中职数学基础模块下册第八章《直线和圆的方程》单元检测试题及参考答案
直线与圆的方程试题及答案 中职学校

直线与圆的方程试题及答案试题一给定直线的方程为 x + y = 2 和圆的方程为 x^2 + y^2 = 4,求直线与圆的交点坐标。
解答:首先,化简直线的方程可以得到 y = 2 - x。
将直线的方程 y = 2 - x 求根代入圆的方程中,即:x^2 + (2 - x)^2 = 4将上式展开求解,得到 x^2 - 4x + 4 + 4x - 4 = 0化简后得到 x^2 = 4通过求根公式,可以得到 x = 2 或 x = -2。
将 x 的值代入直线的方程 y = 2 - x 中,得到对应的 y 值。
当 x = 2 时,y = 2 - 2 = 0;当 x = -2 时,y = 2 - (-2) = 4。
因此,直线与圆的交点坐标为 (2, 0) 和 (-2, 4)。
试题二给定圆的方程为 (x - 3)^2 + (y + 4)^2 = 9 和直线的斜率为 -2,求直线与圆的交点坐标。
解答:首先,求出直线的方程为 y = -2x + c。
由圆的方程可知,圆心坐标为 (3, -4),半径为 3。
直线与圆相交时,直线上的点到圆心的距离等于半径。
将直线的方程 y = -2x + c 代入圆的方程 (x - 3)^2 + (y + 4)^2 = 9 中,得到:(x - 3)^2 + ((-2x + c) + 4)^2 = 9展开后,化简上式,得到:5x^2 + 10cx + c^2 - 36x + 48c - 72 = 0因为直线与圆相交,所以上式必有实数解。
根据二次方程的性质,上式的判别式必大于等于零。
即:(10c - 36)^2 - 4 * 5 * (c^2 + 48c - 72) >= 0通过求解不等式,可以得到c ∈ (-∞, 20)。
取 c = 10,将 c 的值代入直线的方程 y = -2x + c 中,得到直线的方程为 y = -2x + 10。
将直线的方程 y = -2x + 10 代入圆的方程 (x - 3)^2 + (y + 4)^2 = 9 中,求解 x 的值。
中职数学基础模块下册第八章《直线和圆的方程》单元检测试题及参考答案

中职数学基础模块下册第八章《直线和圆的方程》单元检测试题及参考答案中职数学第八章《直线和圆的方程》单元检测一、选择题(共10题,每题3分,共30分)1.已知A(2,-3),B(0,5),则直线AB的斜率是()。
A。
4 B。
-4 C。
3 D。
-32.设A(-1,3),B(1,5),则直线AB的倾斜角为()。
A。
30° B。
45° C。
60° D。
90°3.下列哪对直线互相垂直?A。
l1: y=2x+1.l2: y=2x-5B。
l1: y=-2.l2: y=5C。
l1: y=x+1.l2: y=-x-5D。
l1: y=3x+1.l2: y=-3x-54.以A(1,2),B(1,6)为直径两端点的圆的方程是()。
A。
(x+1)^2+(y-4)^2=8B。
(x-1)^2+(y-4)^2=4C。
(x-1)^2+(y-2)^2=4D。
(x+1)^2+(y-4)^2=165.若P(-2,3),Q(1,x)两点间的距离为5,则x的值可以是()。
A。
5 B。
6 C。
7 D。
86.方程为x^2+y^2-2x+6y-6=0的圆的圆心坐标是()。
A。
(1,3) B。
(-1,3) C。
(1,-3) D。
(2,1)7.过点A(-1,2),且倾斜角是60°的直线方程为()。
A。
3x+y-2-3=0B。
3x-y+2+3=0C。
x-y+3=0D。
x+y+3=08.下列哪对直线互相平行?A。
l1: y=-2.l2: x=5B。
l1: y=2x+1.l2: y=2x-5C。
l1: y=x+1.l2: y=-x-5D。
l1: y=3x+1.l2: y=-3x-59.下列直线与直线3x-2y=1垂直的是()。
A。
4x-6y-3=0B。
4x+6y+3=0C。
6x+4y+3=0D。
6x-4y-3=010.过点A(2,3),且与y轴平行的直线方程为()。
A。
x=2B。
