与直角三角形有关的折叠问题
专题:勾股定理折叠问题(1)

中考在线: (2011•内江)如图,在直角坐标系中,矩形ABC0的 边OA在x轴上,边0C在y轴上,点B的坐标为 (1,3),将矩形沿对角线AC翻折,B点落在D点的 位置,且AD交y轴于点E,那么点D的坐标为( ).
三、正方形的折叠
1.将边长为8cm的正方形ABCD折叠,使点D落在BC边的中
点E处,点A落在F处,折痕为MN,
A
C´
CD
B
2.如图,Rt⊿ABC中,∠C=90°, D为AB上一点,将 ⊿ABC沿DE折叠,使点B与点A重合,
①若AC=4,BC=8,求CE的长。 ②若AC=24,BC=32,求折痕DE的长.
A
D
CE
B
二、矩形的折叠
1.如图,折叠矩形纸片ABCD,先折出折痕(对角线)BD, 再折叠,使AD落在对角线BD上,得折痕DG,若AB = 2,BC = 1, 求AG。
(2)设AE=a,AB=b, BF=c,试猜想a、b、c之间有何等量关
系,并给予证明.
A′
D B′
EA
CF
B
6.如图,矩形ABCD的边长AB=6,BC=8,将矩形折叠, 使点C与点A重合,则折痕EF长为______.
7.动手操作:在矩形纸片ABCD中,AB=3,AD=5.如图所
示,折叠纸片,使点A落在BC边上的E处,折痕为PQ,当
①求线段CN的长
②求AM ③求折痕MN的长
总结:①折叠的规律是,折叠部 分的图形,折叠前后,关于折痕
A M
A´
D 成轴对称,两图形全等。
②注意利用线段关系和勾股定理 列方程计算
N
BE C
变式:(2015•自贡)如图,在矩形ABCD中,AB=4, AD=6,E是AB边的中点,F是线段BC上的动点,将
初二折叠问题

1、如图,在直角三角形ABC 中,∠C=90º,沿着B 点的一条直线BE 折叠这个三角形,使C 点与AB 边上的一点D 重合。
当∠A 满足什么条件时,点D 恰好是AB 的中点?写出一个你认为适当的条件,并利用此条件证明D 为AB 中点。
2、将长方形ABCD 的纸片,沿EF 折成如图所示,延长C`E 交AD 于H ,连结GH 。
求证:GEHF 是菱形4、如图,AD 是❒ABC 的中线,∠ADC=45º,把❒ADC 沿AD 对折,点C 落在点C'的位置,求BC'与BC 之间的数量关系。
5、在梯形纸片ABCD 中,AD BC ∥,AD CD >,将纸片沿过点D 的直线折叠,使点C 落在AD 上的点C '处,折痕DE 交BC 于点E ,连结C E '. (1)求证:四边形CDC E '是菱形;(2)若BC CD AD =+,试判断四边形ABED 的形状,并加以证明.ABCE DABCDC'BA D F ED'C'G H6、如图,将一张对边平行的纸条先沿 折叠,点A 、B 分别落在 、 处,线段 与 交于点 ,再将纸条的另一部分 沿 折叠,点C 、D 分别落在 、 处,且使 经过点 . (1)求证:四边形 是平行四边形;(2)当翻折角 度时,四边形是菱形.(将答案直接填写在横线上)∠EMF=90oC'B’D‘B M CEA F D7、现有一张矩形纸片ABCD (如图),其中AB=4㎝,BC=6㎝,点E 是BC 的中点。
实施操作将直线AE 对折,使点B 落在梯形AECD 内,记为点B / (1)请用尺规,在图中作出 (保留作图痕迹); (2)试求B / 、C 两点之间的距离。
在画出图形的基础上,根据轴对称变化的性质,可得3,4''====E B BE AB AB 。
根据等面积法,通过求四边形A ABB '的面积,可求得='BB 512。
第2章 三角形折叠问题专题练习(答案)

