第四章一元一次方程(基础)
一元一次方程及其解法教案教学设计

4.2一元一次方程及其解法教案设计第4章一元一次方程七年级上册苏科版(2024)【教材分析和学情分析】教材分析:第四章“一元一次方程”是初中数学的基础内容,主要介绍了方程的基本概念、方程的解、等式的性质以及如何解一元一次方程。
这一章的学习,旨在通过实际问题的解决,让学生理解并掌握一元一次方程的模型,培养他们的逻辑思维能力和问题解决能力。
教材中通过丰富的实例和习题,帮助学生从实际问题中抽象出数学问题,再通过解决数学问题,反哺解决实际问题,形成数学思维。
学情分析:1. 学生基础:七年级的学生已经学习了基本的算术运算,对数的概念有一定的理解,但可能对如何用数学模型解决实际问题还比较陌生。
此外,他们的抽象思维能力和逻辑推理能力还在发展阶段。
2. 学习兴趣:初中的学生对新鲜事物充满好奇,如果能将一元一次方程与生活实际相结合,设计一些趣味性的教学活动,可以激发他们的学习兴趣。
3. 学习习惯:部分学生可能还习惯于被动接受知识,缺乏主动探究和自我解决问题的习惯,需要教师引导他们主动参与到学习过程中。
4. 学习困难:一些学生可能在理解等式的性质和运用这些性质解方程时遇到困难,需要教师耐心引导,通过实例演示和反复练习帮助他们掌握。
【教学目标】1. 知识与技能:学生应能理解一元一次方程的定义,掌握其标准形式,并能识别和列出实际问题的一元一次方程。
2. 过程与方法:通过实例,让学生经历从实际问题抽象出一元一次方程的过程,掌握解一元一次方程的基本步骤,培养他们的抽象思维和问题解决能力。
3. 情感态度与价值观:培养学生对数学的兴趣,体验数学与生活的紧密联系,提高他们的学习积极性和自信心。
【教学重难点】1. 重点:理解一元一次方程的定义,能正确列出和解一元一次方程。
2. 难点:将实际问题转化为一元一次方程,理解解方程的过程。
【教学过程】1. 导入新课:通过生活中的实例,如“小明有10元钱,他买了一本书花了5元,他还剩下多少钱?”引入方程的概念,让学生初步感知方程是用来表示等量关系的数学工具。
六年级数学上册第四章一元一次方程2解一元一次方程1课件鲁教

合并同类项,得 7x=-1701 系数化为1,得
注意:应用题要作 “答”哟!
x=-243.
所以 -3x=729,
9x=-2187
答:这三个数是-243,729,-2187
例题变式:
1、 有一列整数,按一定的规律成 2,-4,8, -16,32, -64,···,
(1)试写出第8、第9个数分别是多少? (2)如果2是这组第一个数,-4是第二个数,,8是 第三个数···那么第n个数是什么?试用n表示出来。 (3)若其中某三个相邻数的和为1 536,这三个数 各是多少? ( 4)若其中四个相邻数的和可能为-2014吗?
合并同类项,得 3x=1 536. 系数化为1,得 x=512. 所以 -2x=-1 024, 4x=2 048. 答:这三个数是512、-1 024、2 048.
2、有一列整数,按一定的规律成3,5,9,17, 33,65, ···试写出第8、第9个数分别是多少? (1)如果是这组第一个数,5是第二个数,,9 是第三个数···那么第n个数是什么?试用n表示 出来. (2)若其中某三个相邻数的和为227,这三个 数各是多少?
(1)培训时间是连续的三天,你知道这 几天分别是当月的哪几号吗?
(2)若培训时间是连续三周的周六,那 这几天又分是当月的哪几号?
(1)12、13、14
(2)6、13、20
4.2 解一元一次方程(1)
(1) x-2x+4x
=(1-2+4)x
=3x
合
并 (2)5y+y-2y
同 类
=(5+1 -2)y
项
=4y
(3)2a-1.5a-0.5a
=(2-1.5-0.5)a
=0
解下列方程 (1)x-4=29 (2)-x+4=29
第4章 一元一次方程

4.1 从问题到方程
例 4 教材补充例题在一次美化校园活动中,先安排 31 人去拔 草,18 人去植树,后又增派 20 人去支援他们,结果拔草的人数是 植树的人数的 2 倍.问
支援拔草和植树的分别有多少人?(只列出方程即可)
4.1 从问题到方程
[解析] 首先设支援拔草的有 x 人,则支援植树的有(20-x)人, 根据题意可得等量关系:原来拔草人数+支援拔草的人数=2×(原 来植树的人数+支援植树的人数).
目标三 会用等式的基本性质解一元一次方程
例 3 教材例 1 变式题用等式的基本性质解下列方程:
(1)x+4=0;
(2)-41x=3.
解:(1)根据等式的基本性质 1,方程两边都减去 4,得 x= -4.
(2)根据等式的基本性质 2,方程两边都乘-4,得 x=-12.
