北京大学线性代数期末考试
2020-2021学年线性代数期末考试题(含答案)

线性代数20-21学年第二学期期末考试试卷一、填空题(将答案写在答题纸的相应位置,不写解答过程。
每空3分,共15分)1.⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-0410******** =______________________. 2.设A 是n 阶矩阵,秩(A )<n ,且A *≠0,则齐次线性方程组Ax=0的基础解系中所含解向量的个数为_____________________.3.若A ,B 均为3阶矩阵,且|A |=2,B =-3E ,则|AB |=_____________________. 4.设A 为n 阶矩阵,若行列式|5E -A |=0,则A 必有一特征值为__________________.5.二次型3223222122x x x x x +--的秩为_____________________. 1.若A ,B 为3阶矩阵,且|A |=3,B =-3E ,则|AB |=_____________________. 2.若向量组α1=(1,0,0),α2=(2,t,4),α3=(0,0,6)线性相关,则t=_____________. 3.设矩阵A =⎪⎪⎪⎭⎫⎝⎛332313322212312111b a b a b a b a b a b a b a b a b a ,其中a i b i ≠0(i =1,2,3).则秩(A )=_______________. 4.设A 为n 阶矩阵,若齐次线性方程组Ax =0只有零解,则非齐次线性方程组Ax=b 的解的个数为_____________________.5.()()===⎪⎪⎪⎭⎫⎝⎛=A R A 则秩设,,3,2,1,321 αββα____________________()==A R A 则秩已知1101001100001100001100101 .1________________________.2224, 4., ,000200011132200233121232221是负定的二次型时取值为.当则相似与.已知矩阵x x x tx x x x f t y x y B x A ++---===⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=., ,222252322323121232221==+=+++++=b a y y f x bx x x x ax x x x f 则经正交变换化为标准形.已知二次型二、选择题(从下列各题四个备选答案中选出一个正确答案,并将其代号写在答题纸的相应位置。
(完整版)线性代数期末测试题及其答案.doc

线性代数期末考试题一、填空题(将正确答案填在题中横线上。
每小题 5 分,共 25 分)1 3 1 1.若0 5 x 0,则__________。
1 2 2x1 x2 x3 02.若齐次线性方程组x1 x2 x3 0 只有零解,则应满足。
x1x2x303.已知矩阵A,B,C (c ij )s n,满足 AC CB ,则 A 与 B 分别是阶矩阵。
4.已知矩阵A为 3 3的矩阵,且| A| 3,则| 2A|。
5.n阶方阵A满足A23A E 0 ,则A1。
二、选择题(每小题 5 分,共 25 分)6.已知二次型 f x12 x22 5x32 2tx1x2 2x1 x3 4x2 x3,当t取何值时,该二次型为正定?()A. 40 B.4 4C. 0 t4 4 1t5t D. t2 5 5 5 51 42 1 2 37.已知矩阵A 0 3 4 , B 0 x 6 ,且 A ~ B ,求x的值()0 4 3 0 0 5A.3B.-2C.5D.-58 .设 A 为 n 阶可逆矩阵,则下述说法不正确的是()A. A0B. A 1 0C.r (A) nD.A 的行向量组线性相关9 .过点( 0, 2, 4)且与两平面x 2z 1和 y 3z 2 的交线平行的直线方程为()1xy 2 z 4A.312xy 2 z 4C.31 2x y2 z 4B.32 2x y2 z 4D.322103 1 .已知矩阵 A, 其特征值为()51A. 12, 2 4 B. C.12,24D.三、解答题(每小题 10 分,共 50 分)1 12,2, 22441 1 00 2 1 3 40 2 1 30 1 1 011.设B, C 0 2 1 且 矩 阵满足关系式0 0 1 1 00 10 0 0 2T X(C B)E,求。
a1 12212. 问 a 取何值时,下列向量组线性相关?111, 2a ,3。
2 1 21 a22x 1 x 2x 3 313.为何值时,线性方程组x 1 x 2x 3 2有唯一解,无解和有无穷多解?当方x 1 x 2x 32程组有无穷多解时求其通解。
北京大学线性代数方博汉线代B2017经院期末考试题

其中A, B ∈ Mn×n(R), Bt是矩阵B的转置, tr表示矩阵的迹. • 请验证如此定义的双线性函数确实是内积, 这样Mn×n(R)构成了一个 欧几里德空间. (5分)
• 设U ⊂ Mn×n(R)为所有反对称矩阵的全体, 它是一个子空间(不用证 明). 对任何的方阵A = (aij), 试用aij写出PU A, 即A在子空间U 上的正 交投影. (10分)
1
2
LINEAR ALGEBRA B FINAL, 2:00PM-4:00PM
• 正交补空间U ⊥的维数是多少? (8分) • 若非零子空间U 里的任何两个向量α, β满足f (α, β) = 0, 这样的子空间
是否存在(2分), 可能的最大维数是多少(5分)? (6) (15分) 设V 是复数域C上的n维线性空间.
