直线和圆的方程综合测试题

合集下载

(完整版)直线与圆的方程测试题(含答案)

(完整版)直线与圆的方程测试题(含答案)

直线与圆的方程测试题(本试卷满分150分,考试时间120分钟)一、单项选择题(本大题共18小题,每小题4分,共72分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出,错选、多选或未选均无分.1.点M 1(2,-5)与M 2(5,y)之间的距离是5,则y=( )A.-9B.-1C.-9或-1D. 122. 数轴上点A 的坐标是2,点M 的坐标是-3,则|AM|=( )A.5B. -5C. 1D. -13. 直线的倾斜角是,则斜率是( )32πA. B. C. D.3-3333-34. 以下说法正确的是( )A.任意一条直线都有倾斜角B. 任意一条直线都有斜率C.直线倾斜角的范围是(0,)D. 直线倾斜角的范围是(0,)2ππ5. 经过点(4, -3),斜率为-2的直线方程是( )A. 2x+y+2=0B.2x-y-5=0C. 2x+y+5=0D. 2x+y-5=06. 过点(2,0)且与y 轴平行的直线方程是( )A.x=0B.y=0C.x=2D.y=27. 直线在y 轴上的截距是-2,倾斜角为0°,则直线方程是()A.x+2=0B.x-2=0C.y+2=0D.y-2=08. “B ≠0”是方程“Ax+By+C=0表示直线”的( )A.充分非必要条件B.必要非充分条件C.充分且必要条件D.非充分非必要条件9. 直线3x-y+=0与直线6x-2y+1=0之间的位置关系是( )21A.平行B.重合C.相交不垂直D.相交且垂直10.下列命题错误的是( )A. 斜率互为负倒数的两条直线一定互相垂直B. 互相垂直的两条直线的斜率一定互为负倒数C. 两条平行直线的倾斜角相等D. 倾斜角相等的两条直线平行或重合11. 过点(3,-4)且平行于直线2x+y-5=0的直线方程是( )A. 2x+y+2=0B. 2x-y-2=0C. 2x-y+2=0D.2x+y-2=012. 直线ax+y-3=0与直线y=x-1垂直,则a=( )21A.2B.-2C.D. 2121-13. 直线x=2与直线x-y+2=0的夹角是( )A.30°B. 45°C. 60°D. 90°14. 点P (2,-1)到直线l :4x-3y+4=0的距离是()A.1 B. C. D.35115315. 圆心在( -1,0),半径为5的圆的方程是()A.(x+1)2+y 2= B. (x+1)2+y 2=255C. (x-1)2+y 2= D. (x-1)2+y 2=25516. 直线3x+4y+6=0与圆(x-2)2+(y+3)2=1的位置关系是( )A.相交不过圆心B.相交且过圆心C.相切D.相离17. 方程x 2+y 2-2kx+4y+3k+8=0表示圆,则k 的取值范围是( )A.k<-1或k>4B. k=-1或k=4C. -1<k<4D. -1≤k≤418. 直线y=0与圆C:x 2+y 2-2x-4y=0相交于A 、B 两点,则△ABC 的面积是()A.4B.3C.2D.1二、填空题(本大题共5小题,每小题4分,共20分)请在每小题的空格中填上正确答案。