第1课时 等式的基本性质
【归纳总结】解方程的实质是将方程化为“x=a”的形式,解题 的基本思路是首先根据等式的基本性质将不含未知数的项移到等 式的右边,含未知数的项移到等式的左边,再合并同类项,最后 根据等式的基本性质 2 化未知数的系数为 1.
第4章 一元一次方程
第1课时 等式的基本性质
目标突破 总结反思
第1课时 等式的基本性质
目标突破
目标一 会验证一个数是不是方程的解
例 1 教材补充例题检验 x=-5 与 x=5 是不是方程2x- 3 1= x-2 的解.
第1课时 等式的基本性质
解:把 x=-5 分别代入方程的左右两边, 左边=2×(-35)-1=-131,右边=-5-2=-7. 因为左边≠右边,所以 x=-5 不是方程2x- 3 1=x-2 的解. 把 x=5 分别代入方程的左右两边, 左边=2×53-1=3,右边=5-2=3. 因为左边=右边,所以 x=5 是方程2x- 3 1=x-2 的解.
第四章一元一次方程

第四章一元一次方程4.1 从问题到方程第1课时【基础演练】1、下列式子中,方程有()个。
①x+2=4, ②2x-3=4,③3+2=5,④2x-3,⑤x=1.(A)2个(B) 3个(C) 4个(D) 5个2、将下列数量间的相等关系用方程表示出来:①x的一半与1的和是-2.②比x的2倍小1的数是7。
③x的5倍与21的差等于13.④x减去2所得的差与-2积等于11.3、设某数为x,根据题意,用方程来表示数量间的相等关系:①某数的一半与它的相反数的差为-15.②比某数5倍小7的数是某数的3倍。
4、三个连续奇数的和为17,设中间一个为x,则可列方程为。
【深入练习】5、100千克的小麦分装在4个同样大小的袋子里,装满后还余23千克,若每袋可装x千克的小麦,则可得方程是什么?6、一个两位数,十位数字比个位数字小2,两个数位上的数字之和是7,求这个两位数。
若设个位数字为x,那么根据题意得到的方程:( )(A)(x-7)=2x (B) 2x=x-7 (C)(x-2)+x=7 (D)(x+2)+x=77、一号仓库有煤350吨,二号仓库有煤460吨,若从一号仓库取出x吨到二吨仓库,这时一号仓库有煤吨,二号仓库有煤吨。
如果这时一号仓库的煤是二号仓库煤的一半,根据题意可得方程为:。
8、在春季植树造林活动中,计划七年级(1)班同学植树苗120棵,七年级(2)班植树苗80棵,现要使两个班级所植树苗一样多,应从(1)班调多少棵给(2)班?若设应从(1)班调x棵给(2)班,则根据题意,可得方程为。
用方程描述下列实际问题中数量之间的相等关系:9、用一根长为24cm的铁丝围成一个长方形,且长是宽的2倍,若设宽为xcm,则可得方程是什么?【拓展延伸】10、王丽今年10岁,她的妈妈今年35岁,多少年后妈妈年龄是王丽年龄的2倍?若设x年后妈妈年龄是王丽年龄的2倍?则可得方程是什么?11、某种新鲜蔬菜经脱水处理后,质量减少45%,为了得到这种脱水蔬菜1000千克,需要新鲜蔬菜多少千克?若设需要新鲜蔬菜x千克?则可得方程是什么?12、小芳从新华书店购回5本书,包括邮费总价为47.5元,其中邮费7.5元,若设书每本x元,则可得方程是什么?13、十一黄金周期间,汽车票价统一上浮25%,王老师从学校回家的票价为240元,若设王老师原来从学校到家的票价是x元。
第4章 一元一次方程——一元一次方程的定义和解法 讲义苏科版版数学七年级上册

A.3-x-1=0 B.6-x-1=0 C.6-x+1=0 D.6-x+1=2
题型二:解方程
例1、解下列方程
(1)-2x=-3x+8(2)56=3x+32-2x
(3) (4)4y﹣3(20﹣y)=6y﹣7(9﹣y)
(5) (6) x- =1
(7) (8)
(9) . (10) - = 1
注:①方程的解和解方程是不同的概念,方程的解是求得的结果,它是一个数值(或几个数值),而解方程是指求出方程的解的过程.
②方程的解的检验方法:把未知数的值分别代入方程的左、右两边计算它们的值,比较两边的值是否相等.
【例题精讲】
第一部分:从问题到方程
题型一:方程及一元一次方程的概念辨析
例1、已知 是关于x的一元一次方程,试求代数式 的值。
3. 移项法则
把等式一边的某项__________后移到另一边,叫做移项.
4. 去括号法则
(1)括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号_______.
(2)括号外的因数是负数,去括号后各项的符号与原ቤተ መጻሕፍቲ ባይዱ号内相应各项的符号_______.
5. 解方程的一般步骤
(1)去分母(方程两边同乘各分母的最小公倍数)
(2)方程3y= ,两边都除以3,得y=1( )
改正:________________________________________________。
2.下列解方程的过程中,移项错误的是( ).