(1) (15分) 设矩阵A为
A=
1 −1
2 4
• 写出A的特征值和特征向量. A可不可以对角化? (8分)
• 考察线性变换A : M2×2(C) → M2×2(C), 定义为A(U ) = A−1U A, 这 里U ∈ M2×2(C)是一个2阶复数方阵. 写出这个线性变换的特征值和特 征向量, 并且判断A是不是可以对角化并说明理由. (7分)
(4) (15分) 实对称矩阵
0 2 4 A = 2 −3 2 .
420
是否存在实矩阵B使得B2 = A; 若没有,是否存在复矩阵B使得B2 = A? 请说明你这么判断的理由.
(5) (15分) 设K是一个数域, 考察下述K2n上的非退化反对称双线性函数
f (α, β) = x1y1 − y1x1 + x2y2 − y2x2 + · · · + xnyn − ynxn, 其中
北京大学线性代数方博汉线代B物院2018秋期末考试题(回忆版)

2018秋线性代数期末(回忆版)教师:⽅博汉(1)(20分) V 为实数域 ℝ 上 n 维线性空间,若正交线性映射 f:V →V 特征值为1的特征⼦空间 W 维数为 n −1 。
证明 f =id -−2P ,其中 id - 为 V 上恒同映射, P 为向 W 的正交补空间 W 0 的正交投影映射。
(2)(20分) 复数和四元数的矩阵表⽰• 设 V 为实数域上2阶实矩阵空间 M 2×2(ℝ) 的⼦空间,试找到⼀组基 {1,i} ,使得1 ∙1=1,1∙i =i ∙1=i,i ∙i =−1• 设 V 为实数域上2阶复矩阵空间 M 2×2(ℝ) 的⼦空间(所以共有8维),试找到⼀组基 {1,i,j,k} 使得1∙1=1,1∙i =i ∙1=1,1∙j =j ∙1=j,1∙k =k ∙1=1 i 2=j 2=k 2=i ∙j ∙k =−1 (3)(20分) 设矩阵A =>0000011010010000@ 若将 A 视为实数域上正交矩阵,求⼀组正交基,使得A 化为标准的分块对⾓化的形式(10分);若将A 视为⾣矩阵,求⾣空间中⼀组正交基,使得A 对⾓化。
(10分)(4)(20分) 若A 为复数域上 n 阶⽅阵,定义exp (A )=D A E k!GEHI =I +A +A 22!+A L 3!+⋯可以⽤Jordan 标准形证明,对于任意矩阵,右边的式⼦是收敛的(你不⽤证明)。
• (10分)证明:expOtr (A )R =det (exp (A))•(10分)证明:若A是反对称矩阵,则 exp (A) 是正交矩阵。
(提⽰:先证明 若AB=BA,则 exp(A+B)=exp(A)∙exp (B) 可以直接⽤这个结论证明,得5分)(5)(20分) 设 V 为复数域上 n 维线性空间。
我们知道 V⊗V 上有同构σ(α⊗β)=β⊗α(a) (2分) 设 S={v∈V⊗V |σ(v)=v } ,S 是 V⊗V 的⼦空间(你不⽤证明这个事实),求 S 的维数,设 V 的⼀组基为 {e\,e2,⋯,e]}。
北京大学数学科学学院《高等代数I》期末试题及答案【完整版】

北京大学数学科学学院期末试题考试科目 高等代数I 考试时间 姓 名 学 号一.(10分)设F 4 = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------i 1i 11111i 1i 11111, F 2 = ⎥⎦⎤⎢⎣⎡-1111, D 2 = ⎥⎦⎤⎢⎣⎡i 001.1) 求矩阵C , 使得 ⎥⎦⎤⎢⎣⎡-2222D I D I ⎥⎦⎤⎢⎣⎡22F 00F C = F 4 ; 2) 求F 4 的逆矩阵.解: 1) 比较 ⎥⎦⎤⎢⎣⎡-2222D I D I⎥⎦⎤⎢⎣⎡22F 00F =⎥⎦⎤⎢⎣⎡-=222222F D F F D F ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------i i 111111i i 111111 与 F 4 得 C =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1000001001000001. 2) 由 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------i 1i 11111i 1i 11111⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------i 1i 11111i 1i 11111⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=4000040000400004知 414F 41F =-.二. (10分)设n 阶方阵A n = ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡010010100110010 . 记θ = π / ( n+1 ) .1) 对1 ≤ j ≤ n, 证明 α j = [ sin( j θ ) sin( 2 j θ ) . . . sin( n j θ ) ] T是A n 的特征向量 ;2) 对 a ∈ R , 求矩阵a I + A n 的行列式. 