三角形折叠问题专题练习一、选择题1.如图所示,在△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B恰好落在AC 边上的点E处,如果∠A=26°,那么∠CDE度数为()A.71°B.64°C.80°D.45°【答案】A2.将一张正方形纸片,按如图所示步骤①,②,沿虚线对折两次,然后沿③中的虚线剪去一个角,展开铺平后的图形是()【答案】B3.将一等腰直角三角形纸片对折后再对折,得到如图所示的图形,然后将阴影部分剪掉,把剩余部分展开后的平面图形是()【答案】A4.学剪五角星:如图,先将一张长方形纸片按图①的虚线对折,得到图②,然后将图②沿虚线折叠得到图③,再将图③沿虚BC剪下△ABC,展开即可得到一个五角星.如果想得到一个正五角星(如图④),那垂直A.B.C.D.A.126°B.108°C.100°D.90°【答案】A5.如图所示,在Rt△ABC中,∠ACB=90°,∠A=55°,将其折叠,使点A落在边CB上的点A′处,折痕为CD,则∠A′DB等于()A.40°B.30°C.20°D.10°【答案】C6.如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿着直线AD对折,点C落在点E的位置.如果=6,那么线段BE的长度为().6 B.6 2 C.2 3 D.32【答案】D【解析】根据折叠的性质知,CD=ED,∠CDA=∠ADE=45°,∴∠CDE=∠BDE=90°,∵BD=CD,BC=6,∴BD=ED=3,即△EDB是等腰直角三角形,∴BE=2BD=2×3=32,故选D.7.如图,把等腰直角△ABC沿BD折叠,使点A落在边BC上的点E处.下面结论错误的是()A.AB=BE B.AD=DC C.AD=DE D.AD=EC【答案】B【解析】由折叠知△BAD≌△BED,∴AB=BE,AD=DE.ABC是等腰直角三角形,∴∠C=45°.DEC=90°,∴∠EDC=∠C=45°,∴DE=EC,∴AD=EC.∵CD>DE,∴CD>AD,故选B.8.如图所示,点D在△ABC的边AC上,将△ABC沿BD翻折后,点A恰好与点C重合.若BC=5,CD=3,则BD的长为()A.1B.2C.3D.4【答案】D9. 有一张直角三角形纸片,两直角边长AC =6 cm ,BC =8 cm ,将△ABC 折叠,使点B 与点A 重合,折痕为DE (如图),则CD 等于( )A .254cmB .223cmC .74cmD .53cm【答案】C【解析】设CD =x cm ,则AD =BD =(8-x )cm ,又AC =6 cm ,在Rt △ACD 中,根据勾股定理,得62+x 2=(8-x )2,∴x =74.二、填空题10.把一张纸按图中那样折叠后,若得到∠AOB ′=70°,则∠BOG =__________.【答案】55°11.如图所示,将△ABC 沿着DE 翻折,B 点落到了B'点处.若∠1+∠2=80°,则∠B'=__________.【答案】40°【解析】由外角定理可得∠1+∠2=2∠B',∴∠B'=40°.12.如图所示,已知等边三角形纸片ABC ,点E 在AC 边上,点F 在AB 边上,沿EF 折叠,使点A 落在BC 边上的点D 的位置,且ED ⊥BC ,则∠EFD =__________.【答案】45°【解析】由翻折的性质可知∠AFE =∠EFD .∵△ABC 为等边三角形,∴∠B =60°,∠C =60°,∠A =∠EDF =60°. ∵ED ⊥BC ,∴△EDC 为直角三角形.∴∠FDB =30°.∴∠AFE +∠EFD =60°+30°=90°. ∴∠EFD =45°.13.如图所示,在等腰三角形ABC 中,AB =AC ,沿直线MN 折叠,使点A 与点B 重合,折痕MN 与AC 交于点D ,已知∠DBC =15°,则∠A 的度数是__________.【答案】50°14.如图所示,在Rt △ABC 中,∠ACB =90°,将边BC 沿斜边上的中线CD 折叠到CB ′,如果∠B =50°,那么∠ACB ′=__________.【答案】10°15.如图所示,把△ABC 沿EF 翻折,折叠后的图形如图所示.如果∠A =60°,∠1=95°,那么∠2=__________.【答案】25°【解析】∵把△ABC 沿EF 翻折, ∴∠BEF =∠B ′EF ,∠CFE =∠C ′FE . ∴180°-∠AEF =∠1+∠AEF , 180°-∠AFE =∠2+∠AFE .∵∠1=95°,∴∠AEF =12×(180°-95°)=42.5°.∴∠AFE =180°-60°-42.5°=77.5°. ∴180°-77.5°=∠2+77.5°.∴∠2=25°.16.如图所示,已知△ABC 中,DE ∥BC ,将△ADE 沿DE 翻折,点A 落在平面内的点A ′处,若∠B =50°,则∠BDA ′的度数是__________.