同”,则大事C ,D 对立,依据对立大事概率之间的关系,得P (D )=1-P (C )=1-25=35.12.黄种人人群中各种血型的人数所占的比例见下表:血型A B AB O 该血型的人数所占的比例28%29%8%35%已知同种血型的人可以相互输血,O 型血的人可以给任一种血型的人输血,任何人的血都可以输给AB 型血的人,其他不同血型的人不能相互输血.小明是B 型血,若他因病需要输血,问:(1)任找一个人,其血可以输给小明的概率是多少? (2)任找一个人,其血不能输给小明的概率是多少?解:(1)任找一人,其血型为A ,B ,AB ,O 型血分别记为大事A ′,B ′,C ′,D ′,它们是互斥的.由已知,有P (A ′)=0.28,P (B ′)=0.29,P (C ′)=0.08,P (D ′)=0.35.由于B ,O 型血可以输给B 型血的人,故“任找一个人,其血可以输给小明”为大事B ′∪D ′,依据概率加法公式,得P (B ′∪D ′)=P (B ′)+P (D ′)=0.29+0.35=0.64.(2)由于A ,AB 型血不能输给B 型血的人,故“任找一个人,其血不能输给小明”为大事A ′∪C ′,且P (A ′∪C ′)=P (A ′)+P (C ′)=0.28+0.08=0.36.其次节古典概型对应同学用书P143基础盘查一 古典概型 (一)循纲忆知1.理解古典概型及其概率计算公式.2.会计算一些随机大事所包含的基本大事数及大事发生的概率. (二)小题查验 1.推断正误(1)“在适宜条件下,种下一粒种子观看它是否发芽”属于古典概型,其基本大事是“发芽与不发芽”( )(2)掷一枚硬币两次,毁灭“两个正面”“一正一反”“两个反面”,这三个结果是等可能大事( ) (3)在古典概型中,假如大事A 中基本大事构成集合A ,全部的基本大事构成集合I ,则大事A 的概率为card (A )card (I )( )答案:(1)× (2)× (3)√2.(北师大版教材例题改编)小明的自行车用的是密码锁,密码锁的四位数码由4个数字2,4,6,8按确定挨次构成,小明不当心遗忘了密码中4个数字的挨次,随机地输入由2,4,6,8组成的一个四位数,不能打开锁的概率是________.答案:23243.(2021·南京模拟)现从甲、乙、丙3人中随机选派2人参与某项活动,则甲被选中的概率为________. 解析:从甲、乙、丙3人中随机选派2人参与某项活动,有甲、乙,甲、丙,乙、丙三种可能,则甲被选中的概率为23.答案:234.(2021·昆明模拟)投掷两颗相同的正方体骰子(骰子质地均匀,且各个面上依次标有点数1,2,3,4,5,6)一次,则两颗骰子向上点数之积等于12的概率为________.解析:抛掷两颗相同的正方体骰子共有36种等可能的结果:(1,1),(1,2),(1,3),…,(6,6).点数积等于12的结果有:(2,6),(3,4),(4,3),(6,2),共4种,故所求大事的概率为436=19.答案:19对应同学用书P144考点一 古典概型(基础送分型考点——自主练透) [必备学问] 1.基本大事的特点(1)任何两个基本大事是互斥的.(2)任何大事(除不行能大事)都可以表示成基本大事的和. 2.古典概型 (1)特点:①试验中全部可能毁灭的基本大事只有有限个,即有限性. ②每个基本大事发生的可能性相等,即等可能性. (2)概率公式:P (A )=A 包含的基本大事的个数基本大事的总数.[提示](1)一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特征——有限性和等可能性; (2)古典概型的概率计算结果与模型的选择无关. [题组练透]1.(2021·浙江模拟)从1,2,3,4这四个数字中依次取(不放回)两个数a ,b ,使得a 2≥4b 的概率是( ) A.13 B.512 C.12D.712解析:选C 基本大事为(1,2),(1,3),(1,4),(2,1)(2,3),(2,4),…,(4,3),共12个,符合条件的有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),共6个,因此使得a 2≥4b 的概率是12.2.(2021·广州二模)有两张卡片,一张的正反面分别写着数字0与1,另一张的正反面分别写着数字2与3,将两张卡片排在一起组成一个两位数,则所组成的两位数为奇数的概率是( )A.16B.13C.12D.38解析:选C 能组成的两位数有12,13,20,30,21,31,共6个,其中的奇数有13,21,31,共3个,因此所组。