解: 1) 对每个 1 ≤ j ≤ n, 我们有⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-++=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡)θj n sin()θj 3sin()θj 2sin()θj sin(θ)2cos(j )θj 1)(n sin()θj 4sin()θj 2sin()θj 3sin()θj sin()θj sin(2)θj n sin()θj 3sin()θj 2sin()θj sin(01001010011001即 A n α j = 2cos( j θ ) α j .于是α j ( 1 ≤ j ≤ n ) 是A n 的特征向量, 它们对应的特征值2cos( j θ ) ( 1 ≤ j ≤ n )互异.2) a I + A n 的特征值为a + 2cos( j θ ) ( 1 ≤ j ≤ n ) , 故| a I + A n | = ( a + 2cos θ ) ( a + 2cos( 2θ ) ) ...( a + 2cos( n θ ) ) .三. (10分)设A : XA X 是R 4到R 3的线性映射, 其中A = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110110101101.1) 求A 的秩 r 及可逆矩阵P , Q , 使得 A = P ⎥⎦⎤⎢⎣⎡0I rQ , 这里 I r 是r 阶单位矩阵.2) 求R 4的一组基α 1 , α 2 , α 3 , α 4 与 R 3的一组基β 1 , β 2 , β 3 ,使得 A α i = β i , ∀ 1 ≤ i ≤ r 且 A α i = 0 , ∀ i > r . 解: 1)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1000010010101101000000100001101010001000010101101101010001110110101101于是A 的秩为 2 , 可取 P = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101010001, Q = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1000010010101101. 2) 在上式两边右乘Q -1 =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---1000010*********, 得A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---0000001000011010100011000010010101101. 令α 1 , α 2 , α 3 , α 4 依次为Q -1的列向量, β 1 , β 2 , β 3 依次为P 的列向量, 则有 A α 1 = β 1 , A α 2 = β 2 , A α 3 = 0 , A α 4 = 0 . 三.(32分)填空题 .1.设 B, C, D 是n 阶矩阵, 其中D 可逆, 则⎥⎦⎤⎢⎣⎡-D CB C D B 1的秩 = n . ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡---D C 00D C B C D B I 0D B I 11,⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡-D 000I D C 0ID C 0012. 当t < - 1/4 时, 二次型 f = 5 t x 2 + t y 2 – z 2 + 2 t xy + 2 x z 负定 ; 当t >0 时, 二次型 f 的正、负惯性指数分别是 2 与 1 . 通过成对行列变换, 二次型 f 的矩阵可化为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-1000t 0001t 41000t t 0t 1t 51010t t 1t t 5f 负定 ⇔ 4 t + 1 < 0 且t < 0 ⇔ t < – 1 / 4f 的正、负惯性指数分别是 2 与 1 ⇔ 4 t + 1 > 0 且t > 0 ⇔ t > 0 .3. 已知 A = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--12222121231 是行列式为1的正交矩阵, 则线性变换X A X 是绕单位向量α = 的旋转, 旋转角为 .解特征方程组 ( A – I ) X = 0 , 得特征值1 的特征子空间基底 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡011. 于是α = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡±01121. 取与α垂直的向量β = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-011, 由A β =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-41131 求得β与A β 夹角的余弦值为 ( β, A β )/ ( | β| | A β| )= 1/3 . 