中职教育数学《直线与圆的方程》测试卷

中职教育数学《直线与圆的方程》测试卷

直线与圆的方程检测一.选择题:(每小题5分,共50分)1.若直线L 经过原点和点(-3,2),则L 的斜率是( ) A.1 B.32 C.-32 D.-232.直线083=-+y x 的倾斜角是( )A.6πB. 3πC. 32πD. 65π3.已知直线L :2x-3y+1=0和点P(1,1),Q(0,1),则有( ) A.点P,Q 都在直线L 上 B.点P 在直线L 上,Q 不在直线L 上C.点P 不在直线L 上,点Q 在直线L 上D.点P,Q 都不在直线L 上 4.经过点(0,-7),与直线6x+5y+1=0垂直的直线方程为( ) A.5x-6y-42=0 B.5x+6y-42=0 C.5x-6y+42=0 D.5x+6y+42=0 5.下列各组中两个方程表示两条直线,其中互相平行的组数有 ( ) ①y=31x ,y=3x ; ②6x-2y+1=0,y=3x;③2x-3y=0,4x-6y+1=0; ④2x=1,2y=-1 A.1 B.2 C.3 D.46.圆222460x y x y ++--=的圆心和半径分别是( )A.(1,-(1,(1,--(1,-7.直线3x-4y-2=0与圆(x-2)2+y 2=1的位置关系是 ( ) A.相交不过圆心 B.相交且过圆心 C.相切 D.相离 8.下列方程中圆心在点(2,3)P -,并且与y 轴相切的圆是 ( )A.22(2)(3)4x y -++= B.22(2)(3)4x y ++-= C.22(2)(3)9x y -++= D.22(2)(3)9x y ++-=9.0422>-+F E D 是方程022=++++F Ey Dx y x 表示圆的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 10.圆2223x y x +-=与直线1y ax =+的交点的个数是( )A .0个B .1个C .2个D .随a 值变化而变化二.填空题(每小题5分,共25分)11.若直线x+ay-a=0与直线ax-(2a-3)y-1=0垂直,则a 的值为12.过点)5,2(-,且与圆012222=+-++y x y x 相切的直线方程为13.圆心在(-1,1),且过点(3,0)的圆的方程14.圆心直线2x-y+1=0上且与两坐标轴都相切的圆的方程是 15.若方程k k y x y x 82224222-=+-+表示一个圆,则实数k 的取值范围是三.解答题(本大题共6小题,共75分)16.(12分)已知△ABC 的三个顶点A(4,-6),B(-4,0),C(-1,4),求:(1)AC 边上的高BD 所在直线的方程;(2)BC 的垂直平分线EF 所在直线的方程;(3)AB 边的中线的方程.17.(12分)求过圆的05622=+++y y x 的圆心且与直线2x+4y-1=0垂直的直线方程。

第二章 直线和圆的方程 专题测试(原卷版+解析版) (人教A版)高二数学选择性必修一

第二章 直线和圆的方程 专题测试(原卷版+解析版) (人教A版)高二数学选择性必修一

第二章直线和圆的方程专题测试(原卷版+解析版) (人教A版)高二数学选择性必修一第二章直线和圆的方程专题测试注意事项:1.答题前填写好自己的姓名、班级、考号等信息。

2.请将答案正确填写在答题卡上。

第I卷(选择题)一、单选题(每题只有一个选项为正确答案,每题5分,共40分)1.(2020·福建高二学业考试)已知直线 $ $l_1\parallell_2$,则实数 $k=$()。

A。

$-2$B。

$-1$C。

$1$D。

$2$2.(2020·XXX高一月考)直线$l_1:(a-2)x+(a+1)y+4=0$,$l_2:(a+1)x+ay-9=0$ 互相垂直,则 $a$ 的值是()。

A。

$-0.25$B。

$1$C。

$-1$D。

$1$ 或 $-1$3.(2020·XXX高一月考)直线 $l:(m-1)x-my-2m+3=0$($m\in R$)过定点 $A$,则点 $A$ 的坐标为()。

A。

$(-3,1)$B。

$(3,1)$C。

$(3,-1)$D。

$(-3,-1)$4.(2020·广东高二期末)设 $a\in R$,则“$a=1$”是“直线$ax+y-1=0$ 与直线 $x+ay+1=0$ 平行”的()。

A。

充分不必要条件B。

必要不充分条件C。

充分必要条件D。

既不充分也不必要条件5.(2020·黑龙江高一期末)若曲线 $y=4-x^2$ 与直线$y=k(x-2)+4$ 有两个交点,则实数 $k$ 的取值范围是()。

A。

$\left[\frac{3}{4},1\right]$B。

$\left[\frac{3}{4},+\infty\right)$C。

$(1,+\infty)$D。

$(1,3]$6.(2020·XXX高三其他)已知直线 $x+y=t$ 与圆$x+y=2t-t^2$($t\in R$)有公共点,则 $\frac{t(4-t)}{9}$ 的最大值为()。

