神经网络课件
神经网络专题ppt课件

(4)Connections Science
(5)Neurocomputing
(6)Neural Computation
(7)International Journal of Neural Systems
7
3.2 神经元与网络结构
人脑大约由1012个神经元组成,而其中的每个神经元又与约102~ 104个其他神经元相连接,如此构成一个庞大而复杂的神经元网络。 神经元是大脑处理信息的基本单元,它的结构如图所示。它是以细胞 体为主体,由许多向周围延伸的不规则树枝状纤维构成的神经细胞, 其形状很像一棵枯树的枝干。它主要由细胞体、树突、轴突和突触 (Synapse,又称神经键)组成。
15
4.互连网络
互连网络有局部互连和全互连 两种。 全互连网络中的每个神经元都 与其他神经元相连。 局部互连是指互连只是局部的, 有些神经元之间没有连接关系。 Hopfield 网 络 和 Boltzmann 机 属于互连网络的类型。
16
人工神经网络的学习
学习方法就是网络连接权的调整方法。 人工神经网络连接权的确定通常有两种方法:
4
5. 20世纪70年代 代表人物有Amari, Anderson, Fukushima, Grossberg, Kohonen
经过一段时间的沉寂后,研究继续进行
▪ 1972年,芬兰的T.Kohonen提出了一个与感知机等神经 网络不同的自组织映射理论(SOM)。 ▪ 1975年,福岛提出了一个自组织识别神经网络模型。 ▪ 1976年C.V.Malsburg et al发表了“地形图”的自形成
6
关于神经网络的国际交流
第一届神经网络国际会议于1987年6月21至24日在美国加州圣地亚哥 召开,标志着神经网络研究在世界范围内已形成了新的热点。
Hopfield神经网络ppt课件

2)保证所有要求记忆的稳定平衡点都能收敛 到自己;
3)使伪稳定点的数目尽可能的少; 4)使稳定点的吸引域尽可能的大。 MATLAB函数
[w,b]=solvehop(T);
.
23
连续性的Hopfield网络
CHNN是在DHNN的基础上提出的,它的原理
.
34
几点说明:
1)能量函数为反馈网络的重要概念。 根据能量函数可以方便的判断系统的稳 定性;
2)能量函数与李雅普诺夫函数的区 别在于:李氏被限定在大于零的范围内, 且要求在零点值为零;
3)Hopfield选择的能量函数,只是 保证系统稳定和渐进稳定的充分条件, 而不是必要条件,其能量函数也不是唯 一的。
1、激活函数为线性函数时
2、激活函数为非线性函数时
.
29
当激活函数为线性函数时,即
vi ui 此时系统的状态方程为:
U AU B 其中A 1 WB。
R 此系统的特征方程为:
A I 0 其中I为单位对角阵。通过对解出的特征值1, 2,, r 的不同情况,可以得到不同的系统解的情况。
.
霍普菲尔德(Hopfield) 神经网络
1、网络结构形式 2、非线性系统状态演变的形式 3、离散型的霍普菲尔德网络(DHNN) 4、连续性的霍普菲尔德网络(CHNN)
.
1
网络结构形式
Hopfield网络是单层对称全反馈网络,根据激 活函数选取的不同,可分为离散型和连续性两种 ( DHNN,CHNN)。 DHNN:作用函数为hadlim,主要用于联想记忆。 CHNN:作用函数为S型函数,主要用于优化计算。
.
19
权值修正的其它方法
神经网络学习PPT课件

牛顿法
总结词
牛顿法是一种基于二阶泰勒级数的优化算法,通过迭 代更新参数,以找到损失函数的极小值点。在神经网 络训练中,牛顿法可以用于寻找最优解。
详细描述
牛顿法的基本思想是,利用二阶泰勒级数近似损失函数 ,并找到该函数的极小值点。在神经网络训练中,牛顿 法可以用于寻找最优解。具体来说,根据二阶导数矩阵 (海森矩阵)和当前点的梯度向量,计算出参数更新的 方向和步长,然后更新参数。通过不断迭代,参数逐渐 调整到最优解附近。与梯度下降法相比,牛顿法在迭代 过程中不仅考虑了梯度信息,还考虑了二阶导数信息, 因此具有更快的收敛速度和更好的全局搜索能力。
07
未来展望与挑战
深度学习的发展趋势
模型可解释性
随着深度学习在各领域的广泛应用,模型的可解释性成为研究热 点,旨在提高模型决策的透明度和可信度。
持续学习与终身学习
随着数据不断增长和模型持续更新,如何实现模型的持续学习和终 身学习成为未来的重要研究方向。
多模态学习
随着多媒体数据的普及,如何实现图像、语音、文本等多模态数据 的融合与交互,成为深度学习的另一发展趋势。
深度学习
通过构建深层的神经网络结构, 提高了对复杂数据的处理能力。
循环神经网络
适用于序列数据,如自然语言 处理和语音识别等领域。
02
神经网络的基本结构
感知机模型
感知机模型是神经网络的基本单 元,由一个输入层和一个输出层 组成,通过一个或多个权重和偏
置项来计算输出。
感知机模型只能实现线性分类, 对于非线性问题无法处理。
详细描述
反向传播算法的基本思想是,首先计算神经网络的输出层与实际值之间的误差,然后将误差逐层反向传播,并根 据梯度下降法更新每一层的权重。通过不断迭代,权重逐渐调整,使得神经网络的输出逐渐接近实际值,从而降 低误差。反向传播算法的核心是计算每一层的梯度,即权重的导数,以便更新权重。
《ANN神经网络》课件