【答案】80°【解析】∵DE∥BC,∴∠ADE=∠B=50°.∵∠ADE=∠A′DE,∴∠A′DA=2∠B.∴∠BDA′=180°-2∠B=80°.17.如图所示,在等腰三角形纸片ABC中,AB=AC,∠A=50°,折叠该纸片,使点A落在点B处,折痕为DE,则∠CBE=__________.【答案】15°18.如图,△ABC中,D是边AB上的一点,过D作DE∥BC交边AC于点E,过点A作关于直线DE的对称点A',连结A'D交AC于点O,A'D与AC互相平分.若△DOE的面积为1,则△ABC的面积为__________.A'OEDCBA【答案】1819.如图,在Rt△ABC中,∠C=90°,沿过点B的一条直线BE折叠△ABC,使点C恰好落在AB边的中点D处,则∠A的度数等于__________.【答案】30°【解析】由题意得,BC=BD=AD,∴在Rt△ABC中,BC=12AB,∴∠A=30°.20.如图,D是AB边上的中点,将△ABC沿过点D的直线折叠,使点A落在BC边上的F处,若∠B=50°,则∠BDF=__________.【答案】80°【解析】由折叠得AD=DF,又AD=BD,∴BD=DF,又∠B=50°,∴∠BDF=180°-50°×2=80°..如图,一副三角板拼在一起,O为AD的中点,AB=a.将△ABO沿BO对折于△A′BO,M为BC上一动点,则A′M的最小值为__________.【答案】6-24a22.如图,等边△ABC的边长为1cm,D、E分别是AB、AC上的点,将△ADE沿直线DE折叠,点A落在点A'处,且点A'在△ABC外部,则阴影部分图形的周长为__________cm.A'CABDE【答案】3【解析】折叠问题的实质是“轴对称”,解题关键是找出经轴对称变换所得的等量关系.将△ADE沿直线DE折叠,点A落在点A'处,所以AD=A'D,AE=A'E,则阴影部分图形的周长等于BC+BD+CE+A'D+A'E=BC+BD+CE+AD+AE=BC+AB+AC=3cm.45︒60︒A′BMAODC。
三角形折叠问题初二

三角形折叠问题初二一、将一个等腰三角形沿其高折叠,折叠后的图形与原图形相比,下列说法正确的是:A. 面积变小B. 周长变小(答案)C. 角度改变D. 形状改变二、将一个直角三角形沿其一条直角边折叠,若折叠后的图形与原图形完全重合,则该三角形一定是:A. 等腰三角形B. 等边三角形C. 直角三角形(答案)D. 等腰直角三角形三、将一个等边三角形沿其一条中线折叠,折叠后的图形与原图形相比,下列说法错误的是:A. 面积不变B. 周长不变C. 角度不变D. 形状改变(答案)四、将一个任意三角形沿其一条高折叠,折叠后的图形中,与原三角形不重合的部分是一个:A. 三角形B. 四边形(答案)C. 五边形D. 六边形五、将一个等腰直角三角形沿其斜边上的高折叠,折叠后的图形与原图形相比,下列说法正确的是:A. 面积变为原来的一半B. 周长不变C. 有一个角变为原来的一半(答案)D. 形状改变六、将一个等边三角形沿过其一个顶点且将该顶点对边平分的直线折叠,折叠后的图形与原图形相比,下列说法正确的是:A. 面积不变,但形状改变B. 周长不变,但面积改变C. 面积和周长都不变,但形状改变(答案)D. 面积、周长和形状都不变七、将一个直角三角形沿其斜边上的中线折叠,折叠后的图形是:A. 两个直角三角形B. 两个等腰三角形(答案)C. 两个等边三角形D. 两个任意三角形八、将一个任意三角形沿其一条中位线折叠,折叠后的图形中,与原三角形重合的部分是一个:A. 三角形B. 四边形C. 与原三角形形状相同的三角形(答案)D. 与原三角形面积相等的三角形九、将一个等腰三角形沿其底边上的高折叠,若折叠后的图形与原图形完全重合,则该三角形的顶角一定是:A. 30°B. 60°(答案)C. 90°D. 120°十、将一个任意三角形沿过其一个顶点且平行于对边的直线折叠,折叠后的图形中,与原三角形不重合的部分是一个:A. 三角形B. 平行四边形(答案)C. 梯形D. 菱形。
利用勾股定理解决折叠问题

三角形中的折叠
例1:一张直角三角形的纸片,如图1所 示折叠,使两个锐角的顶点A、B重合。若 ∠B=30°,AC= 3,求DC的长。 B
