直线与圆方程练习题及答案

合集下载

直线与圆的方程试题——含答案

直线与圆的方程试题——含答案

高中数学必修2 第1页 共4页高中数学必修2 第 2 页 共 4页林口林业局中学 班级 姓名……………………………密……………………………………………………封…………………………………………线……………………… ……………………………答……………………………………………………题…………………………………………线……………………必修二数学测试(直线方程与圆的方程)(全卷三个大题,共20个小题;满分100分,考试时间90分) 题号 一 二 三 总分 得分一、选择题(每小题3分,共36分)1.若)1,2(-P 为圆25)1(22=+-y x 的弦AB 的中点,则直线AB 的方程是( )A. 03=--y xB.032=-+y x C. 01=-+y x D. 052=--y x2.圆012222=+--+y x y x上的点到直线2=-y x 的距离最大值是( )A .2B .21+C .221+D .221+3.圆0422=-+x y x在点)3,1(P 处的切线方程( )A .023=-+y x B .043=-+y x C .043=+-y x D .023=+-y x4.若直线2=-y x 被圆4)(22=+-y a x 所截得的弦长为22,则实数a 的值为( )A .1-或3 B .1或3 C .2-或6 D .0或45.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线0443=++y x 与圆C 相切,则圆C 的方程为( )A .03222=--+x y x B .0422=++x y x C .03222=-++x y xD .0422=-+x y x6.已知圆C :22()(2)4(0)x a y a -+-=>及直线03:=+-y x l ,当直线l 被C 截得的弦长为32时,则a =( )A .2 B .22- C .12- D .12+7.两圆229x y +=和228690x y x y +-++=的位置关系是( )A .相离B .相交C .内切D .外切8.已知点P (3,2)与点Q (1,4)关于直线l 对称,则直线l 的方程为( ) A .01=+-y xB .0=-y x C .01=++y x D .0=+y x9.若圆222)1()1(R y x =++-上有且仅有两个点到直线4x +3y =11的距离等于1,则半径R 的取值范围是 ( )A R >1B R <3C 1<R <3D R ≠2 10.若直线03)1(:1=--+y a ax l ,与02)32()1(:2=-++-y a x a l 互相垂直,则a 的值为( )A .3-B .1C .0或23-D .1或3- 11.圆4)1()3(:221=++-y x C 关于直线0=-y x 对称的圆2C 的方程为:( )A.4)1()3(22=-++y x B. 4)3()1(22=-++y xC.4)3()1(22=++-y x D. 4)1()3(22=++-y x12. 对于任意实数k ,直线(32)20k x ky +--=与圆222220x y x y +---=的位置关系是( )A .相交B .相交或相切C .相交或相切或相离D .与k 值有关二、填空题(每小题4分,共16分)13.直线20x y +=被曲线2262150x y x y +---=所截得的弦长等于 。