A.方程2x+6=-3变形为2x=-3+6 B.方程2x-6=-3变形为2x=-3+6
C.方程3x=4-x变形为3x+x=4 D.方程4-x=3x变形为x+3x=4
2017-2018学年七年级数学上册第四章《一元一次方程》基础测试卷

第四章《一元一次方程》基础测试一、 判断正误(每小题3分,共15分):1.含有未知数的代数式是方程……………………………………………………………( )2.-1是方程x 2-5x -6=0的一个根,也可以说是这个方程的解……………………( )3.方程 | x |=5的解一定是方程 x -5=0的解…………………………………………( )4.任何一个有理数都是方程 3x -7=5x -(2x +7 ) 的解……………………………( )5.无论m 和n 是怎样的有理数,方程 m x +n =0 都是一元一次方程…………………( )二、 填空题:(每小题3分,共15分)1.方程x +2=3的解也是方程ax -3=5的解时,a = ;2.某地区人口数为m ,原统计患碘缺乏症的人占15%,最近发现又有a 人患此症,那么现在这个地区患此症的百分比是 ;3.方程|x -1|=1的解是 ;4.若3x -2 和 4-5x 互为相反数,则x = ;5.|2x -3y |+(y -2)2 =0 成立时,x 2+y 2 = .三、 解下列方程(每小题6分,共36分):1.12x -47510=; 2. 3-53175x =;3.2(0.3x +4)=5+5(0.2x -7); 4. 815612+=-x x ;5. x -12223x x -+=-; 6.7x -112(1)(1)223x x x ⎡⎤--=-⎢⎥⎣⎦.四、 解关于x 的方程(本题6分):b (a +x )-a =(2b +1)x +ab (a ≠0).五、 列方程解应用题(每小题10分,共20分):1.课外数学小组的女同学原来占全组人数的31,后来又有4个女同学加入,就占全组人数的21,问课外数学小组原来有多少个同学.2.A 、B 两地相距49千米,某人步行从A 地出发,分三段以不同的速度走完全程,共用10小时.已知第一段,第二段,第三段的速度分别是6千米/时,4千米/时,5千米/时,第三段路程为15千米,求第一段和第二段的路程.六、(本题8分):当x =4时,代数式 A =ax 2-4x -6a 的值是-1,那么当x =-5 时,A 的值是多少?第四章 《一元一次方程》基础测试及答案一 、判断正误(每小题3分,共15分):答案:1.×;2.√;3.×;4.√;5.×.二、 填空题(每小题3分,共15分):1. 8;解:方程x +2=3的解是 x =1,代入方程ax -3=5得关于a 的方程a -3=5,所以有 a =8;2.答案:%100%15⨯+ma m ; 提示:现在这个地区患此症的人数是15%m +a ,总人口仍为m .3.答案: x =2或x =0;提示:由绝对值的意义可得方程 x -1=1 或 x -1=-1.4.答案:1;提示:由相反数的意义可得方程(3x -2)+(4-5x )=0,解得x =1.5.答案:13.提示:由非负数的意义可得方程2x -3y =0 且 y -2=0 ,于是可得x =3,y =2.三、 解下列方程(每小题6分,共36分):1.12x -47510=; 2. 3-53175x =; 略解:去分母,得 5x -8=7, 略解:去分母,得 105-25x =56, 移项得 5x =15, 移项得 -25x =-49,把系数化为1,得x =3; 把系数化为1,得 x =2549;3.2(0.3x +4)=5+5(0.2x -7); 4. 815612+=-x x ; 略解:去括号,得 0.6x +8=5+ x -35, 略解:去分母,得 8x -4=15 x + 3, 移项,合并同类项,得-0.4x =-38, 移项,合并同类项,得-7x =7,把系数化为1,得x =95; 把系数化为1,得 x =-1;5. x -12223x x -+=-; 略解:去分母,得6x -3(x -1)=12-2(x +2)去括号,得 3x +3=8-2x ,移项,合并同类项,得 5x =5,把系数化为1,得x =1;6.7x -112(1)(1)223x x x ⎡⎤--=-⎢⎥⎣⎦. 略解:第一次去分母,得42x -)1(4)1(213-=⎥⎦⎤⎢⎣⎡--x x x 第一次去括号,得 42x -44)1(233-=-+x x x , 第二次去分母,得78x +3x -3=8x -8,移项,合并同类项,得 73x =-5,把系数化为1,得x =735-. 四、 解关于x 的方程(本题6分):b (a +x )-a =(2b +1)x +ab (a ≠0).解:适当去括号,得ab +bx -a =(2b +1)x +ab ,移项,得bx -(2b +1) x =a +ab -ab ,合并同类项,得(b -2b -1) x =a ,即 -(b +1) x =a ,当b ≠-1时,有b +1 ≠0,方程的解为x =1+-b a . 当b =-1 时,有b +1=0, 又因为 a ≠0, 所以方程无解.(想一想,若a =0,则如何?