2015数学建模B题--上海数据
2015年全国研究生数学建模大赛优秀论文B题9

2
1. 问题的重述
几何结构分析是进行数据处理的重要基础,特别是在对于高维数据的相关性分 析和聚类分析等基本问题上结构分析格外重要。 为了挖掘数据集的低维线性子空间结构,我们常用数据降维方法处理数据, 这类方法以假设数据集采样于一个线性的欧氏空间为前提。但是,往往在实际问 题中很多数据具备更加复杂的结构。 针对单一子空间结构假设的后续讨论主要分为两个方面,首先是从线性到非 线性的扩展,主要的代表性工作包括流形(局部具有欧氏空间性质的空间定义为 流形,而欧氏空间就是流形最简单的实例)学习等。 其次是流形或子空间从一个扩展到多个的问题,即考虑处理的数据集采样于 多个欧氏空间的混合。子空间聚类(又称为子空间分割,假设数据分布于若干个 低维子空间的并集)是将数据按某种分类准则划分到其所属的子空间的过程。通 过子空间聚类,可以将来自同一子空间中的数据归为一类,再由同类数据可以提 取相应子空间的相关性质。子空间聚类的求解方法包括代数方法、迭代方法、统 计学方法以及基于谱聚类的方法。在众多算法中,基于谱聚类的方法在近几年较 为流行,通常情况下使用这类方法一般都能得到正确的分类结果,其中代表性的 谱聚类子空间分割方法包括低秩表示和稀疏表示等。 假设数据的结构为混合多流形,因为多数境况下数据来自混合子空间。虽然 也有些实际问题的数据并不符合混合子空间结构的假设,但这种境况处理相对简 单。此外,混合流形不全是子空间的情况,数据往往具有更复杂的结构,分析这 种数据具有更大的挑战性。 本文在几何结构分析问题中假设数据分布在多个维数不等的流形上,其特殊 情况是数据分布在多个线性子空间上。下面对问题进行简要重述: 1.附件一中 1.mat 中有一组高维数据(.mat 所存矩阵的每列为一个数据点,以 下各题均如此),数据结构未知,需要使用合适的方法将该组数据分成两类。 2.图 1(a)为两条交点不在原点且互相垂直的两条直线,将其分为两类;图 1(b) 为一个平面和两条直线, 需要按要求将其分为三类。 图 1(c)为两条不相交的二次曲 线,按要求将其分为两类。图 1(d)为两条相交的螺旋线,结构相对复杂需按要求将 其分为两类。
2015年数学建模B题全国一等奖论文

基于供求匹配率的出租车资源配置模型摘要本文针对城市出租车资源配置问题,采用定性与定量相结合的研究方法,建立衡量出租车供求匹配程度的指标,分析打车软件各种补贴方案对所建指标的影响,在充分考虑各方利益的前提下,得到打车软件的最优补贴方案,对城市出租车行业资源优化配置、持续良性发展具有一定的参考意义。
为分析不同时空出租车资源的供求匹配程度,引入出租车资源供求匹配率这一指标,指标的定义为城市中实际运行的出租车辆数与居民出行需要的出租车辆数之比,反映城市中实际运行的出租车辆数与居民出行需要的出租车辆数之间的差异。
计算得出成都2013年出租车供求匹配率为0.7766,表示供不应求。
居民出行需要的出租车辆数与居民人均日出行次数、城市总人口数量、居民出行选择乘坐出租车的比例有关,也与每辆出租车日均载客次数、每单载客人数和车辆满载率有关。
对于居民人均日出行次数,利用十五个国内大中城市的数据,将十二个城市经济指标聚类分析选出每类指标中典型的经济指标,建立居民人均日出行次数与这些典型经济指标间的多元线性回归方程,而与居民出行需要的出租车辆数相关的其他指标可查阅文献或年鉴获得。
分析成都市每天6:00-8:30,11:00-12:30,13:30-14:30,17:00-18:30四个时间段得供求匹配率分别为0.4111,0.5678,0.6062,0.5631,结果显示供不应求。
得到大连、北京、广州、武汉、南京、成都、杭州、深圳八座城市的出租车资源供求匹配率分别为1.0936、0.8827、0.9430、0.7040、0.7049、0.7666、0.6583、0.5252,表明只有大连的出租车资源是供大于求,而其余七座城市为供小于求。
为了分析各公司的出租车补贴方案对缓解打车难是否有帮助,定性分析出租车日均载客次数、出租车满载率随打车软件对出租车司机每单补贴金额的变化趋势,分别建立阻滞增长模型,进而分析打车软件对出租车司机每单补贴金额的变化对所建指标的影响。
2015年数模国赛论文B题_3