圆与直线的方程单元测试题含答案

圆与直线的方程单元测试题含答案

圆与直线的方程单元测试题含答案本文档为一个圆与直线的方程单元测试题,共包含多道题目及其答案。

问题 1给定圆 $C: (x-2)^2 + (y-3)^2 = 9$ 和直线 $L: 2x+y=6$,判断直线 $L$ 是否与圆 $C$ 相交。

答案:直线 $L$ 与圆 $C$ 交于两个点。

问题 2给定圆 $C: (x-1)^2 + (y+2)^2 = 16$ 和直线 $L: 3x+y=2$,求直线 $L$ 与圆 $C$ 的交点坐标。

答案:直线 $L$ 与圆 $C$ 的交点坐标为 $(\frac{10}{13}, -\frac{24}{13})$ 和 $(\frac{29}{13}, -\frac{6}{13})$。

问题 3给定圆 $C: (x+2)^2 + (y-1)^2 = 25$ 和直线 $L: x+y=0$,判断直线 $L$ 是否与圆 $C$ 相切。

答案:直线 $L$ 与圆 $C$ 相切。

问题 4给定圆 $C: (x-3)^2 + (y+4)^2 = 36$ 和直线 $L: 2x-y=10$,求直线 $L$ 与圆 $C$ 的交点坐标。

答案:直线 $L$ 与圆 $C$ 的交点坐标为 $(\frac{32}{5},\frac{14}{5})$ 和 $(\frac{2}{5}, -\frac{6}{5})$。

问题 5给定圆 $C: (x+1)^2 + (y-2)^2 = 25$ 和直线 $L: x-y=0$,判断直线 $L$ 是否与圆 $C$ 相离。

答案:直线 $L$ 与圆 $C$ 相离。

问题 6给定圆 $C: (x+5)^2 + (y+3)^2 = 36$ 和直线 $L: x+2y=5$,求直线 $L$ 与圆 $C$ 的交点坐标。

答案:直线 $L$ 与圆 $C$ 的交点坐标为 $(-1, 3)$。

以上为圆与直线的方程单元测试题及其答案。

注:答案均采用四舍五入取整的方式。

直线与圆的方程测试题(含答案)

直线与圆的方程测试题(含答案)