y=2C。
x=3D。
y=3二、填空题(共8题,每题4分,共32分)11.直线3x-2y-6=0的斜率为_______,在y轴上的截距为_______。
中职数学基础模块下册第八章直线和圆的方程单元测试卷含参考答案

中职数学基础模块下册第八章直线和圆的方程单元测试卷含参考答案一、选择题:(每题3分,共30分)1.已知点M(2,-3)、N(-4,5),则线段MN 的中点坐标是( )A .(3,-4)B .(-3,4)C .(1,-1) D.(-1,1)2.直线过点A( -1,3)、B(2,-2),则直线的斜率为( )A .-53B .-35C . -1 D. 13.下列点在直线2x-3y-6=0上的是( )A.(2,-1)B. (0,2)C. (3,0)D.(6,-2)4.已知点A(2,5),B(-1,1),则|AB |=( )A .5B .4 C. 3 D .175.直线x+y+1=0的倾斜角为( )A. 45º B ,90º C .135º D .180º6.直线2x+3y+6=0在y 轴上的截距为( ).A .3B .2C .-3D .-27.经过点P(-2,3),倾斜角为45º的直线方程为( )A. x+y+5=0B.x-y+5=0C .x-y-5=0 D. x+y-5=08.如果两条不重合直线1l 、2l 的斜率都不存在,那么( )A .1l 与2l 重合B .1l 与2l 相交C .1l //2l D.无法判定9.已知直线y= -2x-5与直线y=ax-4垂直,则a =( )A .-2B . -21C .2D .2110.下列直线与3x-2y+5=0垂直的是( );A . 2x-3y-4=0B .2x+3y-4=0 C.3x+2y-7=0 D .6x-4y+8=011.直线2x-y+4=0与直线x-y+5=0的交点坐标为( ).A .(1,6)B .(-1,6)C .(2,-3)D .(2,3)12.点(5,7)到直线4x-3y-1=0的距离等于( )A .52B .252C .58 D .8 13.已知圆的一般方程为0422=-+y y x ,则圆心坐标与半径分别是( )A. (0,2), r=2 B .(0,2), r=4C .(0,-2), r=2D .(0,-2), r=414.直线x+y=2与圆222=+y x 的位置关系是( )A.相交 B .相切 C .相离 D .不确定15.点A(l ,3),B (-5,1),则以线段AB 为直径的圆的标准方程是( )A .10)2()2(22=-++y xB .10)2()2(22=-++y xC. 10)3()1(22=-+-y x D .10)3()1(22=-+-y x16.若点P(2,m)到直线3x-4y+2=0的距离为4,则m 的值为( )A. m=-3 B . m=7 C . m=-3或m=7 D . m=3或m=7二、填空题17.平行于x 轴的直线的倾斜角为 ;18.平行于y 轴的直线的倾斜角为 ;19.倾斜角为60º的直线的斜率为 ;20.若点(2,-3)在直线mx-y+5 =0上,则m= ;21.过点(5,2),斜率为3的直线方程为:22.在y 轴上的截距为5,且斜率为4的直线方程为:23.将y-4=31(x —6)化为直线的一般式方程为:24.过点(-1,2)且平行于x 轴的直线方程为25.过点(O ,-3)且平行于直线2x+3y-4=0的直线方程是26.两条平行直线3x+4y-2=0和3x+4y+3=0的距离是27.已知直线1l :mx+2y-1=0与直线2l :x-y-l=0互相垂直,则m= ;28.圆心在点(0,2)且与直线x-2y+9 =0相切的圆的方程为29.圆086422=++-+y x y x 的圆心坐标为 ,半径为 。
(完整word版)职高数学基础模块下册第八章直线与园练习题(word文档良心出品)