赛区评阅编号(由赛区组委会填写):2015高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号(从A/B/C/D中选择一项填写):B我们的报名参赛队号(12位数字全国统一编号):参赛学校(完整的学校全称,不含院系名):参赛队员(打印并签名):1.2.3.指导教师或指导教师组负责人(打印并签名):日期:年月日(此承诺书打印签名后作为纸质论文的封面,注意电子版论文中不得出现此页。
以上内容请仔细核对,如填写错误,论文可能被取消评奖资格。
)赛区评阅编号(由赛区组委会填写):2015高教社杯全国大学生数学建模竞赛编号专用页赛区评阅记录(可供赛区评阅时使用):评阅人备注送全国评阅统一编号(由赛区组委会填写):全国评阅随机编号(由全国组委会填写):(此编号专用页仅供赛区和全国评阅使用,参赛队打印后装订到纸质论文的第二页上。
注意电子版论文中不得出现此页,即电子版论文的第一页为标题、摘要和关键词页。
)“互联网+”时代的出租车资源配置摘要:“互联网+”就是利用互联网平台、信息通信技术,将互联网及包括传统行业在内的诸多领域结合起来,在代表一种新的经济形态,即充分发挥互联网在生产要素配置中的优化和集成作用,将互联网的创新成果深度融合于经济社会各领域之中,提升实体经济的创新力和生产力,形成更广泛的以互联网为基础设施和实现工具的经济发展新形态。
2015年全国数学建模竞赛B题全国一等奖论文6

pqt , y pqt ) (x
d qst
t 时刻第 q 类乘客类中心到第 s 类出租车类中心的距离
h qt ˆ h qst
tmn
[h L , hU ] t 时刻第 q 类乘客的人数, h qt qt qt
t 时刻离第 q 类乘客类中心最近的第 s 类出租车的数量
L U 乘客乘车从第 m 类出租车类到第 n 类出租车类的时间, tmn [tmn , tmn ]
) FQ (a
dQ( y ) p (a y (a P a L ))dy 0 dy
1
是一个闭区间且下界为正数, R + 是正实数区间, [a L , a P ] .
[a L , aU ] ,若 Q( y ) dy 为态度参数,则 定理 5.1.1 设 a
基于模糊多目标规划的出租车补贴模型 摘要
出租车“打车难”是当前社会的热点话题,乘客与出租车的供需不匹配也成 为实现他们信息互通的障碍,随着多家公司建立打车软件服务平台,推出多种出 租车补贴方案,出租车和乘客间的供需匹配问题逐渐成为“互联网+”时代的重 要课题之一。本文以上海市为例,通过出租车和乘客供求平衡指标,构建基于模 糊多目标规划和层次分析法的出租车资源供求匹配模型,并设计新的补贴方案, 从而有效缓解“打车难”问题。 针对问题一,首先从苍穹滴滴快的智能出行平台和数据堂网站搜集相关数 据, 分析反映出租车资源供需匹配程度的 5 个指标。 由于数据存在一定的模糊性, 本文利用连续区间有序加权平均(COWA)算子将相关指标转化为含参变量的实 指标,通过 K 均值聚类模型将上海的出租车分布和乘客需求量进行聚类,并构 建基于空车率、空车总代价、乘客总成本的模糊多目标规划模型,同时,利用基 于 COWA 算子的模糊层次分析法将模糊多目标规划模型转化为单目标规划模 型,结果表明,上海地区呈现供不应求的出租车资源分布状况,并且在上下班高 峰期时间段显得尤为突出。 针对问题二,通过在模糊多目标规划模型中增加补贴方案,重新求解模型, 并分析出租车等待时间、乘客等待时间、空车率的变动,结果表明,适当的补贴 能够在一定程度上提高供求匹配程度,缓解“打车难”的问题;然而一旦超过一 定补贴范围,出租车的供给与乘客的乘车需求匹配程度就会下降。 针对问题三,根据乘客与出租车的距离、单位出租车服务人数、乘车费用、 乘客人数等因素,构建新的补贴方案,并重新求解模糊多目标规划模型,结果表 明,新的补贴方案能有效地缓解“打车难”问题,模型结果也同时验证了补贴方 案的合理性。 最后,本文对所建模型进行了灵敏度分析,并对模型进行了优缺点分析。 关键词:多目标优化;层次分析法;供求匹配;补贴;COWA 算子.
2015年全国研究生数学建模大赛优秀论文B题6