直线与圆的方程测试题(本试卷满分150分,考试时间120分钟)一、单项选择题(本大题共18小题,每小题4分,共72分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出,错选、多选或未选均无分.1.点M 1(2,-5)与M 2(5,y)之间的距离是5,则y=( )A.-9B.-1C.-9或-1D. 122. 数轴上点A 的坐标是2,点M 的坐标是-3,则|AM|=( )A.5B. -5C. 1D. -13. 直线的倾斜角是32π,则斜率是( ) A.3-3B.33C.3-D.34. 以下说法正确的是( )A.任意一条直线都有倾斜角B. 任意一条直线都有斜率C.直线倾斜角的范围是(0,2π) D. 直线倾斜角的范围是(0,π)5. 经过点(4, -3),斜率为-2的直线方程是( )A. 2x+y+2=0B.2x-y-5=0C. 2x+y+5=0D. 2x+y-5=06. 过点(2,0)且与y 轴平行的直线方程是( )A.x=0B.y=0C.x=2D.y=27. 直线在y 轴上的截距是-2,倾斜角为0°,则直线方程是() A.x+2=0 B.x-2=0 C.y+2=0 D.y-2=08. “B ≠0”是方程“Ax+By+C=0表示直线”的( )A.充分非必要条件B.必要非充分条件C.充分且必要条件D.非充分非必要条件9. 直线3x-y+21=0与直线6x-2y+1=0之间的位置关系是( )A.平行B.重合C.相交不垂直D.相交且垂直10.下列命题错误..的是( )A. 斜率互为负倒数的两条直线一定互相垂直B. 互相垂直的两条直线的斜率一定互为负倒数C. 两条平行直线的倾斜角相等D. 倾斜角相等的两条直线平行或重合11. 过点(3,-4)且平行于直线2x+y-5=0的直线方程是( )A. 2x+y+2=0B. 2x-y-2=0C. 2x-y+2=0D.2x+y-2=012. 直线ax+y-3=0与直线y=21x-1垂直,则a=( )A.2B.-2C. 21D. 21-13. 直线x=2与直线x-y+2=0的夹角是( )A.30°B. 45°C. 60°D. 90°14. 点P (2,-1)到直线l :4x-3y+4=0的距离是( )A.1B.511 C.53 D.3 15. 圆心在( -1,0),半径为5的圆的方程是( )A.(x+1)2+y 2=5B. (x+1)2+y 2=25C. (x-1)2+y 2=5D. (x-1)2+y 2=2516. 直线3x+4y+6=0与圆(x-2)2+(y+3)2=1的位置关系是( )A.相交不过圆心B.相交且过圆心C.相切D.相离17. 方程x 2+y 2-2kx+4y+3k+8=0表示圆,则k 的取值范围是( )A.k<-1或k>4B. k=-1或k=4C. -1<k<4D. -1≤k ≤418. 直线y=0与圆C:x 2+y 2-2x-4y=0相交于A 、B 两点,则△ABC 的面积是( )A.4B.3C.2D.1二、填空题(本大题共5小题,每小题4分,共20分)请在每小题的空格中填上正确答案。

第二章 直线和圆的方程 专题测试(解析版) (人教A版)高二数学选择性必修一

第二章 直线和圆的方程 专题测试(解析版) (人教A版)高二数学选择性必修一

第二章 直线和圆的方程专题测试注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(每题只有一个选项为正确答案,每题5分,共40分)1.(2020·福建高二学业考试)已知直线1l :2y x =-,2l :y kx =,若12//l l ,则实数k =( ) A .-2 B .-1C .0D .1【答案】D【解析】已知直线1l :2y x =-,2l :y kx =,因为12//l l ,所以1k =故选:D2.(2020·洮南市第一中学高一月考)直线()()1:2140l a x a y -+++=与()2:190l a x ay ++-=互相垂直,则a 的值是( ). A .-0.25 B .1C .-1D .1或-1【答案】D【解析】当10a +=时,1a =-,此时14:3l x =,2:9l y =-,显然两直线垂直, 当0a =时,此时1:240l x y -++=,2:9l x =,显然两直线不垂直, 当10a +≠且0a ≠时,因为12l l ⊥,所以()()()2110a a a a -+++=,解得:1a =,综上可知:1a =或1-.故选D.3.(2020·江苏省海头高级中学高一月考)直线:l (1)230m x my m ---+=(m R ∈)过定点A ,则点A 的坐标为( ) A .(3,1)- B .(3,1)C .(3,1)-D .(3,1)--【答案】B【解析】根据直线(1)230m x my m ---+=得()230m x y x ---+=, 故直线过定点为直线20x y --=和30x -+=的交点,联立方程得2030x y x --=⎧⎨-+=⎩,解得31x y =⎧⎨=⎩ ,所以定点A 的坐标为()3,1A .故选:B. 4.(2020·广东高二期末)设a R ∈,则“a =1”是“直线ax+y -1=0与直线x+ay+1=0平行”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件,【答案】C【解析】若直线ax+y -1=0与直线x+ay+1=0平行,则21a =,且11a-≠解得1a =故选C 5.(2020·黑龙江高一期末)若曲线y与直线y =k (x ﹣2)+4有两个交点,则实数k 的取值范围是( ) A .3,14⎛⎤⎥⎝⎦B .3,4⎛⎫+∞⎪⎝⎭C .(1,+∞)D .(1,3]【答案】A【解析】作出曲线y的图像,直线y =k (x ﹣2)+4恒过定点()2,4,当直线与曲线相切时,原点到直线240kx y k --+=的距离等于22=,解得34k =,由图可知, ()3401422k -<≤=--,故选:A 6.(2020·浙江柯城。