(完整版)(最全)高中数学概率统计知识点总结(可编辑修改word版)

∑ (x - x ) ∑ ( y - y ) n2n2i =1i i =1i∑ (x - x ) ∑ ( y - y ) n 2n2i =1i i =1i1 2 n 1 2 n n i iiii一、普通的众数、平均数、中位数及方差 1、 众数:一组数据中,出现次数最多的数。
概率与统计x + x + ⋅⋅⋅ + x x + x + ⋅⋅⋅ + x 2、平均数:①、常规平均数: x = 1 2 nn②、加权平均数: x = 1 1 2 2 n n+ + ⋅⋅⋅ + 1 2 n3、中位数:从大到小或者从小到大排列,最中间或最中间两个数的平均数。
4、方差: s 2= 1[(x - x )2+ (x - x )2+ ⋅⋅⋅ + (x - x )2 ]n1 2 n二、频率直方分布图下的频率1、频率 =小长方形面积: f = S = y ⨯ d ;频率=频数/总数2、频率之和: f + f + ⋅⋅⋅ + f = 1;同时 S + S + ⋅⋅⋅ + S = 1 ;三、频率直方分布图下的众数、平均数、中位数及方差 1、众数:最高小矩形底边的中点。
2、平均数: x = x f + x f + x f + ⋅⋅⋅ + x f x = x S + x S + x S + ⋅⋅⋅ + x S 1 12 23 3n n1 12 23 3n n3、中位数:从左到右或者从右到左累加,面积等于 0.5 时 x 的值。
4、方差: s 2 = (x - x )2 f + (x - x )2 f + ⋅⋅⋅ + (x - x )2 f1122nn四、线性回归直线方程: y ˆ = b ˆx + a ˆn n∑(x i - x )( y i - y ) ∑ x i y i - nxy 其中: b ˆ = i =1 = i =1 ,a ˆ = y -b ˆx∑n (x - x )2 ∑ x 2 - nx 2i =1iii =11、线性回归直线方程必过样本中心(x , y ) ;2、b ˆ > 0 : 正相关; b ˆ < 0 : 负相关。
概率_随机事件的概率.板块一.事件及样本空间.学生版 普通高中数学复习讲义Word版

版块一:事件及样本空间 1.必然现象与随机现象必然现象是在一定条件下必然发生某种结果的现象;随机现象是在相同条件下,很难预料哪一种结果会出现的现象.2.试验:我们把观察随机现象或为了某种目的而进行的实验统称为试验,把观察结果或实验的结果称为试验的结果.一次试验是指事件的条件实现一次.在同样的条件下重复进行试验时,始终不会发生的结果,称为不可能事件;在每次试验中一定会发生的结果,称为必然事件;在试验中可能发生,也可能不发生的结果称为随机事件.通常用大写英文字母A B C ,,,来表示随机事件,简称为事件.3.基本事件:在一次试验中,可以用来描绘其它事件的,不能再分的最简单的随机事件,称为基本事件.它包含所有可能发生的基本结果.所有基本事件构成的集合称为基本事件空间,常用Ω表示.版块二:随机事件的概率计算1.如果事件A B ,同时发生,我们记作A B ,简记为AB ;2.一般地,对于两个事件A B ,,如果有()()()P AB P A P B =,就称事件A 与B 相互独立,简称A 与B 独立.当事件A 与B 独立时,事件A 与B ,A 与B ,A 与B 都是相互独立的.3.概率的统计定义一般地,在n 次重复进行的试验中,事件A 发生的频率m n,当n 很大时,总是在某个常数附近摆动,随着n 的增加,摆动幅度越来越小,这时就把这个常数叫做事件A 的概率,记为()P A .从概率的定义中,我们可以看出随机事件的概率()P A 满足:0()1P A ≤≤.当A 是必然事件时,()1P A =,当A 是不可能事件时,()0P A =.4.互斥事件与事件的并互斥事件:不可能同时发生的两个事件叫做互斥事件,或称互不相容事件.