6.3 模型建立与分析...................................................................................... - 32 6.3.1 PCA 模型 ......................................................................................................... - 32 6.3.2 Isomap 模型 ..................................................................................................... - 32 6.3.3 LLE 模型 ......................................................................................................... - 33 6.3.4 问题 3 求解..................................................................................................... - 34 -
6.4 结果分析.................................................................................................. - 39 -
参赛密码 (由组委会填写)
第十二届“中关村青联杯”全国研究生 数学建模竞赛
学
校
河海大学 10294017 1. 周 政
2015数学建模竞赛B题优秀论文介绍

一、问题重述
随着科技与经济的飞速发展,“互联网+”战略的影响已经深入各行各业。出 租车作为城市的交通工具之一,对人们的出行起着重要的影响,然而,“打车难” 一直是人们关注的一个社会热点问题。近几年来,“互联网+”战略与传统出租车 行业深度融合,打车软件作为其中典型的应用,已对传统出租车行业市场产生了 深远影响。依托移动互联网建立的打车软件服务平台,实现了乘客与出租车司机 之间的信息互通。同时,各家公司推出了多种出租车的补贴方案,进一步加强了 “互联网+”战略与传统出租车行业的融合,优化了出租车资源配置.
三、符号说明
符号 t ij k ij m ij n ij n ik Tij K ij M ij N ij
N ik
说明
2015.9.05-9.10 i 市6天每第 j 个 时间段抢单时间的均值
2015.9.05-9.10 i 市天每第 j 个时 间段的打车难度系数的均值
2015.9.05-9.10 i 市 7 天每第 j 个 时间段的乘客乘坐出租车总费用的 均值
基于“互联网+”对出租车资源配置影响的问题研究
摘要
本文通过对网络上收集的数据进行合理分析和处理,进一步研究发现,一段 时间内的出租车的车费(即所有司机此段时间内的收入之和),需求(此段时间 内通过打车软件呼叫车辆的人数),车辆分布(此段时间内的该市的处于运营的 出租车数量)相当于生产的环境因素,而打车难易度(网络资源综合实时数据提 供的衡量打车难度的数据),抢单时间(通过打车软件呼叫出租车到出租车司机 接 单 的 时 间 差 ) 可 以 看 做 产 出 的 “ 效 益 ”. 数 据 包 络 分 析 (Data Envelopment analysis, 简称 DEA 模型)的方法,用于评价相同部门间的 相对有效性(因此被称为 DEA 有效).DEA 模型是经济理论中估计具有多个输 入,特别是具有多个输出的“生产前沿函数”(也称生产前沿面)的有力工具.因此 本文将 DEA 模型合理应用于问题一的模型构建。本文通过在苍穹网抓取到北京, 上海,深圳三个城市24个小时段的上述五个信息,经过合理的处理,将 DEA 模型应用在数据上,再通过 MATLAB 编程,最后分析结果.问题二要求分析打 车软件的补贴政策是否有助于缓解“打车难”问题,这样就要求我们找到出现补 贴前后的情况.通过查找我们发现新华网报道中信银行旗下“中信打车付”将于 10 日启动新一轮立减补贴活动。本文将针对北京市的补贴政策前后的 EDA 值采 用多元线性回归分析法建立回归模型,在回归方程中加入 dummy 变量,没有补 助时,dummy 值为0,有补助时其值为1.利用 MATLAB 编程,得出相应结果.第 三问采用理论分析。
2015年数学建模B题全国一等奖论文