第八章 直线和圆的方程1一、选择题1.已知点A(-12)到原点的距离为 ( )A.8B.-12C.12D.02.点A(12),B(-6)的中点的坐标是 ( )A.1B.-2C.3D.-43.不等式5<x 的解为( )A.X<5B. X>-5C. -5<X<5D.- X<-54.已知点A(2,0),B(-10,0),则=AB( )A.8B.-8C.12D.-12( )A.5B.-5C.2D.-27.点A(12,2),B(-6,-6)的中点坐标( )A.(-6,-2)B. (3,2)C. (3,-2)D. (6,2)8.点A (3,4)关于X 轴的对称点是( )A.(4,3)B. (3,-4)C.(-3,-4)D. (-3,4)9.点(-3,4)到原点的距离是( )A.5B.-5C.2D.-210.已知点A(4,-3),B(-2,5),则=AB ( ) A.5 B.10 C.13D.1511.已知△ABC 的顶点A(1,-2),B(-2,6),C(5,4),AC 边的中线长为 ( )A.5B.25C.10D.1212.X 轴所在的直线方程是 ( )A.X=0B. X=1C. Y=0D. Y=113.在直线012=+-y x 上的点是( )A.(1,1)B.(2,0)C.(-1,-1)D.(1,0)14.过(2,-2)且垂直于x 轴地直线方程是( )A.2=xB. 2-=xC. 2=yD. 2-=y 15.点到(-3,1)到x 轴的距离是 ( ) A.3 B.-3 C.1 D.-1 17.直线01=++y x 与直线01=--y x 的交点坐标是 ( )A.(1,0) B(-1,0) C. (0,1) D.(0,-1) 18. 直线1=x 的倾斜角的 ( ) A.00B.090 C.1800 D.450 19.如果直线的倾斜角是450,则它的斜率是 ( ) A.0 B.33C.3D.1 20.直线1=y 的斜率是 ( ) A.1 B.0 C.-1 D.不存在 21.直线的斜率是-1,则直线的倾斜角是 ( ) A.00 B 450 C 900 D 135023.下列说法正确的是 ( ) A.直线都有唯一的斜率 B 每一条直线都有唯一的倾斜角,也有唯一的斜率C 每一条直线都有唯一的倾斜角,但不一定有斜率D 倾斜角相同的直线一定是同一条直线24.直线斜率为-2,则倾斜角是( )A.锐角 B 钝角C 直角D 不确定25.直线12+-=x y 的斜率是( )A.-2 B 2 C 1 D -1 26.直线2-=x y 在y 轴上的截距是( ) A.1 B.-1 C.2 D.-2 27.直线2+=x y 的倾斜角是 ( )A.300B.450C.600D.135028.过点(0,-2)且斜率为-2的直线方程是 ( ) A.2+=x y B 22+-=x y C 2-=x y D 22--=x y 30.直线33-=x y 在y 轴上的截距是 ( ) A.1 B.-1 C.-3 D.3 31.过点A(2,-1)且倾斜角为450的直线的一般方程是 ( ) A.12+=-x y B 21-=+x y C 03=+-y x D 03=--y x 32.32.直线0132=+-y x 的斜率是 ( )A.32 B 23 C 32- D 23-33.过点(-2,6)且斜率为-4的直线的一般式方程是 ( )A.24--=x y B 024=--x y C 24+=x y D 024=++y x 36.若直11b k y x +=与直线22b k y x +=平行,则 A.21k k ≠B.2121b b k k ==且C.2121b b k k ≠=且D.2121b b k k ≠≠且37.直线012032=-+=+-y x y x 与直线的交点是 ( )A.(1,-1) B (2,-1) C.(-1,1) D.(-1,2)38.过点(2,4)且与直线03=+x 平行的直线方程是 ( ) A.2=x B.4=x C.2=y D.4=y40.若直线1l 的方程是0111=++C y B x A ,2l 的方程是0222=++C y B x A ,且2121B B A A ≠,则这两条直线的位置关系是( )A.相交 B 平行 C 重合 D 垂直41.直线02640132=-+=-+y x y x 与直线的位置关系是 ( )A 相交B 平行C 重合D 垂直 42.已知过点(-2,m )和(m ,4)的直线与直线012=-+y x 平行,则m 的值是 ( )A.0B.-8C.2D.1043.