直线与圆的方程单元测试题含答案

直线与圆的方程单元测试题含答案

《直线与圆的方程》练习题1一、选择题1.方程x 2+y 2+2ax-by+c=0表示圆心为C (2,2),半径为2的圆,那么a 、b 、c 的值 依次为( B )(A )二、4、4; (B )-二、4、4; (C )二、-4、4; (D )二、-4、-4 2.点4)()()1,1(22=++-a y a x 在圆的内部,那么a 的取值范围是( A )(A) 11<<-a (B) 10<<a (C) 11>-<a a 或 (D) 1±=a 3.自点 1)3()2()4,1(22=-+--y x A 作圆的切线,那么切线长为( B )(A)5 (B) 3 (C)10 (D) 54.已知M (-2,0), N (2,0), 那么以MN 为斜边的直角三角形直角极点P 的轨迹方程是( D )(A) 222=+y x (B) 422=+y x (C) )2(222±≠=+x y x (D) )2(422±≠=+x y x 5. 假设圆22(1)20x y x y λλλ++-++=的圆心在直线12x =左边区域,那么λ的取值范围是( C ) A.(0+)∞,B.()1+∞, C.1(0)(1)5⋃+,,∞ D.R6. .关于圆()2211x y +-=上任意一点(,)P x y ,不等式0x y m ++≥恒成立,那么m 的取值范围是BA .(21+)-∞,B .)21+⎡-∞⎣,C .(1+)-∞,D .[)1+-∞,7.如以下图,在同一直角坐标系中表示直线y =ax 与y =x +a ,正确的选项是(C )8.一束光线从点(1,1)A -动身,经x 轴反射到圆22:(2)(3)1C x y -+-=上的最短途径是( A )A .4B .5C .321-D .269.直线0323=-+y x 截圆x 2+y 2=4得的劣弧所对的圆心角是 ( C )A 、6πB 、4πC 、3πD 、2π 10.如图,在平面直角坐标系中,Ω是一个与x 轴的正半轴、y 轴的正半轴别离相切于点C 、D 的定圆所围成的区域(含边界),A 、B 、C 、D 是该圆的四等分点.假设点P (x ,y )、点P ′(x ′,y ′)知足x ≤x ′且y ≥y ′,那么称P 优于P ′.若是Ω中的点Q 知足:不存在Ω中的其它点优于Q ,那么所有如此的点Q 组成的集合是劣弧 ( )[答案] D[解析] 第一假设点M 是Ω中位于直线AC 右边的点,那么过M ,作与BD 平行的直线交ADC 于一点N ,那么N 优于M ,从而点Q 必不在直线AC 右边半圆内;第二,设E 为直线AC 左侧或直线AC 上任一点,过E 作与AC 平行的直线交AD 于F .那么F 优于E ,从而在AC 左侧半圆内及AC 上(A 除外)的所有点都不可能为Q ,故Q 点只能在DA 上.二、填空题11.在平面直角坐标系xoy 中,已知圆224x y +=上有且仅有四个点到直线1250x y c -+=的距离为1,那么实数c 的取值范围是 (13,13)- .12.圆:06422=+-+y x y x 和圆:0622=-+x y x 交于,A B 两点,那么AB 的垂直平分线的方程是 390x y --=13.已知点A(4,1),B(0,4),在直线L :y=3x-1上找一点P ,求使|PA|-|PB|最大时P 的坐标是(2,5)14.过点A (-2,0)的直线交圆x 2+y 2=1交于P 、Q 两点,那么AP →·AQ →的值为________.[答案] 3[解析] 设PQ 的中点为M ,|OM |=d ,那么|PM |=|QM |=1-d 2,|AM |=4-d 2.∴|AP →|=4-d 2-1-d 2,|AQ →|=4-d 2+1-d 2,∴AP →·AQ →=|AP →||AQ →|cos0°=(4-d 2-1-d 2)(4-d 2+1-d 2)=(4-d 2)-(1-d 2)=3.15.如下图,已知A (4,0),B (0,4),从点P (2,0)射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到P 点,那么光线所通过的路程是________.[答案] 210[解析] 点P 关于直线AB 的对称点是(4,2),关于直线OB 的对称点是(-2,0),从而所求路程为(4+2)2+22=210.三.解答题16.设圆C 知足:①截y 轴所得弦长为2;②被x 轴分成两段圆弧,其弧长之比为3:1;③圆心到直线:20l x y -=的距离为55,求圆C 的方程. 解.设圆心为(,)a b ,半径为r ,由条件①:221r a =+,由条件②:222r b =,从而有:2221b a -=5|2|15a b =⇒-=,解方程组2221|2|1b a a b ⎧-=⎨-=⎩可得:11a b =⎧⎨=⎩或11a b =-⎧⎨=-⎩,因此2222r b ==.故所求圆的方程是22(1)(1)2x y -+-=或22(1)(1)2x y +++=.17. 已知ABC ∆的极点A 为(3,-1),AB 边上的中线所在直线方程为610590x y +-=,B∠的平分线所在直线方程为4100x y -+=,求BC 边所在直线的方程. 解:设11(410,)B y y -,由AB 中点在610590x y +-=上, 可得:0592110274611=--⋅+-⋅y y ,y 1 = 5,因此(10,5)B . 设A 点关于4100x y -+=的对称点为'(',')A x y ,那么有)7,1(14131********A x y y x '⇒⎪⎪⎩⎪⎪⎨⎧-=⋅-'+'=+-'⋅-+'.故:29650BC x y +-=.18.已知过点()3,3M --的直线l 与圆224210x y y ++-=相交于,A B 两点,(1)假设弦AB的长为l 的方程; (2)设弦AB 的中点为P ,求动点P 的轨迹方程.解:(1)假设直线l 的斜率不存在,那么l 的方程为3x =-,现在有24120y y +-=,弦()||||268A B AB y y =-=--=,因此不合题意.故设直线l 的方程为()33y k x +=+,即330kx y k -+-=.将圆的方程写成标准式得()22225x y ++=,因此圆心()0,2-,半径5r =.圆心()0,2-到直线l的距离d =,因为弦心距、半径、弦长的一半组成直角三角形,因此()22231251k k -+=+,即()230k +=,因此3k =-.所求直线l 的方程为3120x y ++=.(2)设(),P x y ,圆心()10,2O -,连接1O P ,那么1O P ⊥AB .当0x ≠且3x ≠-时,11O P ABk k ⋅=-,又(3)(3)AB MP y k k x --==--,那么有()()()23103y y x x ----⋅=----,化简得22355222x y ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭......(1)当0x =或3x =-时,P 点的坐标为()()()()0,2,0,3,3,2,3,3------都是方程(1)的解,因此弦AB 中点P 的轨迹方程为22355222x y ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭.19.已知圆O 的方程为x 2+y 2=1,直线l 1过点A (3,0),且与圆O 相切. (1)求直线l 1的方程;(2)设圆O 与x 轴交于P ,Q 两点,M 是圆O 上异于P ,Q 的任意一点,过点A 且与x 轴垂直的直线为l 2,直线PM 交直线l 2于点P ′,直线QM 交直线l 2于点Q ′.求证:以P ′Q ′为直径的圆C 总过定点,并求出定点坐标[解析] (1)∵直线l 1过点A (3,0),∴设直线l 1的方程为y =k (x -3),即kx -y -3k =0,那么圆心O (0,0)到直线l 1的距离为d =|3k |k 2+1=1,解得k =±24.∴直线l 1的方程为y =±24(x -3).(2)在圆O 的方程x 2+y 2=1中,令y =0得,x =±1,即P (-1,0),Q (1,0).又直线l 2过点A与x 轴垂直,∴直线l 2的方程为x =3,设M (s ,t ),那么直线PM 的方程为y =ts +1(x +1).解方程组⎩⎨⎧x =3y =ts +1(x +1)得,P ′⎝ ⎛⎭⎪⎫3,4t s +1.同理可得Q ′⎝ ⎛⎭⎪⎫3,2t s -1.∴以P ′Q ′为直径的圆C 的方程为(x -3)(x -3)+⎝ ⎛⎭⎪⎫y -4t s +1⎝ ⎛⎭⎪⎫y -2t s -1=0,又s 2+t 2=1,∴整理得(x 2+y 2-6x +1)+6s -2ty =0, 假设圆C 通过定点,那么y =0,从而有x 2-6x +1=0, 解得x =3±22,∴圆C 总通过的定点坐标为(3±22,0).20.已知直线l :y=k (x+22)与圆O:4y x 22=+相交于A 、B两点,O 是坐标原点,三角形ABO 的面积为S.(1)试将S 表示成的函数S (k ),并求出它的概念域; (2)求S 的最大值,并求取得最大值时k 的值.【解】::如图,(1)直线l 议程 ),0(022≠=+-k k y kx 原点O 到l 的距离为2122kk oc +=弦长222218422KK OC OA AB +-=-= (2)ABO 面积2221)1(2421K K K OC AB S +-==),0(11,0≠<<-∴>K K AB )011(1)1(24)(222≠<<-+-=∴K k kk k k S 且(2) 令.81)43(224132241)1(24)(22222+--=-+-=+-=∴t t t k k k k S∴当t=43时,33,31,431122±===+k k k 时, 2max =S21.已知定点A (0,1),B (0,-1),C (1,0).动点P 知足:2||PC k BP AP =⋅.(1)求动点P 的轨迹方程,并说明方程表示的曲线类型; (2)当2k =时,求|2|AP BP +的最大、最小值.,121,112<<=+t t k解:(1)设动点坐标为(,)P x y ,那么(,1)AP x y =-,(,1)BP x y =+,(1,)PC x y =-.因为2||k =⋅,因此22221[(1)]x y k x y +-=-+.22(1)(1)210k x k y kx k -+-+--=.若1k =,那么方程为1x =,表示过点(1,0)且平行于y 轴的直线. 若1k ≠,那么方程化为2221()()11k x y k k ++=--.表示以(,0)1k k -为圆心,以1|1|k - 为半径的圆.(2)当2k =时,方程化为22(2)1x y -+=,因为2(3,31)AP BP x y +=-,因此|2|9AP BP x +=又2243x y x +=-,因此|2|36AP BP += 因为22(2)1x y -+=,因此令2cos ,sin x y θθ=+=,则36626)46[46x y θϕ--=++∈-+.因此|2|AP BP +3=+3=.。