由事件A 和事件B 至少有一个发生(即A 发生,或B 发生,或A B ,都发生)所构成的事件C ,称为事件A 与B 的并(或和),记作C A B =. 若C A B =,则若C 发生,则A 、B 中至少有一个发生,事件A B 是由事件A 或B 所包含的基本事件组成的集合.5.互斥事件的概率加法公式:若A 、B 是互斥事件,有()()()P A B P A P B =+若事件12n A A A ,,,两两互斥(彼此互斥),有1212()()()()n n P A A A P A P A P A =+++.知识内容板块一.事件及样本空间事件“12n A A A ”发生是指事件12n A A A ,,,中至少有一个发生.6.互为对立事件不能同时发生且必有一个发生的两个事件叫做互为对立事件.事件A 的对立事件记作A . 有()1()P A P A =-.<教师备案>1.概率中的“事件”是指“随机试验的结果”,与通常所说的事件不同.基本事件空间是指一次试验中所有可能发生的基本结果.有时我们提到事件或随机事件,也包含不可能事件和必然事件,将其作为随机事件的特例,需要根据情况作出判断.2.概率可以通过频率来“测量”,或者说是频率的一个近似,此处概率的定义叫做概率的统计定义.在实践中,很多时候采用这种方法求事件的概率.随机事件的频率是指事件发生的次数与试验总次数的比值,它具有一定的稳定性,总是在某个常数附近摆,且随着试验次数的增加,摆动的幅度越来越小,这个常数叫做这个随机事件的概率.概率可以看成频率在理论上的期望值,它从数量上反映了随机事件发生的可能性的大小,频率在大量重复试验的前提下可近似地看作这个事件的概率.3.基本事件一定是两两互斥的,它是互斥事件的特殊情形.主要方法:解决概率问题要注意“四个步骤,一个结合”:求概率的步骤是:第一步,确定事件性质⎧⎪⎪⎨⎪⎪⎩等可能事件 互斥事件 独立事件 n 次独立重复试验,即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算⎧⎨⎩和事件积事件,即是至少有一个发生,还是同时发生,分别运用相加或相乘事件. 第三步,运用公式()()()()()()()()(1)k k n k n n m P A n P A B P A P B P A B P A P B n P k C p p -⎧=⎪⎪⎪+=+⎨⎪⋅=⋅⎪=-⎪⎩等可能事件: 互斥事件: 独立事件: 次独立重复试验:求解第四步,答,即给提出的问题有一个明确的答复.解决此类问题的关键是会正确求解以下六种事件的概率(尤其是其中的(4)、(5)两种概率): ⑴ 随机事件的概率,等可能性事件的概率;⑵ 互斥事件有一个发生的概率;⑶ 相互独立事件同时发生的概率;⑷ n 次独立重复试验中恰好发生k 次的概率;⑸ n 次独立重复试验中在第k 次才首次发生的概率;⑹ 对立事件的概率.另外:要注意区分这样的语句:“至少有一个发生”,“至多有一个发生”,“恰好有一个发生”,“都发生”,“不都发生”,“都不发生”,“第k 次才发生”等.题型一 事件及样本空间典例分析【例1】 (2010安徽)甲罐中有5个红球,2个白球和3个黑球.乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以1A ,2A 和3A ,表示由甲罐取出的球是红球.白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件.则下列结论中正确的是 __ __(写出所有正确结论的编号).① ()25P B =; ②()15|11P B A =; ③事件B 与事件1A 相互独立;④1A ,2A ,3A 两两互斥的事件;⑤()P B 的值不能确定,因为它与1A ,2A ,3A 中究竟哪一个发生有关.【例2】 下列事件:①同学甲竞选班长成功;②两队球赛,强队胜利了;③一所学校共有998名学生,至少有三名学生的生日相同;④若集合A B C ,,,满足A B B C ⊆⊆,,则A C ⊆; ⑤古代有一个国王想处死一位画师,背地里在2张签上都写上“死”字,再让画师抽“生死签”,画师抽到死签;⑥从1359,,,中任选两数相加,其和为偶数;其中属于随机事件的有( )A .2个B .3个C .4个D .5个【例3】 指出下列事件是必然事件,不可能事件,还是随机事件:⑴六月天下雪;⑵同时掷两颗骰子,事件“点数之和不超过12”;⑶太阳从西边升起;⑷当100x ≥时,事件“lg 2x ≥”;⑸数列{}n a 是单调递增数列时,事件“20082009a a >”;⑹骑车通过10个十字路口,均遇红灯.