以A (1,3),B (-5,1)为端点的线段的垂直平分线方程是 ( )A.3x-y+8=0B.3x+y+4=0C.3x-y+6=0D.3x+y+2=044.直线012=+-y x 与直线012=++y ax 垂直,则a 的值是A.1B.-1C.4D.-445.过点(-1,2)且与直线0432=+-y x 垂直的直线方程是 ( )A.023=+y x B 0723=++y x C0532=+-y x D 0832=+-y x46.直线012=++y ax 与直线0)3(=+--a y x a 垂直,则a 的值是 ( )A.1B.2C.6D.1或247.点(0,1)到直线022=+-y x 的距离为 ( )A.55 B 554 C 33 D 515A.3 B 0.1 C 0.5 D 749 原点到直线052=-+y x 的距离为 ( )A.1B.3C.2D.5 50 已知点(3,m )到直线043=-+y x 的距离等于1,则m 等于 ( )A.3 B 3- C 33-D 3或33-56已知A (2,4),B (-4,0),则以AB 为直径的圆的方程是 ( )A. 13)2()1(22=-++y xB.13)2()1(22=+++y xC.13)2()1(22=-+-y xD.13)2()1(22=++-y x 57.圆心为(-2,2),半径为5的圆的标准方程为 ( )A.5)2()2(22=++-y xB.25)2()2(22=+++y xC.5)2()2(22=-++y xD.25)2()2(22=++-y x59.圆心为(3,4),且过点(4,6)的圆的方程是 ( ) A.3)4()3(22=++-y x B3)4()3(22=-+-y xC 5)4()3(22=-+-y x D5)4()3(22=-+-y x 60.圆04222=-++y x y x 的圆心坐标和半径分别是 ( ) A.(1,-2),5 B (1,-2),5 C 5),2,1(- D (-1,2),5 78.直线063=+-y x 的倾斜角是( )A.60°B.120° C 30° D.150°79.经过点A(-1,4),且在x 轴上的截距为3的直线方程是 ( )A. x+y+3=0 B x-y+3=0 Cx+y-3=0 D x+y-5=083.圆06222=-++y x y x 的圆心是( )A.(1,3) B (-1,-3)C (-1,3) D(1,-3)。
中职数学:第八章 直线与圆的方程测试题(含答案)

中职数学:第八章直线与圆的方程测试题(含答案)第八章直线与圆的方程测试题班级。
姓名。
得分:选择题(共10题,每题10分)1、点(2,1)到直线4x-3y-1=0的距离等于(B)A、2/5.B、4/5.C、2.D、32、直线与x-y+3=0与圆(x-1)^2+(y-1)^2=1的位置关系是(C)A、相交。
B、相切。
C、相离。
D、无法判断3、求过三点O(0,0),M1 (1,1),M2(4,2)的圆的方程(A)A、x^2+y^2-8x+6y=。
B、x^2+y^2+8x+6y=。
C、(x-4)^2+(y-3)^2=25.D、(x+4)^2+(y+3)^2=254、已知直线l经过点M(2,-1),且与直线2x+y-1=0垂直,求直线l的方程(C)A、x-2y+4=0.B、2x-y-4=0.C、x-2y-4=0.D、2x-y+4=05、求经过点P(-2,4)、Q (0,2),并且圆心在x+y=0上的圆的方程(A)A、(x+2)^2+(y-2)^2=4.B、(x-2)^2+(y-2)^2=4.C、(x+2)^2+(y+2)^2=4.D、(x-2)^2+(y+2)^2=46、设圆过点(2,-1),又圆心在直线2x+y=0上,且与直线x-y-1=0相切,求该圆的方程(B)A、(x-1)^2+(y-2)^2=2或(x-9)^2+(y-18)^2=338.B、(x-1)^2+(y+2)^2=2或(x-9)^2+(y+18)^2=338.C、(x-2)^2+(y-1)^2=12或(x-18)^2+(y-9)^2=36.D、(x-1)^2+(y+2)^2=12或(x-9)^2+(y+18)^2=367、求以C(2,1)为圆心