(完整版)直线与圆的方程测试题(含答案)

(完整版)直线与圆的方程测试题(含答案)

直线与圆的方程测试题(本试卷满分150分,考试时间120分钟)一、单项选择题(本大题共18小题,每小题4分,共72分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出,错选、多选或未选均无分.1.点M 1(2,-5)与M 2(5,y)之间的距离是5,则y=( )A.-9B.-1C.-9或-1D. 122. 数轴上点A 的坐标是2,点M 的坐标是-3,则|AM|=( )A.5B. -5C. 1D. -13. 直线的倾斜角是,则斜率是( )32πA. B. C. D.3-3333-34. 以下说法正确的是( )A.任意一条直线都有倾斜角B. 任意一条直线都有斜率C.直线倾斜角的范围是(0,)D. 直线倾斜角的范围是(0,)2ππ5. 经过点(4, -3),斜率为-2的直线方程是( )A. 2x+y+2=0B.2x-y-5=0C. 2x+y+5=0D. 2x+y-5=06. 过点(2,0)且与y 轴平行的直线方程是( )A.x=0B.y=0C.x=2D.y=27. 直线在y 轴上的截距是-2,倾斜角为0°,则直线方程是()A.x+2=0B.x-2=0C.y+2=0D.y-2=08. “B ≠0”是方程“Ax+By+C=0表示直线”的( )A.充分非必要条件B.必要非充分条件C.充分且必要条件D.非充分非必要条件9. 直线3x-y+=0与直线6x-2y+1=0之间的位置关系是( )21A.平行B.重合C.相交不垂直D.相交且垂直10.下列命题错误的是( )A. 斜率互为负倒数的两条直线一定互相垂直B. 互相垂直的两条直线的斜率一定互为负倒数C. 两条平行直线的倾斜角相等D. 倾斜角相等的两条直线平行或重合11. 过点(3,-4)且平行于直线2x+y-5=0的直线方程是( )A. 2x+y+2=0B. 2x-y-2=0C. 2x-y+2=0D.2x+y-2=012. 直线ax+y-3=0与直线y=x-1垂直,则a=( )21A.2B.-2C.D. 2121-13. 直线x=2与直线x-y+2=0的夹角是( )A.30°B. 45°C. 60°D. 90°14. 点P (2,-1)到直线l :4x-3y+4=0的距离是()A.1 B. C. D.35115315. 圆心在( -1,0),半径为5的圆的方程是()A.(x+1)2+y 2= B. (x+1)2+y 2=255C. (x-1)2+y 2= D. (x-1)2+y 2=25516. 直线3x+4y+6=0与圆(x-2)2+(y+3)2=1的位置关系是( )A.相交不过圆心B.相交且过圆心C.相切D.相离17. 方程x 2+y 2-2kx+4y+3k+8=0表示圆,则k 的取值范围是( )A.k<-1或k>4B. k=-1或k=4C. -1<k<4D. -1≤k≤418. 直线y=0与圆C:x 2+y 2-2x-4y=0相交于A 、B 两点,则△ABC 的面积是()A.4B.3C.2D.1二、填空题(本大题共5小题,每小题4分,共20分)请在每小题的空格中填上正确答案。