五、 列方程解应用题(每小题10分,共20分):1.课外数学小组的女同学原来占全组人数的31,后来又有4个女同学加入,就占全组人数的21,问课外数学小组原来有多少个同学.答案:12.提示:计算女同学的总人数,她们占全体人数的一半.设原来课外数学小组的人数为x ,方程为)4(21431+=+x x 解得 x =12.2.A 、B 两地相距49千米,某人步行从A 地出发,分三段以不同的速度走完全程,共用10小时.已知第一段,第二段,第三段的速度分别是6千米/时,4千米/时,5千米/时,第三段路程为15千米,求第一段和第二段的路程.答案:第一段路程长为18千米,第二段路程长为16千米.提示:思路一:三段路程之和为49千米,而路程等于时间与速度的乘积.可设第一段路程长为 x 千米,则第二段路程为(49-x -15)千米,用时间的相等关系列方程,得10515415496=+--+x x , 解得 x =18(千米);由此可知,第一段路程长为18千米,第二段路程长为16千米.思路二:又可设走第一段所用时间为t 小时,由于第三段所用时间为 3515=(小时), 则第二段所用时间为(10-3-t )小时,于是可用路程的相等关系列方程:6t +(10-t -515)×4+15=49, 解得 t =3,由此可知,第一段路程长为18千米,第二段路程长为16千米.六、 (本题8分):当x =4时,代数式 A =ax 2-4x -6a 的值是-1,那么当x =-5 时,A 的值是多少? 提示:关键在于利用一元一次方程求出a 的值.据题意,有关于a 的方程 16a -16-6a =-1,解得a =1.5;所以关于x 的代数为 A =1.5x 2-4x -9,于是,当x =-5时,有A =1.5×(-5)2-4×(-5)-9=37.5+20-9=48.5.。
苏科版七年级数学上册 4.1 等式与方程(第4章 一元一次方程 学习、上课课件)
思路点拨 解答此类问题时,先要观察等式变形后的左边与右边,
与等式变形前的左边与右边的差异,是同时增加(或减少) 还是同时扩大(或缩小),然后确定变形的依据,最后得出 结论.
感悟新知
知识点 3 方程
知3-讲
1. 未知数 在2x+1=x+5 ,a+b=12,2a+b=20,0.618x2=
1.6这些等式中,都是用字母表示要求的未知的量,这样的 字母叫作未知数.
感悟新知
知1-练
解题秘方:紧扣等量关系“剩余空白区域的面积=(1- 14)×长方形空地的面积”列出等式. 解:可列等式为(30-2x)(20-x)=(1-14)×20×30.
感悟新知
知1-练
思路总结 列等式的一般思路:
(1)要注意理清情境中的数量关系,列出相应的代数式; 如题(1)是行程问题,可以根据“速度×时间=路程”, 用代数式表示出甲、乙两人跑的路程;
个不为0的数.
感悟新知
知2-练
例 2 利用等式的基本性质,将下面的等式变形为x=c (c 为常数) 的形式, 正确的是( )
A. 由-13x=23y得x=2y B. 由3x-2=2x+2得x=4 C. 由2x-3=3x得x=3 D. 由ax=5a得x=5 解题秘方:紧扣等式的基本性质求解,涉及加减的用性质 1,涉及乘除的用性质2(注意:等式的两边都除以同一个 数的时候,这个数必须不为0).
第4章 一元一次方程
4.1 等式与方程
学习目标
1 课时讲解 等式
等式的性质 方程 方程的解与解方程
2 课时流程
逐点 导讲练Leabharlann 课堂 小结作业 提升
感悟新知
知识点 1 等式
知1-讲
概念 像2x=3y,S=xy,12a+3b=58这样,表示相等关系
第4章《一元一次方程》知识讲练(学生版)
2023-2024学年苏科版数学七年级上册章节知识讲练知识点01:一元一次方程的概念1.方程:叫做方程.2.一元一次方程:只含有(元),未知数的次数都是,这样的方程叫做一元一次方程.知识要点:判断是否为一元一次方程,应看是否满足:①只含有一个未知数的次数为;②未知数所在的式子是,即分母中不含未知数.3.方程的解:叫做这个方程的解.4.解方程:叫做解方程.知识点02:等式的性质与去括号法则1.等式的性质:等式的性质1:,结果仍相等.等式的性质2:,结果仍相等.2.合并法则:合并时,把系数 保持不变. 3.去括号法则:(1)括号外的因数是 ,去括号后各项的符号与原括号内相应各项的符号相同. (2)括号外的因数是 ,去括号后各项的符号与原括号内相应各项的符号相反.知识点03:一元一次方程的解法解一元一次方程的一般步骤:(1)去分母:在方程两边同乘以各分母的(2)去括号:依据 ,先去小括号,再去中括号,最后去大括号. (3)移项:把含有未知数的项移到方程一边, 移到方程另一边.(4)合并:逆用 ,分别合并含有未知数的项及常数项,把方程化为 (a ≠0)的形式.(5)系数化为1: 得到方程的解bx a=(a ≠0). (6)检验:把方程的解代入原方程,若 相等,则是方程的解;若方程左右两边的值不相等,则不是方程的解.知识点04:用一元一次方程解决实际问题的常见类型1.行程问题:路程= ×时间2.和差倍分问题:增长量=原有量×3.利润问题:商品利润=商品售价-4.工程问题:工作量=工作效率× ,各部分劳动量之和=5.