,且与直线2x+5y=0相切的圆的方程(C)A、(x-2)^2+(y-1)^2=1/29.B、(x+2)^2+(y+1)^2=1/29.C、(x-2)^2+(y-1)^2=81/29.D、(x+2)^2+(y+1)^2=81/298、设圆的圆心坐标为C(-1,2),半径r=5,弦AB的中点坐标为M(0,-1),求该弦的长度(D)A、√10.B、√15.C、2√10.D、2√159、求圆(x-3)^2+y^2=1关于点p(1,2)对称的圆的方程(B)A、(x-3)^2+(y-2)^2=1.B、(x+1)^2+(y-4)^2=1.C、(x+3)^2+(y+2)^2=1.D、(x-1)^2+(y+4)^2=1给定三角形ABC的三个顶点坐标A(4,5)。
(完整版)职高数学第八章直线和圆的方程及答案.docx

第 8 章直线和圆的方程练习 8.1两点间的距离与线段中点的坐标1.根据下列条件,求线段P P 的长度:1 2( 2) P ( -3, 1)、 P ( 2, 4)(1) P ( 0, -2)、P ( 3,0)121 2 (3) P ( 4, -2)、P ( 1,2)( 4) P ( 5, -2)、 P ( -1, 6)1 2122.已知 A(2,3) 、 B ( x , 1),且 |AB |= 13 ,求 x 的值。
3.根据下列条件,求线段 P 1P 2 中点的坐标:(1) P 1( 2, -1)、P 2( 3,4) ( 2) P 1( 0, -3)、P 2( 5,0) ( 3) P 1( 3, 2.5)、 P 2(4, 1.5)( 4) P 1( 6, 1)、P 2(3, 3)4.根据下列条件,求线段P 1P 2 中点的坐标:(1) P ( 3, -1)、P ( 3,5)( 2) P ( -3, 0)、 P ( 5,0)1 21 2(3) P 1( 3, 3.5)、 P 2(4, 2.5) ( 4) P 1( 5, 1)、 P 2(5, 3)参考答案:1.(1) 13 ;(2) 34 ;(3)5; (4)102.-1 或 53.(1) ( 5 , 3) ;(2) ( 5 ,3) ;(3) (7, 2) ; (4) (9, 2)222 222 4. (1)(3, 2) ;(2) (1,0) ;(3) (3.5,3) ; (4)(5, 2)练习 8.2.1 直线的倾斜角与斜率1.选择题(1)没有斜率的直线一定是()A. 过原点的直线B.垂直于 y 轴的直线C.垂直于 x 轴的直线D. 垂直于坐标轴的直线(2) 若直线 l的斜率为 -1,则直线 l 的倾斜角为( )A.90 B.0 C. 45D. 1352 已知直线的倾斜角,写出直线的斜率:(1) 30 , k ____ ( 2) (3)120 ,k____( 4)参考答案:1. ( 1) C( 2) D45 , k____150 , k____2. ( 1)3 3;(2) 1 ;(3) 3 ; (4)33练习 8.2.2 直线的点斜式方程与斜截式方程写出下列直线的点斜式方程(1)经过点 A (2,5),斜率是 4;(2)经过点 B ( 2,3),倾斜角为45;(3)经过点 C( -1,1),与 x 轴平行;(4)经过点 D (1,1),与 x 轴垂直。
中职数学:第八章直线与圆测试题

GAGGAGAGGAFFFFAFAF第八章:直線與圓測試題一、選擇題(本大題共l0小題,每小題3分,共30分)1.點()1,2M 與點()1,5-N 的距離為 ( )A 、13B 、14C 、15D 、42.在平面內,一條直線傾斜角的范圍是 ( )A 、⎥⎦⎤⎢⎣⎡2,0π B 、)[π,0 C 、[]0,π- D 、[]ππ,- 3. 直線x=3的傾斜角是( )A 、00B 、 300C 、900D 、不存在 4.已知 A (-5,2),B (0,-3)則直線AB 斜率為 ( )A 、 -1B 、1C 、 31 D 、0 5.如圖直線1l ,2l ,3l 的斜率分別為1k ,2k ,3k 則( ) A 、1k >2k >3kB 、2k >1k >3kGAGGAGAGGAFFFFAFAFC 、3k >2k >1kD 、2k >3k >1k6.