完整版)直线与圆综合练习题含答案

完整版)直线与圆综合练习题含答案

完整版)直线与圆综合练习题含答案直线与圆的方程训练题1.选择题:1.直线x=1的倾斜角和斜率分别是()A。

45,1B。

不存在C。

不存在D。

-12.设直线ax+by+c=0的倾斜角为α,且sinα+cosα=√2/2,则a,b满足()A。

a+b=1B。

a-b=1C。

a+b=√2D。

a-b=√23.过点P(-1,3)且垂直于直线x-2y+3=0的直线方程为()A。

2x+y-1=0B。

2x+y-5=0C。

x+2y-5=0D。

x-2y+7=04.已知点A(1,2),B(3,1),则线段AB的垂直平分线的方程是()A。

4x+2y=5B。

4x-2y=5C。

x+2y=5D。

x-2y=55.直线xcosθ+ysinθ+a=0与xsinθ-ycosθ+b=0的位置关系是()θ的值有关A。

平行B。

垂直C。

斜交D。

与a,b,θ的值有关6.两直线3x+y-3=0与6x+my+1=0平行,则它们之间的距离为()A。

4B。

13√10C。

26√5D。

207.如果直线l沿x轴负方向平移3个单位再沿y轴正方向平移1个单位后,又回到原来的位置,那么直线l的斜率是()A。

-1/3B。

-3C。

1D。

38.直线l与两直线y=1和x-y-7=0分别交于A,B两点,若线段AB的中点为M(1,-1),则直线l的斜率为()A。

2/3B。

-3/2C。

-2D。

-39.若动点P到点F(1,1)和直线3x+y-4=0的距离相等,则点P的轨迹方程为()A。

3x+y-6=0B。

x-3y+2=0C。

x+3y-2=0D。

3x-y+2=010.若P(2,-1)为(x-1)+y^2=25圆的弦AB的中点,则直线AB的方程是()A。

x-y-3=0B。

2x+y-3=0C。

x+y-1=0D。

2x-y-5=011.圆x^2+y^2-2x-2y+1=0上的点到直线x-y=2的距离最大值是()A。

2B。

1+√2C。

1+2√2D。

1+2√512.在坐标平面内,与点A(1,2)距离为1,且与点B(3,1)距离为2的直线共有()A。

直线与圆练习题(带答案解析)

直线与圆练习题(带答案解析)

..直线方程、直线与圆练习1.如果两条直线l 1:260ax y ++=与l 2:(1)30x a y +-+=平行,那么a 等 A .1 B .-1 C .2 D .23【答案】B 【解析】试题分析:两条直线平行需满足12211221A B A B A C A C =⎧⎨≠⎩即122112211A B A B a AC A C =⎧⇒=-⎨≠⎩,故选择B考点:两条直线位置关系2. 已知点A (1,1),B (3,3),则线段AB 的垂直平分线的方程是 A .4y x =-+ B .y x = C .4y x =+ D .y x =- 【答案】A 【解析】试题分析:由题意可得:AB 中点C 坐标为()2,2,且31131AB k -==-,所以线段AB 的垂直平分线的斜率为-1,所以直线方程为:()244y x y x -=--⇒=-+,故选择A考点:求直线方程3.如图,定圆半径为a ,圆心为(,)b c ,则直线0ax by c ++=与直线10x y +-=的交点在A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D 【解析】试题分析:由图形可知0b a c >>>,由010ax by c x y ++=⎧⎨+-=⎩得0b c x b a a c y b a +⎧=>⎪⎪-⎨--⎪=<⎪-⎩所以交点在第四象限考点:圆的方程及直线的交点4.若点(,0)k 与(,0)b 的中点为(1,0)-,则直线y kx b =+必定经过点 A .(1,2)- B .(1,2) C .(1,2)- D .(1,2)-- 【答案】A 【解析】试卷第2页,总48页试题分析:由中点坐标公式可得2k b +=-,所以直线y kx b =+化为()212y kx k k x y =--∴-=+,令10,201,2x y x y -=+=∴==-,定点(1,2)-考点:1.中点坐标公式;2.直线方程5.过点(1,3)P -且平行于直线032=+-y x 的直线方程为( ) A .012=-+y x B .052=-+y x C .052=-+y x D .072=+-y x【答案】D 【解析】试题分析:设直线方程:02=+-c y x ,将点(1,3)P -代入方程,06-1-=+c ,解得7=c ,所以方程是072=+-y x ,故选D . 考点:直线方程 6.设(),P x y 是曲线2cos :sin x C y θθ=-+⎧⎨=⎩(θ为参数,02θπ≤<)上任意一点,则y x 的取值范围是()A .3,3⎡⎤-⎣⎦B .(),33,⎤⎡-∞-⋃+∞⎦⎣C .33,33⎡⎤-⎢⎥⎣⎦ D .33,,33⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢ ⎪⎝⎦⎣⎭【答案】C 【解析】试题分析:曲线2cos :sin x C y θθ=-+⎧⎨=⎩(θ为参数,02θπ≤<)的普通方程为:()()2221,,x y P x y ++=是曲线()22:21C x y ++=上任意一点,则yx 的几何意义就是圆上的点与坐标原点连线的斜率, 如图:33,33y x ⎡⎤∈-⎢⎥⎣⎦.故选C .考点:1.直线与圆的位置关系;2.直线的斜率;3.圆的参数方程.7.设点(1,0)A ,(2,1)B ,如果直线1ax by +=与线段AB 有一个公共点,那么22a b +..(A )最小值为15 (B )最小值为55 (C )最大值为15 (D )最大值为55【答案】A【解析】试题分析:直线ax+by=1与线段AB 有一个公共点,则点A(1,0)B(2,1)应分布在直线ax+by-1=0两侧,将(1,0)与(2,1)代入,则(a-1)(2a+b-1)≤0,以a 为横坐标,b 为纵坐标画出区域如下图:则原点到区域内点的最近距离为OA ,即原点到直线2a+b-1=0的距离,OA=55,22a b +表示原点到区域内点的距离的平方,∴22a b +的最小值为15,故选A.考点:线性规划.8.点()11-,到直线10x y -+=的距离是( ). A .21 B .23 C .22D .223【答案】D【解析】试题分析:根据点到直线的距离公式,()221(1)132211d --+==+-,故选D 。