银行存贷款问题:本息和=本金+利息,利息=本金× ×6.数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+.一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2022秋•惠山区校级期末)关于x 的方程kx =2x +6与2x ﹣1=5的解相同,则k 的值为( ) A .4B .3C .5D .62.(2分)(2022秋•高新区期末)已知等式3a =2b +5,则下列等式中不一定成立的是( ) A .3a ﹣5=2bB .3a +1=2b +6C .D .3ac =2bc +53.(2分)(2022秋•玄武区校级期末)小明到某文具店购买铅笔和中性笔.设购买铅笔的金额为x元,根据表格,下列方程错误的是()商品单价(元/支)购买数量/支购买金额/元铅笔x中性笔总计/ 13 34 A.+=13 B.x+3.5(13﹣)=34C.1.2(13﹣)=x D.3.5(13﹣)=34﹣x4.(2分)(2022秋•江都区期末)某学校组织师生去中小学素质教育实践基地研学.已知此次共有n名师生乘坐m辆客车前往目的地,若每辆客车坐40人,则还有15人没有上车;若每辆客车坐45人,则刚好空出一辆客车.以下四个方程:①40m+15=45(m﹣1);②40m﹣15=45(m﹣1);③=﹣1;④+1.其中正确的是()A.①④B.①③C.②③D.②④5.(2分)(2022秋•连云港期末)明代的数学著作《算法统宗》中有这样一个问题“隔墙听得客分银,不知人数不知银,七两分之少四两,五两分之多半斤.”其大意为:有一群人分银子,如果每人分七两,则还差四两,如果每人分五两,则还多半斤(注:明代1斤=16两,故有“半斤八两”这个成语).设共有x 两银子,则可列方程为()A.7x﹣4=5x+8 B.C.7x+4=5x﹣8 D.6.(2分)(2022秋•惠山区校级期末)元旦期间,甲、乙两家水果店对刚到货的橙子搞促销,甲水果店连续两次降价,第一次降价10%,第二次降价20%,乙水果店一次性降价30%,小丽想要购买这种橙子,她应选择()A.甲水果店B.乙水果店C.甲、乙水果店的价格相同D.不确定7.(2分)(2022秋•南通期末)“曹冲称象”是流传很广的故事,如图.按照他的方法:先将象牵到大船上,并在船侧面标记水位,再将象牵出.然后往船上抬入20块等重的条形石,并在船上留3个搬运工,这时水位恰好到达标记位置,如果再抬入1块同样的条形石,船上只留1个搬运工,水位也恰好到达标记位置.已知搬运工体重均为120斤,设每块条形石的重量是x斤,则正确的是()A.依题意3×120=x﹣120B.依题意20x+3×120=(20+1)x+120C.该象的重量是5040斤D.每块条形石的重量是260斤8.(2分)(2022秋•泗洪县期末)《算学启蒙》中有一道题,原文是:良马日行二百四十里,驽马日行一百二十里.驽马先行一十二日,问良马几何追及之?译文为:跑得快的马每天走240里,跑的慢的马每天走120里.慢马先走12天,快马几天可以追上慢马?设快马x天可以追上慢马,可列方程()A.240(x+12)=120x B.240(x﹣12)=120xC.240x=120(x+12)D.240x=120(x﹣12)9.(2分)(2022秋•工业园区校级月考)如图,已知A,B两点在数轴上,点A表示的数为﹣10,OB=2OA,点M以每秒1个单位长度的速度从点A向右运动,点N以每秒3个单位长度的速度从点B向左运动(点M、点N同时出发),经过几秒,点M、点N分别到原点O的距离相等()A.5秒B.5秒或者4秒C.5秒或者秒D.秒10.(2分)(2022秋•江都区月考)观察月历,用形如的框架框住月历表中的五个数,对于框架框住的五个数字之和,小明的计算结果有45,55,60,75,小华说有结果是错误的.通过计算,可知小明的计算结果中错误的是()A.45 B.55 C.60 D.75二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2022秋•亭湖区期末)若(2﹣a)x|a﹣1|﹣5=0是关于x的一元一次方程,则a=.12.(2分)(2022秋•泗阳县期末)如图,在数轴上,A、B两点同时从原点O出发,分别以每秒2个单位和4个单位的速度向右运动,运动的时间为t,若线段AB上(含线段端点)恰好有4个整数点,则时间t 的最小值是.13.(2分)(2022秋•海门市期末)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,余三.问人数羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,多余3钱.问人数、羊价各是多少?根据题意,可求得合伙买羊的是人.14.(2分)(2022秋•鼓楼区校级期末)防范新冠病毒感染要养成戴口罩、勤洗手、多通风、常消毒等卫生习惯,其中对物体表面进行消毒可以采用浓度为75%的酒精.现有一瓶浓度为95%的酒精500mL,需将其加入适量的水,使浓度稀释为75%.设加水量为xmL,可列方程为.15.