經過點(1,2)且傾斜角為450的直線方程為( )A 、1+=x yB 、x y 2=C 、3+-=x yD 、x y 2-=7.直線062=+-y x 與兩坐標軸圍成的三角形面積為( )A 、12B 、18C 、9D 、68. 直線02=+x 和01=+y 的位置關系是( )A 、相交B 、平行C 、重合D 、以上都不對9.過點(2,1)A ,且與直線0102=-+y x 垂直的直線l 的方程為( )A 、20x y +=B 、20x y -=C 、02=-y xD 、20x y += 10.圓心為(-1,4),半徑為5的圓的方程為( )A 、25)4()1(22=++-y x B 、25)4()1(22=-++y xGAGGAGAGGAFFFFAFAFC 、5)4()1(22=++-y xD 、5)4()1(22=-++y x二、填空題(本大題共8小題,每小題3分,共24分)11.已知A (7,4),B (3,2),則線段AB 的中點坐標是 .12.直線013=++y x 的傾斜角為 ___13.經過點(1,3),(5,11)的直線方程為_____________________14.直線1+=kx y 經過(2,-9),則k =____________________15.直線06=-+y mx 與直線0632=--y x 平行,則m =___ ___16.原點到直線0834=+-y x 的距離為____________17.已知圓的方程為04222=+-+y x y x ,則圓心坐標為__________,半徑為____18.直線與圓最多有多少個公共點______ _三、解答題(本大題共6小題,共46分,解答應寫出文字說明、證明過程或演算步驟)19.已知三角形的顶点是A(1,5),B(1,1), C(6,3),求证:ABC ∆是等腰三角形。
中职数学直线与圆的方程单元测试含参考答案

中职数学直线与圆的方程单元测试(一)含参考答案一、单项选择题1.已知A(2,3),B(2,5),则线段AB 的中点坐标为( )A .(1,2) B.(0,-1) C .(0,-2) D .(2,4)2.若直线l 的倾斜角是o 120,则该直线的斜率是( )A .-1B .0 C.3- D .33.已知33+-=x y ,斜率为( ).A .3B .-3C .-1D .04.直线012=--y x 在y 轴上的截距为( )A .1B .1-C .2D .2-5.经过点P(l ,3),且斜率为2的直线方程是( )。
A .012=++y xB .012=+-y xC .012=--y xD .052=++y x6.直线x y 5=与直线3-=ax y 平行,则a =( ).A .-1B .0C . 1D .57.直线52-+y x =0与直线x =3的交点坐标为( ).A. (3,1)B. (1,3)C. (3,2)D. (2,3)8.点M(-3,1)到直线0543=-+y x 的距离为( ).A .2-B .1-C . 2D .19.圆心为C(2,-1),半径为3的圆的方程为( ).A .9)1(222=-++y x )(B .3)1(222=-++y x )( C .9)1(222=++-y x )( D .3)1(222=++-y x )(10.圆6)5(222=++-y x )(的圆心坐标与半径分别是( )A .),(52-,6=rB .),(52-,6=r C . ),(52-,6=r D .),(52-,6=r 11. 直线02=+-m y x 过圆046422=+--+y x y x 的圆心,则m =( ).A .1B .0C .1-D .212.经过圆25)2(122=-++y x )(的圆心且与直线04=--y x 垂直的直线方程为( )A .01=++y xB .01=+-y xC .01=-+y xD .01=+-y x二、填空题13.已知两点A(0,6),B (-8,0),则线段AB 的长度为14.倾斜角为45。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中职数学第八章《直线和圆的方程》单元检测
(满分100分,时间:100分钟)