故旋转角为 arccos( 1 / 3 ).4. 在欧氏空间R 4中,子空间 < ( 1,0,0,0) T, ( 0,1,0,0 ) T> 到⎩⎨⎧==+1x 2x x 321的解集合的最小距离是 1 .四. (18分)设f ( x 1 , x 2 , x 3 ) = 8 x 12 –7 x 22 + 8 x 32 + 8 x 1 x 2 – 2 x 1 x 3 + 8 x 2 x 3 . (1) 将 f 写成 X T A X 的形式, 并求A 的特征值与特征向量; (2) 求正交矩阵 P 及对角矩阵D , 使得 A = P D P T .解: (1) []⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---==321321Tx x x 841474148x x x X A X f8λ4147λ49λ09λ8λ4147λ4148λ|A λI |---+-+--=---+---=-)9λ()9λ()3249λ()9λ(7λ4187λ4009λ22+-=---=---+--=A 的特征值为λ = 9 (二重), – 9 . 对λ = 9解齐次方程组 ( A – 9 I ) X = 0 :⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----0000001411414164141 通解为x 1 = 4 x2 - x3 , x 2 、x 3为自由变量. 解的向量形式⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101x 014x x x x 4x x x x 323232321于是α1 = [ 1 0 -1 ] T , α2 = [ 4 1 0 ] T 构成λ = 9特征子空间的一组基. 对λ = -9解齐次方程组 ( A + 9 I ) X = 0 :⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--00041010100036901741000212174117414241417 通解为 x 1 = x 3 , x 2 = - 4 x 3 , x 3为自由变量. 解的向量形式:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡141x x 4x x x x x 3333321于是α3 = [ 1 -4 1 ] T 构成λ = -9特征子空间的一组基. (2) 将α1 = [ 1 0 -1 ] T , α2 = [ 4 1 0 ] T 正交化: 令 β1 = α1 ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-=21210124014β)β,β()β,α(αβ1111222 再单位化:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==21231β||β||1γ,10121β||β||1γ222111 将α3 = [ 1 -4 1 ] T 也单位化: .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=141231γ3 γ1 , γ2 , γ3 构成R 3 的标准正交基, P = [ γ1 γ2 γ3 ] =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--23132212343102313221为正交矩阵, 且.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==T 3T 2T1321Tγγγ999]γγγ[P D P A五.(10分)设β是欧氏空间R n 的单位向量, V 是子空间 < β > 的正交补. (1) 求矩阵A , 使得对任意列向量X ∈ R n , AX 是X 向V 所作的正交投影; (2) 求正交矩阵B , 使得线性变换 X B X 是R n 关于V 的镜面反射. 解: (1) 对任意列向量X ∈ R n , X 在一维子空间 < β > 上的正交投影为 ( X , β ) β = β βT X .于是X 在正交补 < β >⊥上的正交投影为X – ( X , β ) β = X – β βT X = ( I – β βT ) X .故所求矩阵为A = I – β βT .(2) 向量X ∈ R n , 关于 < β >⊥ 的镜面反射为X – 2 ( X , β ) β = X – 2 β βT X = ( I – 2 β βT ) X . 故所求正交矩阵为B = I – 2 β βT .六.(10分)判断对错, 正确的请给出证明, 错误的举出反例.1) 若A 是实对称矩阵, B 是实反对称矩阵, 则A + i B 的特征多项式在复数域上的根都是实数. 正确.证明: 设λ是A + i B 在复数域上的特征值, α是属于λ的复特征向量, 即 ( A + i B ) α = λ α , α ≠ 0 .则有 αT ( A – i B ) = λ αT , TT αλ)B i A (α=+.于是 ααλα)B i A (αααλTTT=+=, 由α ≠ 0 知0ααT≠, 于是 λλ=, λ 为实数.2) 在数域K 上, 若 n 阶方阵A 有 n + 1 个特征向量, 且其中任意 n 个都线性无关, 则 A 一定是数量矩阵. 正确.若A 不是数量矩阵, 则A 的特征子空间维数都小于n. 又因为A 有 n 个 线性无关的特征向量, A 可对角化, 故A 的特征子空间的维数之和等于n. 任给n + 1 个特征向量, 必存在A 的一个特征子空间 V , 包含其中至少 dim V + 1≤ n 个特征向量, 这dim V + 1 个特征向量线性相关, 矛盾!。