高中数学 人教版 必修二 直线与圆的方程综合复习题(含答案)

高中数学 人教版 必修二 直线与圆的方程综合复习题(含答案)

直线与圆的方程综合复习(含答案)一. 选择题1.已知点A(1,. 3),B(-1,33),则直线AB 的倾斜角是( C ) A 3B 6C 23D 562.已知过点A(-2,m)和B (m,4)的直线与直线2x+y-1=0平行,则m 的值为( C ) A 0 B 2 C -8 D 103.若直线L 1:ax+2y+6=0与直线L 2:x+(a-1)y+(2a -1)=0平行但不重合,则a 等于( D )A -1或2B 23C 2D -14.若点A (2,-3)是直线a 1x+b 1y+1=0和a 2x+b 2y+1=0的公共点,则相异两点 (a 1,b 1)和(a 2,b 2)所确定的直线方程是( A ) A.2x-3y+1=0 B.3x-2y+1=0 C.2x-3y-1=0 D.3x-2y-1=05.直线xcos θ+y-1=0 (θ∈R )的倾斜角的范围是 ( D )A.[)π,0B.⎪⎭⎫⎢⎣⎡ππ43,4C.⎥⎦⎤⎢⎣⎡-4,4ππD.⎪⎭⎫⎢⎣⎡⎥⎦⎤⎢⎣⎡πππ,434,06.“m=12”是“直线(m+2)x+3my+1=0与直线(m-2)x+(m+2y)-3=0相互垂直”的( B )A 充分必要条件B 充分而不必要条件C 必要而不充分条件D 既不充分也不必要条件7.已知A(7,-4)关于直线L 的对称点为B (-5,6),则直线L 的方程为(B ) A 5x+6y-11=0 B 6x-5y-1=0 C 6x+5y-11=0 D 5x-6y+1=0 8.已知直线1l 的方向向量a=(1,3),直线2l 的方向向量b=(-1,k).若直线2l 经过点(0,5)且1l 2l ,则直线2l 的方程为( B )A x+3y-5=0B x+3y-15=0C x-3y+5=0D x-3y+15=0 9. 过坐标原点且与圆2x +2y -4x+2y+52=0相切的直线方程为( A )A y=-3x 或y= 13xB y=3x 或y= -13xC y=-3x 或y= -13xD y=3x 或y= 13x10.直线x+y=1与圆2x +2y -2ay=0(a>0)没有公共点,则a 的取值范围是(A )A (02-1,)B (2-1, 2+1)C (-2-1, 2-1)D (0, 2+1) 11.圆2x +2y -4x-4y-10=0上的点到直线x+y-14=0的最大距离与最小距离的差是( C )A 36B 18C 62D 5212.以直线:y=kx-k 经过的定点为P 为圆心且过坐标原点的圆的方程为(D ), A 2x +2y +2x=0 B 2x +2y +x=0 C 2x +2y -x=0 D 2x +2y -2x-013.已知两定点A(-2,0),B(1,0),如果定点P 满足PA=2PB,则定点P 的轨迹所 包围的面积等于( B )A B 4 C 8 D 914.若直线3x+y+a=0过圆2x +2y +2x-4y=0的圆心,则a 的值为( B )A 1B -1C 3D -315.若直线2ax-by+2=0 (a >0,b >0)始终平分圆x 2+y 2+2x-4y+1=0的周长,则ba11+的最小值是( C )A.41B.2C.4D.2116.若直线y=k(x-2)+4与曲线y=1+24x -有两个不同的交点,则k 的取值范围是 ( A )A.⎥⎦⎤⎝⎛43,125 B.⎪⎭⎫⎝⎛+∞,125 C.⎥⎦⎤⎝⎛43,21D.⎪⎭⎫⎝⎛125,17.设两圆1C ,2C 都和两坐标轴相切,且过点(4,1),则两圆心的距离 ︱1C 2C ︱等于( C )A 4B 42C 8D 8218.能够使得圆x 2+y 2-2x+4y+1=0上恰有两个点到直线2x+y+c=0距离等于1的c的一个值为 ( C ) A.2B.5C.3D.3519.若直线by ax +=1与圆x 2+y 2=1有公共点,则( D )A.a 2+b 2≤1B.a 2+b 2≥1C.2211ba +≤1 D.2211ba +≥120.已知A (-3,8)和B (2,2),在x 轴上有一点M ,使得|AM|+|BM|为最短,那么点M 的坐标为( B ) A.(-1,0)B.(1,0)C.⎪⎭⎫⎝⎛0522,D. ⎪⎭⎫⎝⎛522,021.直线y=kx+3与圆2(3)x+2(2)y =4相交于M 、N 两点,若︱MN ︱≥23,则k 的取值范围是( A )A [-34,0] B [-∞,-34] [0,∞) C [-33,33] D [-23,0] 22.(广东理科2)已知集合{(,)|,A x y x y =为实数,且221}x y +=,{(,)|,B x y x y =为实数,且}y x =,则AB 的元素个数为(C )A .0B .1C .2D .3 23.(江西理科9)若曲线02221=-+x y x C :与曲线 0)(2=--m mx y y C :有四个不同的交点,则实数m 的取值范围是 ( B ) A. )33,33(-B. )33,0()0,33( -C. ]33,33[-D. ),33()33,(+∞--∞ 答案:B 曲线0222=-+x y x 表示以()0,1为圆心,以1为半径的圆,曲线()0=--m mx y y 表示0,0=--=m mx y y 或过定点()0,1-,0=y 与圆有两个交点,故0=--m mx y 也应该与圆有两个交点,由图可以知道,临界情况即是与圆相切的时候,经计算可得,两种相切分别对应3333=-=m m 和,由图可知,m 的取值范围应是)33,0()0,33( -二.填空题24.已知圆C 经过)3,1(),1,5(B A 两点,圆心在X 轴上,则C 的方程为10)2(22=+-y x ___________。