(2分)(2022秋•江都区期末)一项工程甲单独做要20小时,乙单独做要12小时,现先由甲单独做5小时,然后乙加入进来合作.完成整个工程一共需要小时.16.(2分)(2022秋•江阴市期末)某种商品降价10%后的价格恰好比原价的一半多40元,该商品的原价是元.17.(2分)(2022秋•姑苏区校级期末)如图,在数轴上,O为原点,点A对应的数为2,点B对应的数为﹣12.在数轴上有两动点C和D,它们同时向右运动,点C从点A出发,速度为每秒4个单位长度,点D从点B出发,速度为每秒6个单位长度,设运动时间为t秒,当点O,C,D中,其中一点正好位于另外两点所确定线段的中点时,t的值为.18.(2分)(2022秋•大丰区期末)京张高铁是2022年北京冬奥会的重要交通基础设施,考虑到不同路段的特殊情况,将根据不同的运行区间设置不同的时速.其中,北京北站到清河段全长11千米,分为地下清华园隧道和地上区间两部分,运行速度分别设计为80千米/小时和120千米/小时,按此运行速度,地下隧道运行时间比地上大约多3分钟,求清华园隧道全长为多少千米.设清华园隧道全长为x千米,依题意,可列方程为.19.(2分)(2022秋•句容市校级期末)如图,正方形的边长为6,已知正方形覆盖了三角形面积的,而三角形覆盖了正方形面积的一半,那么三角形的面积是.20.(2分)(2021秋•射阳县校级期末)如图,在长方形ABCD中,AB=6cm,BC=8cm,点E是AB上的一点,且AE=2BE.点P从点C出发,以2cm/s的速度沿点C﹣D﹣A﹣E匀速运动,最终到达点E.设点P运动时间为ts,若三角形PCE的面积为18cm2,则t的值为.三.解答题(共8小题,满分60分)21.(6分)(2022秋•仪征市期末)解方程:(1)5(x﹣1)+3=3x﹣3;(2)+=1.、22.(6分)(2022秋•仪征市期末)某小组计划做一批“中国结”如果每人做5个,那么比计划多了9个;如果每人做4个,那么比计划少了15个.该小组共有多少人?计划做多少个“中国结”?小明和小红在认真思考后,根据题意分别列出了以下两个不同的方程:①5x﹣9=4x+15②=(1)①中的x表示;②中的y表示.(2)请选择其中一种方法,写出完整的解答过程.23.(8分)(2022秋•丹徒区期末)某商场用2730元购进甲、乙两种商品共60件,这两种商品的进价、标价如表所示:价格\类型甲乙进价(元/件)35 65标价(元/件)50 100(1)这两种商品各购进多少件?(2)若甲种商品按标价的9折出售,乙种商品按标价的8.5折出售,且在运输过程中有2件甲种、1件乙种商品不慎损坏,不能进行销售,请问这批商品全部售出后,该商场共获利多少元?24.(8分)(2022秋•惠山区校级期末)运动场环形跑道周长为300米,爷爷一直都在跑道上按逆时针方向匀速跑步,速度为3米/秒,与此同时小红在爷爷后面100米的地方也沿该环形跑道按逆时针方向运动,速度为a米/秒.(1)若a=1,求两人第一次相遇所用的时间;(2)若两人第一次相遇所用的时间为80秒,试求a的值.25.(8分)(2022秋•丹徒区期末)已知关于m的方程的解也是关于x的方程2(x﹣8)﹣n=6的解.(1)求m、n的值;(2)如图,数轴上,O为原点,点M对应的数为m,点N对应的数为n.①若点P为线段ON的中点,点Q为线段OM的中点,求线段PQ的长度;②若点P从点N出发以1个单位/秒的速度沿数轴正方向运动,点Q从点M出发以2个单位/秒的速度沿数轴负方向运动,经过秒,P、Q两点相距3个单位.26.(8分)(2022秋•玄武区校级期末)某市采用分段收费的方式按月计算每户家庭的水费,收费标准如表:户月用水量(m3)收费标准(元/m3)不超过18m3超过18m3,但不超过25m3的部分 5超过25m3的部分7(1)小明家3月份用水量为20m3,应缴纳水费元;(2)设某户某月的用水量为xm3,应缴纳水费多少元?(用含x的代数式表示)(3)小红家6月份和7月份的用水量共50m3,且7月份用水量比6月份多,这两个月共缴纳水费217元,则小红家6月份和7月份的用水量分别为m3,m3.27.(8分)(2022秋•太仓市期末)如图1,将一副三角板摆放在直线MN上,在三角板OAB和三角板OCD中,∠OAB=∠OCD=90°,∠AOB=45°,∠COD=30°.(1)保持三角板OCD不动,当三角板OAB旋转至图2位置时,∠BOD与∠AON有怎样的数量关系?请说明理由.(2)如图3,若三角板OAB开始绕点O以每秒6度的速度逆时针旋转的同时、三角板OCD也绕点O以每秒3度的速度逆时针旋转,当OB旋转至射线OM上时,两块三角板同时停止转动.设旋转时间为t秒,则在此过程中,是否存在t,使得∠BOD+∠AON=60°?若存在,求出t的值;若不存在,请说明理由.28.(8分)(2022秋•广陵区校级期末)数轴是初中数学的一个重要工具,利用数轴可以将数与形进行完美地结合.研究数轴我们发现了很多重要的规律,例如;数轴上点M、点N表示的数分别为m、n,则M、N 两点之间的距离MN=|m﹣n|,线段MN的中点表示的数为.如图,数轴上点M表示的数为﹣1,点N 表示的数为3.(1)直接写出:线段MN的长度是,线段MN的中点表示的数为;(2)x表示数轴上任意一个有理数,利用数轴探究下列问题,直接回答:|x+1|+|x﹣3|有最小值是,|x+1|﹣|x﹣3|有最大值是;(3)点S在数轴上对应的数为x,且x是方程2x﹣1=x+4的解,动点P在数轴上运动,若存在某个位置,使得PM+PN=PS,则称点P是关于点M、N、S的“麓山幸运点”,请问在数轴上是否存在“麓山幸运点”?若存在,则求出所有“麓山幸运点”对应的数;若不存在,则说明理由.。