【例4】 指出下列事件是必然事件,不可能事件,还是随机事件:⑴在标准大气压下且温度低于0C 时,冰融化;⑵今天晚上下雨;⑶没有水分,种子发芽;⑷技术充分发达后,不需要任何能量的“永动机”将会出现;⑸买彩票中一等奖;⑹若平面α平面m β=,n β∥,n α∥,则m n ∥.【例5】 将一颗骰子连续投掷两次,观察落地后的点数.⑴写出这个试验的基本事件空间和基本事件总数;⑵“两次点数相同”这一事件包含了几个基本事件;⑶“两次点数之和为6”这一事件包含了几个基本事件;⑷“两次点数之差为1”这一事件包含了几个基本事件.【例6】 一个口袋中有完全相同的2个白球,3个黑球,4个红球,从中任取2球,观察球的颜色.⑴写出这个试验的基本事件空间;⑵求这个试验的基本事件总数;⑶“至少有1个白球”这一事件包含哪几个基本事件;【例7】 同时转动如图所示的两个转盘,记转盘①得到的数为x ,转盘②得到的数为y ,结果为()x y ,.⑴写出这个试验的基本事件空间;⑵求这个试验的基本事件总数;⑶“5x y +=”这一事件包含哪几个基本事件?“3x <且1y >”呢? ⑷“4xy =”这一事件包含哪几个基本事件?“x y =”呢?【例8】 在天气预报中,如果预报“明天的降水概率为85%”,这是指( )A .明天该地区约有85%的地区降水,其它15%的地区不降水B .明天该地区约有85%的时间降水,其它时间不降水C .气象台的专家中,有85%的人认为会降水,另外15%的专家认为不会降水D .明天该地区降水的可能性为85%【例9】 同时掷两枚骰子,点数之和在2~12点间的事件是 事件,点数之和为12点的事件是 事件,点数之和小于2或大于12的事件是 事件,点数之差为6点的事件是 事件.。
高考概率文科知识点

高考概率文科知识点概率是数学中的一个重要概念,也是文科高考数学部分的一项重要内容。
掌握概率的相关知识,可以帮助我们更好地理解和利用随机事件的规律。
下面将介绍文科高考概率的知识点。
一、概率的基本概念概率是描述事件发生可能性的一种数值,在[0,1]之间取值。
如果事件发生的可能性较小,则其概率接近于0;如果事件发生的可能性较大,则其概率接近于1。
同时,所有事件的概率之和为1。
二、随机变量与概率分布随机变量是描述随机事件结果的数学符号。
在概率论中,可以将随机变量分为离散随机变量和连续随机变量。
对于离散随机变量,可以通过概率分布来描述其取值和对应的概率;而对于连续随机变量,则需要使用概率密度函数来描述。
三、概率的运算1.加法原理对于两个互斥事件A和B,其概率的和等于各自概率的和,即P(A∪B) = P(A) + P(B)。
2.乘法原理对于两个独立事件A和B,其概率的乘积等于各自概率的乘积,即P(A∩B) = P(A)×P(B)。
四、条件概率与独立性条件概率是指在已知某一事件发生的条件下,另外一事件发生的概率。
条件概率可以通过以下公式计算:P(A|B) = P(A∩B) / P(B)。
当事件A和事件B相互独立时,条件概率的计算会简化为P(A|B) = P(A)。
五、排列与组合排列是指从n个元素中取出m个元素进行有序排列的方式数目,计算公式为A(n,m) = n! / (n-m)!。
组合是指从n个元素中取出m个元素进行无序排列的方式数目,计算公式为C(n,m) = n! / (m! * (n-m)!))。
六、正态分布正态分布是一种在概率论与统计学中经常出现的概率分布。
在高考中,许多问题可以使用正态分布来进行近似计算。
正态分布的概率密度函数表示为f(x) = (1 / (σ√(2π))) * e^(-((x-μ)^2 / (2σ^2))),其中μ为均值,σ为标准差。
七、抽样与估计在统计学中,通过对样本进行抽样调查,可以对总体的某些特征进行估计。
(完整word版)高中数学统计与概率知识点归纳(全)

高中数学统计与概率知识点(文)一、众数: 一组数据中出现次数最多的那个数据。