直线与圆的方程测试题

直线与圆的方程测试题

一、选择题(每题4分)1 .点A(4,0)关于直线5x+4y+21=0的对称点是( )A.(-6,8)B.(-8,-6)C.(6,8)D.(-6,-8)2 .经过点(2,1)的直线/到A(1,1)、B(3,5)两点的距离相等,那么直线/的方程为( )A.2x-y-3=OB.x=2C.2x-y-3=O或x=2D.都不对3 .圆心在y轴上,半径为1,且过点(1,2)的圆的方程是()A.x2+(y-2)2-lB./+(),+2)2=1C.(x-l)2÷(y-3)2=l D,x2÷(γ-3)2=l4,假设直线x+y+印=0与圆*+/=勿相切,那么卬为( ).A.0或2B.2C,√2D.无解5 .圆⅛-l)2+3+2)2=20在X轴上截得的弦长是().A.8B.6C.6V∑D.4V36 .两个圆G:%2+y+2Λ,+2y—2=0与G:x2+y—4x—2y+l=0的位置关系为( ).A.内切B.相交C,外切 D.相离x≤27 .假设x、y满足约束条件y≤2,那么z=x+2y的取值范围是〔)x+y≥2A、[2,6]B、[2,5]C、[3,6]D、(3,5]2x+y-6≥08,.不等式组卜+y-3≤0表示的平面区域的面积为()j≤2A、4B、1C、5D、无穷大9.圆元2+y2-ar+2=0与直线/相切于点A(3,l),那么直线/的方程为()A.2x-y-5=0B.x-2y-l=0C.x-y-2=0D.x+y-4=0x≥l10,(2011顺义二模文7)点PEy)的坐标满足条件y≥x,那么点P到直线x-2y+3≥031一4y一9=0的距离的最小值为()二、填空(每题4分)11 .∣S]x2÷r-4x=O在点P(l,√3)处的切线方程为.12 .当α二时,直线/1:x+αy=2α+2,直线“:依+y=〃+1平行.13 .直线2x+1Iy+16=O关于点P(O,1)的对称直线的方程是.14 .设圆*+/-4*一5=0的弦45的中点为尸(3,1),那么直线力6的方程是.15 .圆心为。

高二数学直线和圆的方程综合测试题

高二数学直线和圆的方程综合测试题

高二数学直线和圆的方程综合测试题一、选择题1. 直线的斜率为-2,过点(3,4),则直线的方程为()。

A. y = -2x + 10B. y = -2x - 2C. y = 2x + 10D. y = 2x - 2答案:B2. 已知直线的斜率为1/3,过点(-1,2),则直线的方程为()。

A. y = 1/3x + 5/3B. y = -1/3x + 5/3C. y = 1/3x - 5/3D. y = -1/3x - 5/3答案:C3. 已知点(2,3)和(-1,4)在直线上,则直线的方程为()。

A. y = -x + 5B. y = -x + 1C. y = x + 5D. y = x + 1答案:A4. 直线y = 2x - 1与直线y = kx + 4平行,则k的值为()。

A. 2B. -2C. 1D. -1答案:A5. 直线y = -3x + 2与直线y = kx + 1垂直,则k的值为()。

A. 1/3B. -1/3C. 3D. -3答案:B二、填空题1. 过点(1,2)且与直线y = 3x + 1垂直的直线方程为__________。

答案:y = -1/3x + 7/32. 过点(2,-1)且与直线y = -2x + 5平行的直线方程为__________。

答案:y = -2x + 33. 过点(4,3)和(-2,1)的中点坐标为__________。

答案:(1, 2)4. 过点(-1,2)且与直线y = -3x + 4垂直的直线方程为__________。

答案:y = 1/3x + 7/35. 过点(3,-2)且与直线y = 2x - 1平行的直线方程为__________。

答案:y = 2x - 8三、解答题1. 已知直线L1过点(1,2)且与直线y = 2x + 3垂直,直线L2过点(-1,4)且与直线L1平行,求直线L2的方程。