第四章一元一次方程知识点总结苏科版七年级数学上册
一元一次方程知识点总结1.等式:用“=”号连接而成的式子叫等式.2.等式的性质:等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式; 等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.3.方程:含未知数的等式叫方程.4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就直接代入”!5.解方程:求方程解的过程叫做解方程.6.一元一次方程:只含有一个未知数,并且未知数的次数是方程,叫做一元一次方程.7.一元一次方程的标准形式: ax+b=0(x 是未知数,a 、b 是已知数,且a ≠0). 方程的解的讨论:(1)当0a ≠时,方程有唯一解b x a=; (2)当0,0a b =≠时,方程无解;(3)当0,0a b ==时,方程有无数个解。
8.一元一次方程解法的一般步骤:一元一次方程应用题:常用到的两个方法:(1)读题分析法:多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法: 多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.解一元一次方程应用题的步骤分析:(1)审:仔细读题,理解题意,找到它们之间的关系,重点部分进行标注(可以画横线,画圈等)(2)设;设未知数,一般题目问什么就设什么,部分题目可以间接设,还有一些技巧:设比和是后面的为x,设小不设大,还有设而不求等(3)列:列方程,列方程几种思路;根据题意来列方程,例如行程问题中的线段图;“比”和“是”是“=”意思,可以帮助我们列等式;总结的一些常用公式,下面重点讲解,要背(4)解:解方程不要跳步骤容易出错,算出有问题的答案要去算一遍必要时质疑列的方程是否是正确的(5)检验:检验算出的答案是否符合题意,注意题目的单位是否统一(6)答:有始有终10.一元一次方程常用公式总结:知识点1:行程问题(1)基本量之间的关系:路程=速度×时间时间=路程÷速度速度=路程÷时间(2)相遇问题甲走的路程+乙走的路程=总路程相遇路程=速度和×相遇时间(3)追及问题追击路程=速度差×追击时间同地不同时出发:前者走的路程=追着走的路程同时不同地出发:前者走的路程+两者之间的距离=追着走的路程(4)航行问题顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度顺水速度逆水速度=2×水速(5)环形跑道问题从同一地出发,反向而行,相遇一次,两者路程之和等于一圈路程从同一地出发,同向而行,相遇一次,速度快的路程速度慢的路程=一圈路程知识点2:工程问题工作量=工作效率×工作时间工作效率=工作量÷工作时间工作时间=工作量÷工作效率完成某项任务的各工作量的和=总工作量=1(单位1)知识点3:分配问题这里的分配问题包括:和差倍分问题、配套问题、劳力调配问题、分配问题(1)和、差、倍、分问题(生产、做工等各类问题)比例分配问题的一般思路为:设其中一份为x,利用已知的比,写出相应的代数式。
苏科版初中数学上册第四章《一元一次方程》PPT课件
D. 5
2.设某数为x,根据下列条件列方程.
(1)某数的65%与-2的差等于它的一半. (2)某数的 1与5的差等于它的相反数.
2
我国古代问题:以绳三折测之,绳多四尺;若将 绳四折测之,绳多一尺.绳长、井深各几何?
意思是:用绳子量井深,把绳三折来量,井外余 绳四尺;把绳四折来量,井外余绳一尺.绳长、井深 各几尺?
5. 小赵为班级购买笔记本,向生活委员小程 交帐说:“一共买了36本,有两种规格,单 价分别为1.80元和2.60元,去时我领了100 元,现在找回了27.60元”小程说“你肯定 算错了。”小赵一想,发现的确不对,因为 他把自己口袋里原来的2元钱也算在了里面, 请你算一算两中笔记本各买了多少?想一想 有没有可能找回27.60元,试解释。
价值和是452元,且随身听的单价比书包单价的 4倍少8元。 (1)求该同学看中的随身听和书包单价各是多 少元?
7、某同学在A、B两家超市发现他看中的随身听的 单价相同,书包单价也相同,随身听和书包单价值 和是452元,且随身听的单价比书包单价的4倍少8 元。
(2)某一天该同学上街,恰好赶上商家促销,超 市A所有商品八折销售,超市B全场购物券满100元 返还购物券30元销售(不足100元不返还券,购物 券全场通用),但他只带了400元钱,如果他只在 一家购买看中的这两样商品,你能说明他可以选择 哪一家购买?若两家都可以,在哪一家购买更省钱?