众数与平均数的区别: 众数表示一组数据中出现次数最多的那个数据;平均数是一组数据中表示平均每份的数量。
二、.中位数: 一组数据按大小顺序排列,位于最中间的一个数据(当有偶数个数据时,为最中间两个数据的平均数)三 .众数、中位数及平均数的求法。
①众数由所给数据可直接求出;②求中位数时,首先要先排序(从小到大或从大到小),然后根据数据的个数,当数据为奇数个时,最中间的一个数就是中位数;当数据为偶数个时,最中间两个数的平均数就是中位数。
③求平均数时,就用各数据的总和除以数据的个数,得数就是这组数据的平均数。
四、中位数与众数的特点。
⑴中位数是一组数据中唯一的,可能是这组数据中的数据,也可能不是这组数据中的数据; ⑵求中位数时,先将数据有小到大顺序排列,若这组数据是奇数个,则中间的数据是中位数;若这组数据是偶数个时,则中间的两个数据的平均数是中位数; ⑶中位数的单位与数据的单位相同; ⑷众数考察的是一组数据中出现的频数;⑸众数的大小只与这组数的个别数据有关,它一定是一组数据中的某个数据,其单位与数据的单位相同;(6)众数可能是一个或多个甚至没有;(7)平均数、众数和中位数都是描述一组数据集中趋势的量。
五.平均数、中位数与众数的异同:⑴平均数、众数和中位数都是描述一组数据集中趋势的量; ⑵平均数、众数和中位数都有单位; ⑶平均数反映一组数据的平均水平,与这组数据中的每个数都有关系,所以最为重要,应用最广; ⑷中位数不受个别偏大或偏小数据的影响;⑸众数与各组数据出现的频数有关,不受个别数据的影响,有时是我们最为关心的数据。
六、对于样本数据x 1,x 2,…,x n ,设想通过各数据到其平均数的平均距离来反映样本数据的分散程度,那么这个平均距离如何计算?思考4:反映样本数据的分散程度的大小,最常用的统计量是标准差,一般用s 表示.假设样本数据x 1,x 2,…,x n 的平均数为x ,则标准差的计算公式是:七、简单随即抽样的含义一般地,设一个总体有N 个个体, 从中逐个不放回地抽取n 个个体作为样本(n≤N), 如果每次12||||||n x x x x x x n-+-++-L 22212()()()n x x x x x x s n -+-++-=L抽取时总体内的各个个体被抽到的机会都相等, 则这种抽样方法叫做简单随机抽样.八、根据你的理解,简单随机抽样有哪些主要特点?(1)总体的个体数有限;(2)样本的抽取是逐个进行的,每次只抽取一个个体;(3)抽取的样本不放回,样本中无重复个体;(4)每个个体被抽到的机会都相等,抽样具有公平性.九、抽签法的操作步骤?第一步,将总体中的所有个体编号,并把号码写在形状、大小相同的号签上.第二步,将号签放在一个容器中,并搅拌均匀第三步,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.十一、抽签法有哪些优点和缺点?优点:简单易行,当总体个数不多的时候搅拌均匀很容易,个体有均等的机会被抽中,从而能保证样本的代表性.缺点:当总体个数较多时很难搅拌均匀,产生的样本代表性差的可能性很大.十一、利用随机数表法从含有N个个体的总体中抽取一个容量为n的样本,其抽样步骤如何?第一步,将总体中的所有个体编号.第二步,在随机数表中任选一个数作为起始数.第三步,从选定的数开始依次向右(向左、向上、向下)读,将编号范围内的数取出,编号范围外的数去掉,直到取满n个号码为止,就得到一个容量为n的样本.简单随机抽样一般采用两种方法:抽签法和随机数表法。
高考数学概率考点及知识点总结解析(文科)

2.(教材习题改编)如果从不包括大、小王的 52 张扑克牌中 随机抽取一张,那么取到红心的概率是14,取到方块的概 率是14,则取到黑色牌的概率是________. 答案:12
3.(教材习题改编)给出下列三个命题,其中正确命题有______个. ①有一大批产品,已知次品率为 10%,从中任取 100 件,必有 10 件是次品; ②做 7 次抛硬币的试验,结果 3 次出现正面,因此正面出现的 概率是37; ③随机事件发生的频率就是这个随机事件发生的概率. 解析:①错,不一定是 10 件次品;②错,37是频率而非概率; ③错,频率不等于概率,这是两个不同的概念. 答案:0
第二节
随机事件的概率 结 束
古典概型
1.基本事件的特点 (1)任何两个基本事件是互斥 的.