精心整理“互联网+”时代的出租车资源配置模型摘要本文针对城市出租车资源配置问题,采用定性与定量相结合的研究方法,建立衡量出租车供求匹配程度的指标,分析打车软件各种补贴方案对所建指标的影响,在充分考虑各方利益的前提下,得到打车软件的最优补贴方案,对城市出租车行业资源优化配置、持续良性发展具有一定的参考意义。
软件公司三方的满意度,利用熵值法确定这三方各自满意度的权重,将三方满意度加权之和作为综合满意度,进而以综合满意度为目标函数,以打车软件对出租车司机每单补贴金额为控制变量,以补贴金额设置的范围为约束条件建立优化模型。
遍历所有可能的方案得到最优补贴方案为对出租车司机每单补贴9元,综合满意度为0.5710。
关键词:聚类分析;回归分析;灰色预测;阻滞增长模型;熵值法;最优化一、问题重述随着经济的发展,近年来,人们对出行的要求不断提高,城市出租车以其方便、快捷、舒适和私密性的特点成为越来越多人的出行选择。
但是,国内各大城市交通问题日趋严重,“打车难”也是人们关注的一个社会热点问题。
数据显示,包括上海、杭州等众多大城市,出租车非高峰期的空驶率始终在30%上下徘徊,而高峰期却打不到车。
这与众多市民反映的打车难背后所隐藏的强烈需求看似形成了一个矛盾。
究其原因,最主要的莫过于司机与乘客需求信息不对称,缺乏及时沟通交流的平台。
通过查阅文献可以确定居民出行选择出租车作为出行方式的比例从而,计算得出城市的出租车运输量的需求量。
然后根据供需平衡法预测出城市出租车需求量。
将城市实际出租车数量与城市出租车需求数量作比,得到衡量出租车资源的供求匹配程度的指标即供求匹配率。
对未来城市的出租需求量进行灰色关联预测,得到未来城市的出租需求量,通过计算不同城市的出租车需求量,进行不同时空的出租车资源供求匹配的分析。
对于各公司的出租车补贴方案是否对“缓解打车难”有帮助问题,由于难以得到各公司不同时间的补贴方案对居民打车难度的实际影响效果数据,我们从公司对每单的补贴金额入手,分析每单补贴金额范围为0~15元,认为补贴金额再高对公司利益有较大损失。
2015年数模国赛论文设计B题_2

“互联网+”时代的出租车资源配置摘要关键词:主成分分析法、供求平衡阀法、对比比值法一、问题的重述二、问题分析三、模型的假设与符号说明1、模型假设2、符号说明四、模型建立与求解2.2.1指标体系的建立根据问题一的分析,我们近似的建立关于出租车运力规模的合理指标。
目前,大多采用功效系数法来评价出租车运力规模的合理程度。
但是我们要做的是建立合理的指标,而不是对出租车运力规模进行评价。
所以采用主成分分析法来建立关于出租车资源的合理指标。
(主成分分析法也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。
)经过查阅相关资料,建立如下指标体系:1)万人拥有量:该项指标反映了城市出租车的客观需求。
依据国内外各大城市的经验,城市出租车万人拥有量应介于20-30辆之间,此时能表现出较好的市场接受度。
2)里程利用率:指出租车正常运营过程中一定时间内载客行驶里程占总行驶 里程的百分比,其计算公式为:=100%⨯营运载客里程里程利用率总行驶里程3)出租车空载率:是反映出租车营运状况的一个重要指标,其计算公式为:=100%⨯出租车空车数量出租车空载率行驶中的出租车总量4)乘客平均等车时间:指乘客在选择出租车出行的时候等候出租车辆的平均时间,单位为min,其计算公式为:=∑等车时间乘客平均等车时间总候车次数5)居民出行量:指居民在单位时间内出行人数主成分分析法也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。
2、主成分分析法的算法步骤 2.1 原始指标数据的标准化设有n 个样本,p 项指标,可得数据矩阵(),1,2,...,ij X X nxp i n ==表示n 个样本,j =1,2,...,p 表示p 个指标,ij x 表示第i 个样本的第j 项指标值. 用Z score -法对数据进行标准化变换:()/j ij ij j Z x x S =- 式中,1()/nj iji x xn==(∑221()1/(1)nj j ij i S x x n ==--∑1,2,...,i n=1,2,...,j p=2.2 求指标数据的相关矩阵()jk pXp R r = 1,2,...,j p = 1,2,...,k p = jk r 为指标j 与指标k 的相关系数.211[()/][()/]1nk j jk ij j ik k i r x x S X X S n ==---∑ 即 111n jk i r n ==-∑ ij jk Z Z 有1ij r =, jk kj r r = 1,2,...,i n = 1,2,...,j p = 1,2,...,k p =2.3 求相关矩阵R 的特征根特征向量,确定主成分由特征方程式Ip |λ-P |=0,可求得的p 个特征根(1,2,...,)g g p λ=,1λ将其按大小顺序排列为12p λ≥λ≥...λ≥0,它是主成分的方差,它的大小描述了各个主成分在描述对象上所起作用的大小。