E D
C
图1
A(B)
长方形中的折叠
例2:如图2所示,将长方形纸片ABCD的一边 AD向下折叠,点D落在BC边的F处。已知 AB=CD=8cm,BC=AD=10cm,求EC的长。
解:根据折叠可知,△AFE≌△ADE,
∴AF=AD=10cm,EF=ED,
AB=8 cm,EF+EC=DC=8cm, ∴在Rt△ABF中
A
D
BF AF2 AB2 102 82 6cm
FC=BC-BF=4cm 设EC=xcm ,则EF=DC-EC=(8-x)cm
E
在Rt△EFC中,根据勾股定理得
3、将已知边和未知边(用含x的代数式表示) 转化到同一直角三角形中表示出来。
4、利用勾股定理,列出方程,解方程,得解。
课堂小结
❖ 1、标已知; ❖ 2、找相等; ❖ 3、设未知,利用勾股定理,列方程; ❖ 4、解方程,得解。
EC²=FC²=EF² 即x²+4²=(8-x)²,x=3cm,
B
F 图2
C
∴EC的长为3cm。
发挥你的想象力
❖ 长方形还可以怎样折叠,要求折叠 一次,给出两个已知条件,提出问题, 并解答问题。
EAEຫໍສະໝຸດ DDCAD
F
B F
C
C
A
B
B
E FC
课堂小结
解题步骤
1、标已知,标问题,明确目标在哪个直角三 角形中,设适当的未知数x; 2、利用折叠,找全等。
初二数学下册勾股定理处理折叠的三种模型专题复习

初二数学下册勾股定理处理折叠的三种模型专题复习一、模型一:折叠构造直角三角形折叠构造直角三角形是比较常见的一种模型,将直角三角形沿着某条线段进行折叠,可以得到另外一个直角三角形,然后设未知数,表示出这个三角形的三边长,利用勾股定理列出方程,求出未知数的值。
例题1:如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD对折,使它落在斜边AB上,且与AE重合,求CD的长.分析:先通过勾股定理求出线段AB的长度,将直角边AC沿直线AD对折,使它落在斜边AB上,得到AE=AC=6。
求线段CD的长度,可设CD=x,那么DE=CD=x,再表示出线段DB的长度,求出线段BE,利用勾股定理得到关于x的方程。
解:∵两直角边AC=6cm,BC=8cm,在Rt△ABC中,由勾股定理可知AB=10,现将直角边AC沿直线AD对折,使它落在斜边AB上,且与AE重合,则CD=DE,AE=AC=6,∴BE=10-6=4,设DE=CD=x,BD=8-x,在Rt△BDE中,根据勾股定理得:BD^2=DE^2+BE^2,即(8-x)^2=x^2+4^2,解得x=3.即CD的长为3cm.二、模型二:折叠构造全等三角形例题2:如图,在平面直角坐标系中,四边形OABC是矩形,点A的坐标为(4,0),点C的坐标为(0,2),把矩形OABC沿OB折叠,点C落在点D处,DB交OA于点E.(1)求证:OE=BE;(2)求△OEB的面积.分析:(1)通过折叠可知:OC=OD,∠D=∠OCB=90°,由于四边形OABC 为矩形可得:OC=AB,∠BAO=90°,那么∠D=∠BAO=90°,再加上对顶角∠BEA、∠OED相等,通过“AAS”判定两个三角形全等;(2)可设OE=BE=x,然后表示出线段AE的长度为4-x,在直角三角形ABE中,通过勾股定理得到关于x的方程,求出x的值,然后利用三角形的面积公式求出三角形OEB的面积。
勾股定理折叠问题

勾股定理折叠问题勾股定理折叠问题是目前数学界解决的一个难题,也是21世纪优秀数学解决方案的典范。
来自英国伯明翰大学的研究者把该问题解释为:当两个正整数的平方和为另一个正整数时,那么存在一组正整数x,y,z,使得x2+y2=z2。
目前,越来越多的人开始从数学角度探索如何使用勾股定理折叠来解决该类问题。
首先,研究者们必须先完成一个前期的准备,也就是要理解勾股定理。
要想解决这个问题,必须熟悉勾股定理的基本概念:直角三角形的两条直角边的长度称为x和y,直角边上的角称为θ,而x2+y2=z2,则称为勾股定理。
其次,研究者要利用这一理论来解决实际中的问题。
折叠问题是指:现有一个直角三角形,要求折叠后能使其变成一个正方形。
在折叠前,根据勾股定理可知,其中有两条边长相等,若将其中一条边长折叠,使其长度变为两条边之和,则两条边的长度均等,就可以折叠出一个正方形。