例2 一艘船从甲码头到乙码头顺流行驶用了2小时,从乙码 头返回甲码头逆流行驶,用了2.5小时,已知水流的速度为3千 米/小时,求船在静水中的速度?
例3 列方程解决下列问题: (1)一列火车进入长300m的隧道,从进入隧道到完全离开 需20s,火车完全在隧道的时间是10s,求火车长. (2)甲、乙两列火车的长为144m和180m,甲车比乙车每秒 多行4m.两列火车相向而行,从相遇到全部错开需9s,问两 车的速度各是多少?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次方程假期复习
一、选择题: 1、下列各方程中,属于一元一次方程的是( )
A. x2+3x-5=0
B.2x=3y
C. 1x
+2=0 D.3x=4 2、下列各题中正确的是( )
A .由347-=x x 移项得347=-x x
B .由2313
12-+=-x x 去分母得)3(31)12(2-+=-x x C .由1)3(3)12(2=---x x 去括号得19324=---x x
D .由7)1(2+=+x x 移项、合并同类项得x=5
3、某物品标价为132元,若以9折出售,仍可获利10%,则该物品的进价是( )
A.105元
B. 106元
C. 108元
D. 118元
4、若方程x ax 35+=的解为x=5,则a 等于( )
A .80
B .4
C .16
D .2
5、数学竞赛共有10道题,每答对一道题得5分,不答或答错一道题倒扣3分,要得到34分必须答对的天数是( ) A .6 B .7 C .8 D .9
6、方程2-2x 4x 7
3
12--=-去分母得___。
A 、2-2(2x -4)=-(x -7) B 、12-2(2x -4)=-x -7
C 、24-4(2x -4)=-(x -7)
D 、12-4x +4=-x +7
7、一批宿舍,若每间住1人,则有10人无法安排;若每间住3人,则有10间无人住。
这批宿舍的间数为____。
A 、20 B 、15 C 、10 D 、12
8、某商品的进价是110元,售价是132元,则此商品的利润率是____。
A 、15%
B 、20%
C 、25%
D 、10%
9、甲比乙大15岁,5年前甲的年龄是乙的两倍,乙现在的年龄是___。
A 、10岁
B 、15岁
C 、20岁
D 、30岁
10、一张试卷只有25道选择题,做对一题得4分,做错1题倒扣1分,某学生做了全部试题共得70分,他做对了___道题。
A 、17 B 、18 C 、19 D 、20
二、填空题
1.在①21x -;②213x x +=;③π3π3-=-;④13t +=中,等式有_______,方程有_______.(填入式子的序号)
2.如果33-=-b a ,那么a = ,其根据是 .
3.方程434x x =-的解是x =_______.
4.当x = 时,代数式
354-x 的值是1-. 5.已知等式0352=++m x 是关于x 的一元一次方程,则m =____________.
6.当x = 时,代数式2+x 与代数式
28x -的值相等. 7.根据“x 的2倍与5的和比x 的
12小10”,可列方程为____ ___. 8.当x =1时,代数式432--x mx 的值为0,则m 的值为__________
9.若()022
=-+-y y x ,则x+y=___________ 10.利民商店将某种服装按成本价提高40%后标价,又以八折(即按标价的80%)优惠卖出,结果每件仍获利15元,这种服装每件的成本价是多少元?
分析:如果每件服装的成本价为x 元,那么每件服装的标价为______元,八折后每件服装的售价为______元,用x 的代数式表示每件服装的利润为______元。
由此列出方程为________________,因此每件服装的成本价为______元。
三、解答题
1.解下列方程
(1)76163x x +=-; (2))5(4)3(2+-=-x x (3)
138547=+--x x
2.老师在黑板上出了一道解方程的题4
21312+-=-x x ,小明马上举手,要求到黑板上做,他是这样做的: )2(31)12(4+-=-x x ……………… …①
63148--=-x x …………………… …②
46138+-=+x x …………………… …③
111-=x ………………………………… ④
11
1-=x ………………………………… ⑤ 老师说:小明解一元一次方程的一般步骤都知道却没有掌握好,因此解题时有一步出现了错误,请你指出他错在_________(填编号);然后,你自己细心地解下面的方程:
(1)
131612=-++x x (2)6751412-=--y y
3.如果方程21x a x +=-的解是4x =-,求32a -的值.
4..已知等式2(2)10a x ax -++=是关于x 的一元一次方程(即x 未知),求这个方程的解.
5. 初一学生王马虎同学在做作业时,不慎将墨水瓶打翻,使一道作业只能看到:甲、乙两地相距160千米,摩托车的速度为45千米/时,运货汽车的速度为35千米/时,_________________________________?请你将这道作业题补充完整并列出方程解答.
6. 一家商店将某种商品按成本价提高40%后标价,元旦期间,欲打八折销售,以答谢新老顾客对本商厦的光顾,售价为224元,这件商品的成本价是多少元?。