线性代数期末考试试卷+答案合集-大一期末线性代数试卷

线性代数期末考试试卷+答案合集-大一期末线性代数试卷×××大学线性代数期末考试题一、填空题(将正确答案填在题中横线上。
每小题2分,共10分)1. 若022150131=---x ,则=χ__________。
2.若齐次线性方程组=++=++=++000321321321x x x x x x x x x λλ只有零解,则λ应满足。
3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是阶矩阵。
4.矩阵=323122211211a a a a a a A 的行向量组线性。
5.n 阶方阵A 满足032=--E A A ,则=-1A 。
二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。
每小题2分,共10分)1. 若行列式D 中每个元素都大于零,则0?D 。
()2. 零向量一定可以表示成任意一组向量的线性组合。
()3. 向量组m a a a ,,,21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。
()4. ?=010*********0010A ,则A A =-1。
() 5. 若λ为可逆矩阵A 的特征值,则1-A 的特征值为λ。
( )三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。
每小题2分,共10分)1. 设A 为n 阶矩阵,且2=A ,则=T A A ()。
① n2② 12-n③ 12+n ④ 42. n 维向量组s ααα,,, 21(3 ≤ s ≤ n )线性无关的充要条件是()。
① s ααα,,, 21中任意两个向量都线性无关② s ααα,,, 21中存在一个向量不能用其余向量线性表示③ s ααα,,, 21中任一个向量都不能用其余向量线性表示④ s ααα,,, 21中不含零向量 3. 下列命题中正确的是( )。
① 任意n 个1+n 维向量线性相关② 任意n 个1+n 维向量线性无关③ 任意1+n 个n 维向量线性相关④ 任意1+n 个n 维向量线性无关4. 设A ,B 均为n 阶方阵,下面结论正确的是( )。
北京大学数学期末考试卷

北京大学数学期末考试卷一、选择题(本题共10分,每小题1分)1. 以下哪个数是实数?A. iB. πC. eD. √(-1)2. 直线方程 y = 2x + 3 与 x 轴的交点坐标是:A. (1, 5)B. (-3, 0)C. (0, 3)D. (3, 0)3. 以下哪个不是二次方程?A. x^2 + 2x + 1 = 0B. y^2 - 4 = 0C. z^3 - 2z^2 + z - 2 = 0D. 2x^2 - 3x + 1 = 04. 以下哪个函数是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = sin(x)D. f(x) = cos(x)5. 以下哪个极限不存在?A. lim (x→0) (sin(x)/x)B. lim (x→0) (1 - cos(x))/x^2C. lim (x→∞) (1/x)D. lim (x→∞) (e^x - x)二、填空题(本题共20分,每空2分)6. 若函数 f(x) = 3x^2 + 2x - 5 的顶点坐标为 (1, a),则 a 的值为______。
7. 微分方程 y'' - 2y' + y = 0 的通解为 y = ______。
8. 圆心在原点,半径为 2 的圆的方程为 ______。
9. 若一个向量 a = (1, 2),向量 b = (3, 4),则向量 a 与 b 的点积为 ______。
10. 函数 f(x) = ln(x) 的反函数是 ______。
三、计算题(本题共30分,每题6分)11. 计算定积分∫[1, e] (x^2 - 3x + 2) dx。
12. 解微分方程 y' + 2y = e^x,初始条件 y(0) = 1。
13. 证明:若函数 f(x) 在闭区间 [a, b] 上连续,在开区间 (a, b) 内可导,且 f'(x) > 0,则函数 f(x) 在 (a, b) 内严格递增。
线性代数期末考试考核试卷

4.以下哪个向量组构成一个基?
A. (1, 0, 0), (0, 1, 0), (0, 0, 0)
B. (1, 2, 3), (4, 5, 6), (7, 8, 9)
C. (1, 2, 3), (2, 4, 6), (1, 1, 1)
D. (1, 1, 0), (0, 1, 1), (1, 0, 1)
...
20.(根据实际题目内容填写答案)
二、多选题
1. BCD
2. ABCD
3. ABC
4. AB
5. ABC
...