另外,在解决勾股定理折叠问题的过程中,求解是确定正方形的关键。
这是一个复杂的过程,一般使用多项式求解法解决,即利用多项式构造一组解,以及其他数学技术和方法来求。
最后,研究者们对勾股定理折叠问题的解决方案做了有效的运用。
如果用多项式求解法,将可以得出精确的解,而且可以用较少的时间完成;如果用其他数学技术,如李宁积分、拉格朗日投影法等也可以实现精确的解决方案。
总而言之,勾股定理折叠问题是数学界一个难解的问题。
英国伯明翰大学的研究者首先将该问题解释为当两个正整数的平方和为另一个正整数时,存在一组正整数x,y,z,使得x2+y2=z2,并提出了一系列求解方案来解决该类问题,而这一求解方案的有效性和精确性也受到了广泛的认可。
因此,勾股定理折叠问题为我们拓展了数学思维,给了我们一种更全面和精确的解决方案,能够更有效地应用于实际问题,为21世纪优秀数学解决方案提供了一个重要的参考示范。
中考数学折叠问题专项突破4--折叠中直角三角形存在性问题

中考数学折叠问题专项突破4--折叠中直角三角形存在性问题模块四 图形折叠中的直角三角形存在性问题【典例1】如图例3-1,在Rt △ABC 中,∠ACB =90°,∠B =30°,BC =3,点D 是BC 边上一动点(不与点B 、C 重合),过点D 作DE ⊥BC 交AB 边于点E ,将∠B 沿直线DE 翻折,点B 落在射线BC 上的点F 处,当△AEF 为直角三角形时,BD 的长为图例3-1图例3-2图例3-3【解析】从题目所给的“当△AEF 为直角三角形时”条件出发,以直角顶点所在位置进行分类讨论. 通过观察及分析可知∠BED =∠DEF =60°,所以∠AEF =180-120°=60°. 即点E 不可能为直角顶点. 分两种情况考虑:①当∠EAF =90°时,如图例3-2所示.∵∠B =30°,BC =3,∴30AC tan BC =︒⨯=⨯2AB AC =,∵∠EAF =90°∴∠AFC =60°,∠CAF =30°在Rt △ACF 中,有:cos AF AC CAF =÷∠÷,24BF AF == 由折叠性质可得:∠B =∠DFE =30°,122BD DF BF === ②当∠AFE =90°时,如图例3-3所示.由折叠性质得:∠B =∠DFE =30°,122BD DF BF ===∴∠AFC =60°,∠F AC =30°∴tan 1CF FAC AC =∠⨯==,所以,BF =2,112BD DF BF ===,综上所述,BD 的长为2或1. 【小结】本题难度适中,要求学生具备分类讨论思想及数形结合解决问题的能力,另外还需要熟练运用勾股定理及相似三角形知识. 通过此题,可总结出:①遇到直角三角形存在性问题时,分类讨论的出发点在于直角顶点的位置;②解决直角三角形存在性问题的方法是数形结合,先作出符合题意的图形,再用勾股定理或相似三角形、三角函数性质解题.【典例2】如图例4-1,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为.图例4-1 图例4-2 图例4-3【解析】此题以“当△CEB′为直角三角形时”为突破口,分析可能是直角顶点的点,得出存在两种情况,即点B′及点E分别为直角顶点.分两种情况考虑:①当∠CEB′=90°时,如图例4-2所示.由折叠性质得:AB=AB′,四边形ABE B′是矩形.所以四边形ABE B′是正方形.此时,BE=AB=3.②当∠CB′E=90°时,如图例4-3所示.由折叠性质知,∠AB′C=90°,所以∠AB′C+∠CB′E=180°.∴点A、B′、C共线在Rt△ABC中,由勾股定理得AC=5由折叠得:AB= AB′=3所以B′C=2设BE=x,则B′E=x,EC=4-x在Rt△ABC中,由勾股定理得:EC2=B′E2+B′C2即:(4-x)2=x2+22 解得:x=1.5.综上所述,BE的值为3或1.5.【小结】本题解题关键在准确对问题进行分类讨论且作出相应图形,要求学生掌握三点共线的理由,折叠的性质及勾股定理的应用.【典例3】如图例5-1,在Rt ABC ∆中,90A ∠=︒,AB AC =,1BC =+,点M ,N 分别是边BC ,AB 上的动点,沿MN 所在的直线折叠B ∠,使点B 的对应点'B 始终落在边AC 上.