一.选择题(3分*10=30分)
题号12345678910
答案
1.已知A(2,-3),B(0,5),则直线AB的斜率是()
A.4
B.-4
C.3
D.-3
2、设A(-1,3),B(1,5),则直线AB的倾斜角为()
A.30︒
B.45︒
C.60︒
D.90︒
3.下列哪对直线互相垂直
A.l
1:y=2x+1;l
2
:y=2x-5 B.l
1
:y=-2;l
2
:y=5
C.l
1:y=x+1;l
2
:y=-x-5 D.l
1
:y=3x+1;l
2
:y=-3x-5
4.以A(1,2),B(1,6)为直径两端点的圆的方程是()
A.(x+1)2+(y-4)2=8
B.(x-1)2+(y-4)2=4
C.(x-1)2+(y-2)2=4
D.(x+1)2+(y-4)2=16
5.若P(-2,3),Q(1,x)两点间的距离为5,则x的值可以是()
A.5
B.6
C.7
D.8
6.方程为x2+y2-2x+6y-6=0的圆的圆心坐标是()
A.(1,3)
B.(-1,3)
C.(1,-3)
D.(2,1)
7.过点A(-1,2),且,倾斜角是60︒的直线方程为()
A.3x+y-2-3=0
B.3x-y+2+3=0
C.x-y+3=0
D.x+y+3=0
8.下列哪对直线互相平行()
A.l y=-2,l:x=5
B.l y=2x+1,l:y=2x-5
1:21:2
C.l y=x+1,l:y=-x-5
D.l y=3x+1,l:y=-3x-5
1:21:2
9.下列直线与直线3x-2y=1垂直的是()
A.4x-6y-3=0
B.4x+6y+3=0
C.6x+4y+3=0
D.6x-4y-3=0
10.过点A(2,3),且与y轴平行的直线方程为()
A.x=2
B.y=2
C.x=3
D.y=3
二.填空题(4分*8=32分)
11.直线3x-2y-6=0的斜率为,在y轴上的截距为
12.方程x2+y2-6x+2y-6=0化为圆的标准方程为
13.两直线x+2y+3=0,2x-y+1=0的位置关系是________
14.点(1,3)到直线y=2x+3的距离为____________
15.平行于直线x+3y+1=0,且过点(1,2)的直线方程为
16.直线2x+3y+1=0与圆x2+y2=1的位置关系是_____
17.若方程x2+y2-3x+4y+k=0表示一个圆,则k的取值范围是________
18.过A(-1,2),B(2,1),C(3,2)三点的圆方程为___________
三.解答题(共6题,共计38分)
19.已知两点A(2,6),B(m,-4)其中M(-1,n)为AB的中点,求m+n。
(6分)
20.已知直线l:x+5y+c=0与圆M:x2+y2=25相切,求常数c的值。
(6分)
21.求直线y=2x+3被圆x2+y2-6x-8y=0所截得的弦长。
(6分)
22.已知直线y=2x+b到圆x2+(y-1)2=4的距离为5,求常数b的值。
(6分)
23.已知圆C:x2+y2-4x+6y+8=0,求与直线l:x-2y-1=0平行的圆C的切线方程。
(6分)
24.已知直线3x+4y+c=0与圆(x-1)2+y2=25相切,求常数C的值。
(8分)
11. ;-3;
12. ( x - 3)2
+ ( y + 1)2
= 16 ;
13.垂直相交;
14. ;
第八章《直线和圆的方程》参考答案
一、选择题(本大题共 10 小题,每小题 3 分,共 30 分)
题号
答案
1
B 2
B 3
C 4
B 5
C 6
C 7
B 8
B 9
B 10
D
二、填空题(共 8 小题,每题 4 分,共 32 分)
3
2 5
2
5
15. x+3y-7=0 ;
16.相交;
17. (-∞, 25 ) ; 18. x 2 + y 2 - 2 x - 6 y + 5 = 0 ;
4
三、填空题(6 小题,共 38 分)
19.
20.
21.
22.
m=-4,n=1; m+n=-3
c = ±5 26
4 5
b = 1 ± 7 5 ;
23. x - 2 y - 3 = 0 或 x - 2 y - 13 = 0
24.22 或-28;。