高中数学 人教版 必修二 直线与圆的方程综合复习题(含答案)

高中数学 人教版 必修二 直线与圆的方程综合复习题(含答案)

直线与圆的方程综合复习〔含答案〕一. 选择题1.已知点A(1,. 3),B(-1,33),则直线AB 的倾斜角是〔 C 〕 A 3B 6C 23D 562.已知过点A(-2,m)和B 〔m,4〕的直线与直线2x+y-1=0平行,则m 的值为〔 C 〕 A 0 B 2 C -8 D 103.假设直线L 1:ax+2y+6=0与直线L 2:x+(a-1)y+(2a -1)=0平行但不重合,则a 等于〔 D 〕A -1或2 B23C 2D -1 4.假设点A 〔2,-3〕是直线a 1x+b 1y+1=0和a 2x+b 2y+1=0的公共点,则相异两点 〔a 1,b 1〕和〔a 2,b 2〕所确定的直线方程是( A ) A.2x-3y+1=0 B.3x-2y+1=0 C.2x-3y-1=0 D.3x-2y-1=0 5.直线xcos θ+y-1=0 (θ∈R )的倾斜角的范围是 ( D )A.[)π,0B.⎪⎭⎫⎢⎣⎡ππ43,4C.⎥⎦⎤⎢⎣⎡-4,4ππD.⎪⎭⎫⎢⎣⎡⎥⎦⎤⎢⎣⎡πππ,434,06.“m= 12〞是“直线〔m+2〕x+3my+1=0与直线〔m-2〕x+(m+2y)-3=0相互垂直〞的〔 B 〕A 充分必要条件B 充分而不必要条件C 必要而不充分条件D 既不充分也不必要条件7.已知A(7,-4)关于直线L 的对称点为B 〔-5,6〕,则直线L 的方程为〔B 〕 A 5x+6y-11=0 B 6x-5y-1=0 C 6x+5y-11=0 D 5x-6y+1=0 8.已知直线1l 的方向向量a=(1,3),直线2l 的方向向量b=(-1,k).假设直线2l 经过点〔0,5〕且1l 2l ,则直线2l 的方程为〔 B 〕A x+3y-5=0B x+3y-15=0C x-3y+5=0D x-3y+15=0 9. 过坐标原点且与圆2x +2y -4x+2y+52=0相切的直线方程为〔 A 〕A y=-3x 或y= 13xB y=3x 或y= -13xC y=-3x 或y= -13xD y=3x 或y= 13x10.直线x+y=1与圆2x +2y -2ay=0(a>0)没有公共点,则a 的取值范围是〔A 〕A (02-1,)B (2-1, 2+1)C (-2-1, 2-1)D (0, 2+1) 11.圆2x +2y -4x-4y-10=0上的点到直线x+y-14=0的最大距离与最小距离的差是〔 C 〕A 36B 18C 62D 5212.以直线:y=kx-k 经过的定点为P 为圆心且过坐标原点的圆的方程为〔D 〕, A 2x +2y +2x=0 B 2x +2y +x=0 C 2x +2y -x=0 D 2x +2y -2x-013.已知两定点A(-2,0),B(1,0),如果定点P 满足PA=2PB,则定点P 的轨迹所 包围的面积等于〔 B 〕A B 4 C 8 D 914.假设直线3x+y+a=0过圆2x +2y +2x-4y=0的圆心,则a 的值为〔 B 〕A 1B -1C 3D -315.假设直线2ax-by+2=0 (a >0,b >0)始终平分圆x 2+y 2+2x-4y+1=0的周长,则ba 11+的最小值是〔 C 〕 A.41B.2C.4D.2116.假设直线y=k(x-2)+4与曲线y=1+24x -有两个不同的交点,则k 的取值范围是 〔 A 〕A.⎥⎦⎤⎝⎛43,125 B.⎪⎭⎫⎝⎛+∞,125 C.⎥⎦⎤⎝⎛43,21D.⎪⎭⎫⎝⎛125,0 17.设两圆1C ,2C 都和两坐标轴相切,且过点〔4,1〕,则两圆心的距离 ︱1C 2C ︱等于〔 C 〕A 4B 42C 8D 8218.能够使得圆x 2+y 2-2x+4y+1=0上恰有两个点到直线2x+y+c=0距离等于1的c的一个值为 〔 C 〕 A.2B.5C.3D.3519.假设直线by ax +=1与圆x 2+y 2=1有公共点,则( D )A.a 2+b 2≤1B.a 2+b 2≥1C.2211b a +≤1 D.2211b a +≥120.已知A 〔-3,8〕和B 〔2,2〕,在x 轴上有一点M ,使得|AM|+|BM|为最短,那么点M 的坐标为〔 B 〕A.(-1,0)B.(1,0)C.⎪⎭⎫⎝⎛0522,D. ⎪⎭⎫⎝⎛522,021.直线y=kx+3与圆2(3)x +2(2)y =4相交于M 、N 两点,假设︱MN ︱≥23,则k 的取值范围是〔 A 〕A [-34,0] B [-∞,-34] [0,∞〕 C [-33,33] D [-23,0] 22.〔X 理科2〕已知集合{(,)|,A x y x y =为实数,且221}x y +=,{(,)|,B x y x y =为实数,且}y x =,则A B 的元素个数为〔 C 〕A .0B .1C .2D .3 23.〔X 理科9〕假设曲线02221=-+x y x C :与曲线 0)(2=--m mx y y C :有四个不同的交点,则实数m 的取值范围是 ( B ) A. )33,33(-B. )33,0()0,33( -C. ]33,33[-D. ),33()33,(+∞--∞ 答案:B 曲线0222=-+x y x 表示以()0,1为圆心,以1为半径的圆,曲线()0=--m mx y y 表示0,0=--=m mx y y 或过定点()0,1-,0=y 与圆有两个交点,故0=--m mx y 也应该与圆有两个交点,由图可以了解,临界情况即是与圆相切的时候,经计算可得,两种相切分别对应3333=-=m m 和,由图可知,m 的取值范围应是)33,0()0,33( -二.填空题24.已知圆C 经过)3,1(),1,5(B A 两点,圆心在X 轴上,则C 的方程为10)2(22=+-y x ___________。