若'MB C ∆为直角三角形,则BM 的长为 .图例5-1图例5-2图例5-3【解析】通过观察及分析可知,C 点不可能为直角顶点,分两种情况讨论. ①当∠CM B ′=90°时,如图例5-2所示.由折叠知:∠BMN =∠B ′MB =45°,又因为∠B =45°,所以∠BNM =90°,∠MNB ′=90° 即∠BNM +∠MN B ′=180°,所以B 、N 、B ′三点共线,此时B ′与点A 重合.所以,12BM BC == ①当∠CB ′M =90°时,如图例5-3所示.由折叠知∠B =∠B ′=45°,因为∠C =45°,可得∠B ′MC =45°,所以△B ′MC 是等腰直角三角形设BM = B ′M =x ,B ′C =x ,则MC =因为BC ,所以x x +1 解得:x =1,即BM =1.综上所述,BM 或1. 【小结】根据题意判断C 点不可能为直角顶点,分两种情况讨论,利用等腰直角三角形三边关系求解.【典例4】如图例6-1,在∠MAN =90°,点C 在边AM 上,AC =4,点B 为边AN 上一动点,连接BC ,△A’BC 与△ABC 关于BC 所在直线对称. D 、E 分别为AC 、BC 的中点,连接DE 并延长交A’B 所在直线于点F ,连接A’E . 当△A’EF 为直角三角形时,AB 的长为.图例6-1图例6-2图例6-3【解析】分两种情况讨论.①当∠A’FE=90°时,如图例6-2所示.∵D、E分别为AC、BC的中点,∴DE是三角形ABC的中位线,即DE∥BA∴∠A’BA=90°,∴四边形AB A’C为矩形由折叠得AC=A’C,∴四边形AB A’C为正方形,即AB=AC=4.②当∠A’EF=90°时,如图例6-3所示.∵∠A’EF=∠CDE=90°,∴A’E∥CD,∴∠DCE=∠CEA’由折叠知:∠DCE=∠A’CE,∴∠CEA’=∠A’CE,∴A’C=A’E=4又∵E是BC中点,即A’E是Rt△A’BC的中线,∴BC=2A’E=8在Rt△A’BC中,由勾股定理得,A’B=由折叠性质得:AB= A’B=.综上所述,AB的长为4或.【小结】利用中位线性质(三角形的中位线平行于第三边)及正方形判定,用勾股定理求解.1、矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在R t△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如图2.此时ABEB′为正方形.【解析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如图1所示.连结AC,在R t△ABC中,AB=3,BC=4,∴AC,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5-3=2,设BE=x,则EB′=x,CE=4-x,在R t△CEB′中,∵EB′2+CB′2=CE2,∴x2+22=(4-x)2,解得x=32,∴BE=32;②当点B′落在AD边上时,如图2所示.此时ABEB′为正方形,∴BE=AB=3.综上BE长为32或3【小结】本题考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了矩形的性质以及勾股定理.注意本题有两种情况,需要分类讨论,避免漏解.2、如图,矩形纸片ABCD,AB=4,BC=3,点P在BC边上,将△CDP沿DP折叠,点C落在点E处,PE、DE分别交AB于点O、F,且OP=OF,则ADDF的值为A .1113B .1315C .1517D .1719【分析】根据折叠的性质可得出DC =DE 、CP =EP ,由∠EOF =∠BOP 、∠B =∠E 、OP =OF 可得出△OEF ≌△OBP (AA S ),根据全等三角形的性质可得出OE =OB 、EF =BP ,设EF =x ,则BP =x 、DF =4﹣x 、BF =PC =3﹣x ,进而可得出AF =1+x .在R t △DAF 中,利用勾股定理可求出x 的值,即可得出答案. 【解析】根据折叠,可知:△DCP ≌△DEP ,∴DC =DE =4,CP =EP .