(2)任何事件(除不可能事件)都可以表示成 基本事件的和.
课 前 ·双 基 落 实 课 堂 ·考 点 突 破
课 后 ·三 维 演 练
2.古典概型 (1)
随机事件的概率 结 束
(2)概率计算公式:P(A)= A包含的基本事件的个数 . 基本事件的总数
(1)记“至多 2 人排队等候”为事件 G,则 G=A∪B∪C, 所以 P(G)=P(A∪B∪C)=P(A)+P(B)+P(C) =0.1+0.16+0.3=0.56. (2)法一:记“至少 3 人排队等候”为事件 H,则 H=D∪E∪F, 所以 P(H)=P(D∪E∪F)=P(D)+P(E)+P(F) =0.3+0.1+0.04=0.44. 法二:记“至少 3 人排队等候”为事件 H, 则其对立事件为事件 G, 所以 P(H)=1-P(G)=0.44.
A.至多有一张移动卡
B.恰有一张移动卡
()
C.都不是移动卡
高考文科概率知识点

高考文科概率知识点在高考文科中,概率是一个重要的数学知识点。
掌握了概率的基本概念和计算方法,可以帮助我们解决各种实际问题,也能够在高考中得到更好的成绩。
下面将介绍一些常见的高考文科概率知识点,帮助大家更好地备考。
一、基本概念和性质1.1 随机事件和样本空间在概率理论中,随机事件是指在一次试验中可能发生的事情,而样本空间是指一次试验的所有可能结果组成的集合。
在计算概率时,我们常常需要确定随机事件和样本空间的关系。
1.2 事件的概率事件的概率是指该事件发生的可能性大小。
在概率理论中,我们常用概率的定义来计算事件的概率。
概率的定义包括古典概型、几何概型和统计概型等。
1.3 事件的互斥性和独立性如果两个事件不能同时发生,我们称它们为互斥事件。
而独立事件指的是两个事件发生与否相互不影响。
互斥性和独立性是概率计算中重要的性质,我们需要根据具体情况来判断事件之间的关系。
二、概率的计算方法2.1 古典概率计算在古典概率计算中,我们假设每个基本事件发生的可能性相等。
在计算古典概率时,我们可以利用排列组合的原理,将问题转化为简单的计算。
2.2 几何概率计算几何概率是指基于几何图形的概率计算方法。
在计算几何概率时,我们需要确定样本点的几何位置,然后计算所关心的事件所占的几何面积。
2.3 统计概率计算统计概率是指基于实验数据的概率计算方法。
在计算统计概率时,我们需要进行实验观察,统计事件发生的频率,并利用频率来估计概率。
三、概率的应用3.1 事件的组合与分解在求解复杂事件的概率时,我们可以将事件进行组合与分解。
通过合理地组合和分解事件,可以简化计算,减少出错的可能性。
3.2 条件概率条件概率是指在已知某一事件发生的条件下,其他事件发生的概率。
在计算条件概率时,我们需要考虑相关事件之间的关系,并根据给定条件进行计算。
3.3 贝叶斯定理贝叶斯定理是一种计算条件概率的方法。
通过贝叶斯定理,我们可以根据已知条件和历史统计数据,来估计事件的概率。
高中概率知识点总结WORD

高中概率知识点总结WORD一、概率的基本概念1. 随机现象随机现象是指在一定条件下,具有多种结果,但不能预先确定具体结果的现象。
例如抛硬币、掷骰子等都属于随机现象。
2. 样本空间样本空间是指随机试验的所有可能结果组成的集合。
通常用S表示,例如掷一枚硬币的样本空间为S={正面,反面}。
3. 事件事件是样本空间的子集,即由样本空间中的若干个元素组成的集合。
事件的发生与不发生是由具体情况来决定的,事件的发生称为"有利事件",不发生称为"不利事件"。
4. 概率概率是事件在随机试验中发生的可能性的大小。
通常用P(A)表示,表示事件A发生的概率。
5. 古典概率古典概率是指在条件确定,具有等可能性的随机事件中,某一事件发生的概率。
通常用公式P(A)=n(A)/n(S)表示,其中n(A)表示事件A的样本点个数,n(S)表示样本空间的样本点个数。
6. 频率概率频率概率是指在长期重复进行的随机试验中,事件A发生的次数与试验的总次数之比。
通常用公式P(A)=lim(n->∞)n(A)/n表示,其中n(A)表示事件A发生的次数,n表示试验的总次数。
7. 几何概型概率几何概型概率是指在几何图形中事件A所占的面积的比率。
8. 概率的性质概率具有以下的基本性质:(1)非负性,即P(A)≥0;(2)规范性,即P(S)=1;(3)可列可加性,即若A1, A2…An是两两互不相容的事件,则P(A1∪A2∪…∪An)=P(A1)+P(A2)+…+P(An)。