解析:首先求出直线L1的斜率,由于直线L1与y = 2x + 3垂直,所以斜率为-1/2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《直线和圆的方程》综合测试题 一、 选择题:
1.如果直线l 将圆:04222=--+y x y x 平分,且不通过第四象限,那么l 的斜率取值范围是( )
A .]2,0[
B .)2,0(
C .),2()0,(+∞-∞Y
D .),2[]0,(+∞-∞Y 2.直线083=-+y x 的倾斜角是( ) A.
6π B. 3
π
C. 32π
D. 65π
3. 若直线03)1(:1=--+y a ax l ,与02)32()1(:2=-++-y a x a l 互相垂直, 则a 的值为( )
A .3-
B .1
C .0或2
3
-
D .1或3- 4. 过点)1,2(的直线中被圆04222=+-+y x y x 截得的弦长最大的直线方程 是( )
A.053=--y x
B. 073=-+y x
C. 053=-+y x
D. 053=+-y x 5.过点)1,2(-P 且方向向量为)3,2(-=的直线方程为( )
A.0823=-+y x
B. 0423=++y x
C. 0132=++y x
D. 0732=-+y x 6.圆1)1(22=+-y x 的圆心到直线x y 3
3
=
的距离是( ) A.
2
1
B. 23
C.1
D. 3
7.圆4)1()3(:221=++-y x C 关于直线0=-y x 对称的圆2C 的方程为:( ) A. 4)1()3(22=-++y x B. 4)3()1(22=-++y x C. 4)3()1(22=++-y x D. 4)1()3(22=++-y x
8.过点)1,2(且与两坐标轴都相切的圆的方程为( ) A .1)1()1(22=-+-y x B .25)5()5(22=-++y x C .1)1()1(22=-+-y x 或25)5()5(22=-+-y x D .1)1()1(22=-+-y x 或25)5()5(22=-++y x
9. 直线3y kx =+与圆22(2)(3)4x y -+-=相交于N M ,两点,若≥||MN 则k 的取值范围是( )
A .3
[,0]4
-
B .[]33
-
C .[
D .2
[,0]3
-
10. 下列命题中,正确的是( ) A .方程
11
=-y x
表示的是斜率为1,在y 轴上的截距为2的直线; B .到x 轴距离为5的点的轨迹方程是5=y ;
C .已知ABC ∆三个顶点)0,3(),0,2(),1,0(-C B A ,则 高AO 的方程是0=x ;
D .曲线023222=+--m x y x 经过原点的充要条件是0=m .
11.已知圆0:22=++++F Ey Dx y x C ,则0==E F 且0<D 是圆C 与y 轴相切 于坐标原点的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
12.若直线m x y += 与曲线21y x -= 只有一个公共点,则实数m 的取值范围 是( )
A.2±=m
B.2≥m 或2-≤m
C. 22<<-m
D. 11≤<-m 或2-=m 二.填空题:
13.已知直线06=+-y kx 被圆2522=+y x 截得的弦长为8,则k 的值为:_____
14.过点)5,2(-,且与圆012222=+-++y x y x 相切的直线方程为:__________;
16.已知实数y x ,满足3)2(22=+-y x ,则x
y
的取值范围是:_______________. 三.解答题:
17.求与x 轴切于点)0,5(,并且在y 轴上截得弦长为10的圆的方程.
18.已知一个圆C 和y 轴相切,圆心在直线03:1=-y x l 上,且在直线0:2=-y x l 上截得的弦长为72,求圆C 的方程.
21.已知圆0622=+-++m y x y x 和直线032=-+y x 相交于Q P ,两点,O 为原点,且OQ OP ⊥,求实数m 的取值.