20.(根据实际题目内容填写答案)
三、填题
1. 1
2.线性无关
3.主
...
10.(根据实际题目内容填写答案)
四、判断题
1. √
2. √
3. √
...
10. ×
五、主观题(参考)
1.向量组线性无关,可以通过计算行列式不为零来证明。一个可以由给定向量组线性表示的向量可以是它们的线性组合,例如\(a\vec{v}_1 + b\vec{v}_2 + c\vec{v}_3\),其中\(a, b, c\)是适当的系数。
D. (1, 1), (1, -1)
(答题括号:________)
5.在求解线性方程组时,以下哪些情况下可以使用高斯消元法?
A.系数矩阵是方阵
B.系数矩阵是非奇异的
C.方程组中方程的个数等于未知数的个数
D.方程组可能有无穷多解
(答题括号:________)
(以下题目类似,省略以节约空间)
6. ...
A.若A为m×n矩阵,则A的转置为n×m矩阵
B.若A为m×n矩阵,则A的转置为m×n矩阵
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
存在一组基,使得在这组基下的矩阵是 a) 中的 D。
八. (10 分) 以下各命题中考虑的 n 维 Euclid 空间 V/R 中的向量都不为零, a) 证明:不存向量组 {αi}n1 ,使得 (αi ,α j ) 0 对任意的1 i j n 1成立; b) 举例说明:存在向量组 {βi}n1 ,使得 (βi ,β j ) 0 对任意的1 i j n 1成立; c) 证明:在向量组{γi}n2 中至少存在一对下标 1 s t n 2 ,使得 (γs , γt ) 0 。
组基,其中 α1 {1,1, 3, 0},α2 {1, 2, 0,1}, α3 {1,1,1,1}, α4 {2,1,3,1} 。
三. (20 分) 证明:秩为 r 的矩阵可以表示成 r 个秩为 1 的矩阵之和。 四. (10 分) 设 A Rmn 是实数域上的矩阵,证明: r( AT A) r( A) ,举例说明:如果将数
D
信 微
0
1
0 1
;
0
c) {αi}n 的 选 择 不 是 惟 一 的 , 即 可 选 另 一 组 基 {βi}n , 它 对 应 的 矩 阵 也 是 D , 但 是
L( {βi }s ) L (α{ i }s 至) 少对某个 1 s n 不成立;
d) 推广 b)与 c)。如果 是 n 维线性空间 V/P 上的线性变换,且 n 0, n1 0 ,证明
域扩大为复数域,即 ACmn ,则结论不成立。又对任意的 B Rms ,存在 C Rns 上的
使 AT AC AT B 。
铺
五. (10 分) 设 A Pnn , B Pns (s 0) , r(A) n s, r(B) s ,那么 AB 0 的充分必要条
货 件是对于齐次线性方程组 Ax 0 的任意解 x0 Pn ,存在惟一的 y0 Ps ,使得 x0 By0 。
学习 七.
(10 分)
微商
d dx
是线性空间
Pn [
x](全体次数小于
n
的多项式以及零多项式)上的
线性变换。现设 n>1,
:
号 a) 对于任意的 α Pn[x] ,nα 0 ,但存在 β Pn[x],使n1β 0 。
0
众
1
公 b)}n
,使得在这组基下的矩阵为
料杂 六.
(10 分)
假设在平面中给定了三条直线
i
:
ui
x
vi
y
wi
(i 1, 2,3) ,
围成一个有限面
积的三角形,试求:a) 三条直线满足的条件;b) 三角形的面积。如有可能,在空间中给
资 定了四个平面 i : ai x bi y ci z di (i 1, 2,3, 4) ,作相应的讨论。
第1页 共1页
北京大学工学院课程试卷
课程名称: 线性代数与解析几何
2007-2008 学年第(1)学期期末
姓名:
学号:
本试卷共 8 道大题,满分 100 分
一. (15 分) 给定点 P (1,3, 4) 和平面 π: x 2y 3z 5 0 ,写出平面的法线,并求 P 到 π
的距离;在平面上找一点 Q,使 Q 到点 P 的距离就是 P 到 π 的距离。 二. (15 分) 在 R4 中求由向量{αi}4 生成的子空间的维数与一组基,并将它扩充为 R4 的一