在△OEF 和△OBP 中,∵90EOF BOP B E OP OF ∠∠∠∠=⎧⎪==︒⎨⎪=⎩,∴△OEF ≌△OBP (AA S ),∴OE =OB ,EF =BP .设EF =x ,则BP =x ,DF =DE ﹣EF =4﹣x .又∵BF =OB +OF =OE +OP =PE =PC ,PC =BC ﹣BP =3﹣x ,∴AF =AB ﹣BF =1+x .在R t △DAF 中,AF 2+AD 2=DF 2,即(1+x )2+32=(4﹣x )2,解得:x =0.6,∴DF =4﹣x =3.4,∴1517AD DF =.故选C . 【小结】本题考查了全等三角形的判定与性质、勾股定理以及解直角三角形,利用勾股定理结合AF =1+x ,求出AF 的长度是解题的关键.3、如图,已知正方形ABCD的边长为3,E是BC上一点,BE Q是CD上一动点,将△CEQ沿直线EQ折叠后,点C落在点P处,连接P A.点Q从点C出发,沿线段CD向点D运动,当P A的长度最小时,CQ的长为()A.3B.3C.32D.3【解析】如图所示:在R t△ABE中,AE=.∵BC=3,BE=,∴EC=3-.由翻折的性质可知:PE=CE=3-.∵AP+PE≥AE,∴AP≥AE-PE.∴当点A、P、E一条直线上时,AP有最小值.∴AP=AE-PE=2-(3-)=3-3.故选A.4、如图,矩形ABCD 中,3AB =,4BC =,点E 是BC 边上一点,连接AE ,把矩形沿AE 折叠,使点B 落在点B '处.当CEB '∆为直角三角形时,BE 的长为____________.【分析】当△CEB ′为直角三角形时,有两种情况: ①当点B ′落在矩形内部时,如答图1所示.连结AC ,先利用勾股定理计算出AC =10,根据折叠的性质得∠AB ′E =∠B =90°,而当△CEB ′为直角三角形时,只能得到∠EB ′C =90°,所以点A 、B ′、C 共线,即∠B 沿AE 折叠,使点B 落在对角线AC 上的点B ′处,则EB =EB ′,AB =AB ′=6,可计算出CB ′=4,设BE =x ,则EB ′=x ,CE =8-x ,然后在R t △CEB ′中运用勾股定理可计算出x .②当点B ′落在AD 边上时,如答图2所示.此时四边形ABEB ′为正方形. 【解析】由题意知,需分两种情况讨论:①当90CB E ︒'∠=时,如图1,由折叠得,90AB E B ︒'∠=∠=,AB AB '=, ∴180AB C ︒'∠=,∴,,A B C '三点共线.在矩形ABCD 中,3AB =,4BC =, ∴5AC =.∵AB AB 3'==,∴2B C AC AB ''=-=. 设BE x =,则4CE BC BE x =-=-,B E x '=,在Rt B CE '∆中,222B E B C CE ''+=,即2222(4)x x +=-,解得32x =. ②当90B EC ︒'∠=时,如图2,由折叠可知ABE AB E '∆∆≌, ∴BE B E '=,90B AB E ︒'∠=∠=,∴四边形ABEB '是正方形,∴3BE AB ==.综上,当CEB '∆为直角三角形时,BE 的长为32或3. 【小结】考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了矩形的性质以及勾股定理.注意本题有两种情况,需要分类讨论,避免漏解.5、如图,在矩形ABCD中,AB=6,AD=,E是AB边上一点,AE=2,F是直线CD上一动点,将△AEF沿直线EF折叠,点A的对应点为点A′,当点E,A′,C三点在一条直线上时,DF的长为_____.【分析】利用勾股定理求出CE,再证明CF=CE即可解决问题.(注意有两种情形)【解析】如图,由翻折可知,∠FEA=∠FEA′,∵CD∥AB,∴∠CFE=∠AEF,∴∠CFE=∠CEF,∴CE=CF,在R t△BCE中,EC==∴CF=CE=,∵AB=CD=6,∴DF=CD﹣CF=6﹣当点F在DC的延长线上时,易知EF⊥EF′,CF=CF′=,∴DF=CD+CF′=【小结】本题考查翻折变换、矩形的性质、勾股定理等知识,本题的突破点是证明△CFE的等腰三角形,属于中考常考题型.6、如图,在菱形ABCD 中,∠DAB =45°,AB =4,点P 为线段AB 上一动点,过点P 作PE ⊥AB 交直线AD 于点E ,将∠A 沿PE 折叠,点A 落在F 处,连接DF ,CF ,当△CDF 为直角三角形时,线段AP 的长为__________.