二、概率的计算方法1. 等可能事件的概率计算方法若有n个等可能事件,每一个事件发生的概率都相等,那么这n个事件的概率都是1/n。
2. 互不相容事件的概率计算方法若有n个互不相容的事件A1, A2,…,An,它们的和事件S,则S=∪(i=1)^n Ai,此时事件S的概率为P(S)=P(A1)+P(A2)+…+P(An)。
3. 事件的互斥与独立性(1)事件的互斥:若事件A和B互斥,则P(A∪B)=P(A)+P(B)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率1. 随机事件的概率及概率的意义
1、基本概念:
(1)频数与频率:在相同的条件S 下重复n 次试验,观察某一事件(2)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数A 是否出现,称n 次试
nA 与试验总次数n
n A
的比值n
,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,
这种摆动幅度越来越小。
我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发
生的可能性的大小。
频率在大量重复试验的前提下可以近似地作为这个事件的概率
2. 概率的基本性质
2.1 概率的基本性质:
1)必然事件概率为1,不可能事件概率为0,因此 0≤ P(A) ≤ 1;
2)当事件 A 与 B 互斥时,满足加法公式:P(A∪ B)= P(A)+ P(B);
3)若事件 A 与 B 为对立事件,则A∪ B 为必然事件,所以P(A∪ B)= P(A)+ P(B)=1,于是有P(A)=1 — P(B) ;
3.古典概型及随机数的产生
(1)古典概型的使用条件:试验结果的有限性和所有结果的等可能性。
(2)古典概型的解题步骤;
①求出总的基本事件数;
A包含的基本事件数
②求出事件 A 所包含的基本事件数,然后利用公式P( A)=
总的基本事件个数
4.几何概型及均匀随机数的产生
基本概念:
( 1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型;
( 2)几何概型的概率公式:
构成事件 A的区域长度(面积或体积)
P( A)=试验的全部结果所构成的区域长度(面积或体积)
;
5.分层抽样
先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,
然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将
这些子样本合起来构成总体的样本。
两种方法:
1.先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。
2.先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整齐排列,最
后用系统抽样的方法抽取样本。
样本容量各层样本容量
①抽样比==.
个体总量各层个体总量
②层 1 的数量∶层 2 的数量∶层 3 的数量=样本 1 的容量∶样本 2 的容量∶样本 3 的容量.
6.数形结合思想——解决有关统计问题
(1) 通过频率分布直方图和频数条形图研究数据分布的总体趋势;
(2)根据样本数据散点图确定两个变量是否存在相关关系.
解答时注意的问题:
频率
频率分布直方图中的纵坐标为,而不是频率值;组距
(2)注意频率分布直方图与频数条形图的纵坐标的区别.
7.茎叶图
中位数:
众数:
平均数:
8.两个量的性相关
1、概念 :
(1)回直方程
(2)回系数
n n
x i x y i y x i y i nx y
$b i1i 1
2.最小二乘法:n n
,其中2
x i2nx2
y a bx x i x
i 1i1
a y bx
3.直回方程的用
(1)描述两量之的依存关系;利用直回方程即可定量描述两个量依存的数量关系
(2)利用回方程行;把因子(即自量 x)代入回方程量(即因量 Y)行估,即可得到个体 Y 的容区。
9.用本的数字特征估体的数字特征
4.1本均: x x1x2x n
n
4.2本准差:s s2( x1 x) 2(x2 x) 2( x n x) 2
n
4.3方差: s2=12
],其中 x 数据 x1, x2,⋯, x n的平[(x1- x )2+ (x2- x )2+⋯+ (x n- x )
n
均数。