直线与圆的方程单元测试题含答案

直线与圆的方程单元测试题含答案
在判断直线与圆的位置关系时,需要注意直线的斜率是否存在以及圆心和半径的取值是否合 理。
掌握直线与圆的位置关系判断是解决直线与圆相关问题的基础,对于提高解题能力和数学思 维能力有很大的帮助。
定义:直线方程的基本形式是y=kx+b,其中k是斜率,b是截距。
斜率:表示直线与x轴的夹角,当k>0时,夹角为锐角;当k<0时,夹角为钝角。 截距:表示直线与y轴的交点,当b>0时,交点在正半轴上;当b<0时,交点在负半轴 上。
圆的一般方程:x^2+y^2+Dx+Ey+F=0,其中D、E、F为常数
圆的参数方程:x=a+r*cosθ,y=b+r*sinθ,其中(a,b)为圆心,r为半径,θ为参数
圆的切线方程:在已知圆x^2+y^2+Dx+Ey+F=0上,切线的方程可表示为:D*x*x0+E*y*y0+F*x+E*y+C=0, 其中(x0,y0)为切点
单击此处添加标题
圆的直径的方程:$(x-\frac{x1+x2}{2})^2+(y\frac{y1+y2}{2})^2=(\frac{\sqrt{(x1-x2)^2+(y1-y2)^2}}{2})^2$,其中 $(x1,y1)$和$(x2,y2)$为直径的两个端点
联立方程法:通过将直线方程与圆方程联立,消元求解交点坐标
添加文档副标题
目录
01.
02.
03.
定义:表示直线上的点与固定点之间的距离始终等于一个常数 形式:Ax + By + C = 0,其中A、B、C为常数,且A和B不同时为0 分类:一般式、点斜式、斜截式、两点式和截距式 适用范围:适用于所有直线方程,是直线方程的基本形式
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线和圆的方程
一、选择题
1 若圆C 与圆1)1()2(2
2=-++y x 关于原点对称,则圆C 的方程是( ﻩ)
A.1)1()2(2
2=++-y x ﻩ
B .1)1()2(2
2=-+-y x
C .1)2()1(2
2
=++-y x ﻩﻩﻩ
D.1)2()1(2
2
=-++y x 2
在直角坐标系中,直线033=-+y x 的倾斜角是(ﻩ)
A.6
π
ﻩ B.
3
π
ﻩ ﻩﻩC .65π ﻩﻩﻩD .32π
3 直线0=++c by ax 同时要经过第一第二 第四象限,则c b a 、、应满足( )
A.0,0<>bc ab B .0,0<>bc ab C .0,0>>bc ab ﻩD .0,0<<bc ab 4 已知直线22
1:1+=
x y l ,直线2l 过点)1,2(-P ,
且1l 到2l 的夹角为
45,则直线2l 的方程是(ﻩ)
A.1-=x y
B.5
3
31+=
x y ﻩ C.73+-=x y D.73+=x y
5 不等式062>--y x 表示的平面区域在直线062=--y x 的( )
A .左上方ﻩ ﻩ
B .右上方
C .左下方 D.左下方
6 直线0943=--y x 与圆42
2
=+y x 的位置关系是( ﻩ)
A .相交且过圆心ﻩﻩ
B .相切
C .相离ﻩ
D .相交但不过圆心
已知直线)0(0≠=++abc c by ax 与圆12
2
=+y x 相切,则三条边长分别为
c b a 、、的三角形(