【分析】分两种情形讨论:①如图1,当DF ⊥AB 时,△CDF 是直角三角形;②如图2,当CF ⊥AB 时,△DCF 是直角三角形,分别求出即可.【解析】分两种情况讨论:①如图1,当DF ⊥AB 时,△CDF 是直角三角形.∵在菱形ABCD 中,AB =4,∴CD =AD =AB =4.在R t △ADF 中,∵AD =4,∠DAB =45,DF =AF,∴AP 12=AF = ②如图2,当CF ⊥AB 时,△DCF 是直角三角形.在R t △CBF 中,∵∠CFB =90°,∠CBF =∠A =45°,BC =4,∴BF =CF,∴AFAP 12=AF=2AP2【小结】本题考查了菱形的性质,等腰直角三角形的性质,折叠的性质,熟练掌握折叠的性质是解题的关键,正确画出图象,注意分类讨论的思想,属于中考常考题型.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持.
与直角三角形有关的折叠问题(北师版)
满分100分答题时间30分钟
单选题(本大题共10小题,共100分
1.(本小题10分)如图,将长方形纸片ABCD折叠,使点B与点D重合,折痕为EF,已知AB=6cm,BC=18cm,
则Rt△CDF的面积是( )
• A.
• B.
• C.
{"A":"3","B":"
• D.
2.(本小题10分)如图,在长方形纸片ABCD中,AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为A
E,且EF=3,则AB的长为( )
• A. 3
• B. 4
• C. 5
• D. 6
文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. • 3.(本小题10分)如图,折叠矩形的一边AD,使点D落在BC边上的点F处,已知AB=4cm,BC=5cm,则EF=( )
• A. 2cm
• B. cm
• C. cm
• D. 3cm
4.(本小题10分)如图所示,将一个长方形纸片ABCD沿对角线AC折叠.点B落在点E处,AE交DC于点F,
已知AB=8cm,BC=4cm.则折叠后重合部分的面积为( )
• A. 5
• B. 6
• C. 10
• D. 20
5.(本小题10分)如图,把一张长方形纸片ABCD折叠起来,使其对角顶点A与C重合,若长方形的长BC为16,宽AB
为8,则折叠后重合部分的面积是( )
• A. 30
• B. 40
• C. 60
• D. 80
6.(本小题10分)如图,已知边长为6的等边三角形ABC纸片,点E在AC边上,点F在AB边上,沿着EF折叠,使点A
落在BC边上的点D的位置,且ED⊥BC,则CE的长是( )
• A.
• B.
• C.
{"A":"<img src
• D.
7.(本小题10分)如图,在Rt△ABC中,∠ABC=90°,∠C=60°,AC=6,将BC向BA方向翻折过去,使点C落在BA上的
点C′处,折痕为BE,则EC的长为( )
• A.
• B.
• C.
• D.
•
{"A":"<img src
8.(本小题10分)将长方形纸片ABCD按如图所示的方式折叠,AE,EF为折痕,∠BAE=30°,AB=,折叠后,点C落在AD边上的处,并且点B落在边上的处.则BC的长为( )
• A.
• B. 4
• C. 6
• D.
{"A":"2","B":"
9.(本小题10分)如图,AD是Rt△ABC斜边上的中线,把△ADC沿AD对折,点C落在点C′处,连接CC′,则图中共有
( )个等腰三角形.
• A. 2
• B. 3
• C. 4
• D. 5
10.(本小题10分)如图,在矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD于点F.若C
F=2,FD=4,则BC的长为( )
• A.
• B.
• C.
• D.。