22.已知圆4)4()3(:22=-+-y x C 和直线034:=+--k y kx l (1)求证:不论k 取什么值,直线和圆总相交;
(2)求k 取何值时,圆被直线截得的弦最短,并求最短弦的长.
高二数学《直线和圆的方程》综合测试题
参考答案
一.选择题: ADDAB ABCBD AD
二.填空题: 13. 3± 14. 2010815-==-+x ,y x 或
15. 39 16. ]3,3[-
三.解答题:
17.答案:50)25()5(22=±+-y x .
18.解:∵圆心在直线03:1=-y x l 上,∴设圆心C 的坐标为),3(t t ∵圆C 与y 轴相切, ∴圆的半径为|3|t r = 设圆心到2l 的距离为d ,则t t t d 22
|3|=-=
又∵圆C 被直线2l 上截得的弦长为72,
∴由圆的几何性质得:222|)|2()7(|3|t t +=,解得1±=t
∴圆心为)1,3(或3),1,3(=--t ,
∴圆C 的方程为:9)1()3(,9)1()3(2222=+++=-+-y x y x 或
19.解:因为A 为定点, l 为定直线,所以以l 为x 轴,过A 且垂直于l 的直线为
y 轴,建立直角坐标系(如图),则)3,0(A
轴,垂足为N ,则)0,(x N 且N 平分BC , 又因为4||=BC ,
),0,2(),0,2(+-∴x B x C
M Θ是ABC ∆的外心,|||MB =∴∴2222)3()0()2(-+=-+-+y x y x x , 化简得, M 的轨迹方程为: 0562=+-x x
20.解:(1)设点),(y x M 为曲线2C 上的任意一点,点),(000y x M 是平移前在曲 线1C 上与之对应的点,则有),1,2(),()1,2(000-=--⇒-==y y x x n M M
∴⎩⎨⎧-=+=120
0y y x x ,
又∵点),(000y x M 在曲线1C 上,∴4)1()2(2020=++-y x ,从而
4]1)1[()]22[(22=-++-+y x ,化简得, 422=+y x 为所求.
(2) 设点),(y x M 为曲线2C 上的任意一点,点),(000y x M 是平移前在曲线
1C 上与之对应的点,则有),3,2(),()3,2(000=--⇒==y y x x M
∴⎩⎨⎧-=-=3
200y y x x ,
又∵点),(000y x M 在曲线1C 上,∴2
002x y =,从而
2)2(2)3(-=-x y ,化简得, 11822+-=x x y 为所求.
21. 解: 设点Q P ,的坐标分别为),(),,(2211y x y x . 一方面,由OQ OP ⊥,得1-=⋅OQ OP k k ,即,12
2
11-=⋅x y x y 从而,①y y x x ΛΛΛΛ02121=+
另一方面, ),(),,(2211y x y x 是方程组⎩⎨⎧=+-++=-+0
60
322
2m y x y x y x ,的实数解, 即21,x x 是方程02741052=-++m x x …… ②的两个实数根,
∴221-=+x x , 5
27
421-=
⋅m x x ………… ③ 又Q P ,在直线032=-+y x ,
∴])(39[4
1
)3(21)3(2121212121x x x x x x y y ++-=-⋅-=
⋅ 将③式代入,得 5
12
21+=⋅m y y ………… ④
又将③,④式代入①,解得3=m ,代入方程②,检验0>∆成立。

∴3=m
22.解:(1)证明:由直线l 的方程可得,)4(3-=-x k y ,则直线l 恒通过点
)3,4(,把)3,4(代入圆C 的方程,得42)43()34(22<=-+-,所以点)3,4(
在圆的内部,
又因为直线l 恒过点)3,4(, 所以直线l 与圆C 总相交. (2)设圆心到直线l 的距离为d ,则 5
|
1|43|
3443|2
2+=++--=
k k k d 又设弦长为L ,则2
22)2
(r d L =+,即25)1(4)2(22+-=k L .
∴当1-=k 时, 44)2
(min min 2=⇒=L L
所以圆被直线截得最短的弦长为4.。

相关文档
最新文档