A .是锐角三角形 ﻩ
B .是直角三角形ﻩ
C .是钝角三角形ﻩ
D .不存在 8 过两点)9,3()1,1(和-的直线在x 轴上的截距是(ﻩﻩ)
A.2
3
-

B.3
2-
ﻩ ﻩ C.5
2
ﻩ ﻩD .2
9 点)5,0(到直线x y 2=的距离为(
)
A .
25ﻩﻩﻩ B.5 ﻩﻩ C .2
3
ﻩ D .
2
5
10 下列命题中,正确的是(ﻩ )
A .点)0,0(在区域0≥+y x 内 ﻩ
B .点)0,0(在区域01<++y x 内 C.点)0,1(在区域x y 2>内

D .点)1,0(在区域01<+-y x 内
11 由点)3,1(P 引圆92
2
=+y x 的切线的长是 (

A.2ﻩ
ﻩB.19 ﻩﻩﻩC .1ﻩ ﻩ
D.4
12 三直线102,1034,082=-=+=++y x y x y ax 相交于一点,则a 的值是( )
A.2-
ﻩB.1-ﻩﻩﻩ C .0
ﻩD .1
13 已知直线01:,03:21=+-=+y kx l y x l ,若1l 到2l 的夹角为
60,则k的值是
A .03或 ﻩﻩﻩB.03或- ﻩﻩC.3ﻩ
D .3-
14 如果直线02012=-+=++y x y ax 与直线互相垂直,那么a的值等于( )
A .1ﻩ
B.31-
ﻩﻩ ﻩC.3
2
-ﻩﻩﻩﻩD .2- 15 若直线023022=--=++y x y ax 与直线 平行,那么系数a 等于(ﻩ)
A .3- ﻩﻩ B.6-
C .2
3
-
D .
3
2 16 由42
2
=+=y x x y 和圆所围成的较小图形的面积是( ﻩ)
A.
4
π
ﻩﻩﻩﻩB .πﻩﻩ C .
4
3π ﻩﻩD.
2
3π 17 动点在圆12
2
=+y x 上移动时,它与定点)0,3(B 连线的中点的轨迹方程是( ﻩ)
A.4)3(2
2=++y x ﻩﻩ ﻩB.1)3(2
2=+-y x C.14)32(2
2=+-y x ﻩﻩ
D.2
1
)23(22=++
y x 18 参数方程⎩⎨
⎧+-=+=θ
θsin 33cos 33y x 表示的图形是( )
A .圆心为)3,3(-,半径为9的圆 ﻩ
B .圆心为)3,3(-,半径为3的圆
C .圆心为)3,3(-,半径为9的圆
D.圆心为)3,3(-,半径为3的圆
19 以点)1,5()3,1(-和为端点的线段的中垂线的方程是
20 过点023)4,3(=+-y x 且与直线平行的直线的方程是
21 直线y x y x 、在0623=+-轴上的截距分别为
22 三点)2
,5()3,4(32k
及),,(-在同一条直线上,则k 的值等于
23 若方程01422
2=+++-+a y x y x 表示的曲线是一个圆,则a 的取值范围是
三、解答题
24 若圆经过点)2,0(),0,4(),0,2(C B A ,求这个圆的方程
25 求到两个定点)0,1(),0,2(B A -的距离之比等于2的点的轨迹方程
26 求点)2,3(-A 关于直线012:=--y x l 的对称点'
A 的坐标
27已知圆C与圆022
2=-+x y x 相外切,并且与直线03=+y x 相切于点
)3,3(-Q ,求圆C 的方程
---直线和圆的方程
答案
一、
二、19 02=--y x 20 053=--y x ﻩ21 32和- 22 12ﻩ
23 4<a
三、24 设所求圆的方程为02
2=++++F Ey Dx y x ,
则有⎪⎩⎪⎨⎧=-=-=⇒⎪⎩⎪⎨⎧=++=++=++8
660420416024F E D F E F D F D 所以圆的方程是08662
2=+--+y x y x
25 设),(y x M 为所求轨迹上任一点,则有
2=MB
MA
042)1()2(222
222=+-⇒=+-++∴
y x x y x y x
26 设),('b a A ,则有)54,513( 5451301222321232
'-∴⎪⎩
⎪⎨⎧=-=⇒⎪⎩⎪⎨⎧=---+⋅-=⋅-+A b a b a a b
27 设圆C 的圆心为),(b a ,
则6234004231)1(333
22==⇒⎩⎨⎧-==⎩⎨⎧==⇒⎪⎪⎩
⎪⎪⎨⎧++
=+-=-+r r b a b a b a b a a b 或或 所以圆C 的方程为36)34(4)4(2
222=++=+-y x y x 或。

相关文档
最新文档