神经网络的训练过程和算法
1 BP算法
2 Adam算法
通过反向传播算法,根据输出误差和梯度下 降法更新网络参数,目标是最小化误差函数。
结合了Ad ag r ad 和RM Sp ro p 优点的一种有效 的优化算法,自适应的调节学习率,以加快 训练速度。
神经网络的激活函数和正则化方法
激活函数
每个神经元的输出需要通过激活函数进行非线性映 射,目前比较流行的有sig mo id 、t an h 和ReLU等。
神经元和生物神经元的异同
1 神经元
是神经网络的基本单位,是一种用于计算的抽象模型,只有输入和输出,以及需要学习 的权重和偏置。
2 生物神经元
是神经系统的基本单位,由轴突、树突、细胞体和突触等结构组成,与其他神经元具有 复杂的生物学表现和相互作用。
神经网络的优势和局限性
优势
具有自主学习、自适应、非线性和可并行处理等优 势,能够处理高维度数据和复杂的非线性问题。
参考文献和拓展阅读建议
参考文献: 1. Bishop, C. M . (1995). Neural Networks for Pattern Recognition. Oxford University Press. 2. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. M IT Press. 3. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep Learning. Nature, 521, 436-444. 拓展阅读建议: 1. 《深度学习》白板推导与Python实战 2. 《Python深度学习》实践指南 3. 《自然语言处理综论》 4. 《计算机视觉综论》
神经网络方法-PPT课件精选全文完整版

信号和导师信号构成,分别对应网络的输入层和输出层。输
入层信号 INPi (i 1,根2,3据) 多传感器对标准试验火和各种环境条件
下的测试信号经预处理整合后确定,导师信号
Tk (k 1,2)
即上述已知条件下定义的明火和阴燃火判决结果,由此我们
确定了54个训练模式对,判决表1为其中的示例。
15
基于神经网络的融合算法
11
局部决策
局部决策采用单传感器探测的分析算法,如速率持续 法,即通过检测信号的变化速率是否持续超过一定数值来 判别火情。 设采样信号原始序列为
X(n) x1 (n), x2 (n), x3 (n)
式中,xi (n) (i 1,2,3) 分别为温度、烟雾和温度采样信号。
12
局部决策
定义一累加函数 ai (m为) 多次累加相邻采样值 的xi (差n) 值之和
样板和对应的应识别的结果输入人工神经网络,网络就会通过
自学习功能,慢慢学会识别类似的图像。
第二,具有联想存储功能。人的大脑是具有联想功能的。用人
工神经网络的反馈网络就可以实现这种联想。
第三,具有容错性。神经网络可以从不完善的数据图形进行学
习和作出决定。由于知识存在于整个系统而不是一个存储单元
中,一些结点不参与运算,对整个系统性能不会产生重大影响。
18
仿真结果
19
仿真结果
20
2
7.2 人工神经元模型—神经组织的基本特征
3
7.2 人工神经元模型—MP模型
从全局看,多个神经元构成一个网络,因此神经元模型的定义 要考虑整体,包含如下要素: (1)对单个人工神经元给出某种形式定义; (2)决定网络中神经元的数量及彼此间的联结方式; (3)元与元之间的联结强度(加权值)。
神经网络ppt课件

通常,人们较多地考虑神经网络的互连结构。本 节将按照神经网络连接模式,对神经网络的几种 典型结构分别进行介绍
12
2.2.1 单层感知器网络
单层感知器是最早使用的,也是最简单的神经 网络结构,由一个或多个线性阈值单元组成
这种神经网络的输入层不仅 接受外界的输入信号,同时 接受网络自身的输出信号。 输出反馈信号可以是原始输 出信号,也可以是经过转化 的输出信号;可以是本时刻 的输出信号,也可以是经过 一定延迟的输出信号
此种网络经常用于系统控制、 实时信号处理等需要根据系 统当前状态进行调节的场合
x1
…… …… ……
…… yi …… …… …… …… xi
再励学习
再励学习是介于上述两者之间的一种学习方法
19
2.3.2 学习规则
Hebb学习规则
这个规则是由Donald Hebb在1949年提出的 他的基本规则可以简单归纳为:如果处理单元从另一个处
理单元接受到一个输入,并且如果两个单元都处于高度活 动状态,这时两单元间的连接权重就要被加强 Hebb学习规则是一种没有指导的学习方法,它只根据神经 元连接间的激活水平改变权重,因此这种方法又称为相关 学习或并联学习
9
2.1.2 研究进展
重要学术会议
International Joint Conference on Neural Networks
IEEE International Conference on Systems, Man, and Cybernetics
World Congress on Computational Intelligence
复兴发展时期 1980s至1990s
第一讲神经网络基本原理ppt课件
人工神经网络基本要素
人工神经网络(简称神经网络)是由人工神经元(简称神经元)互 连组成的网络,它是从微观结构和功能上对人脑的抽象、简化,是模 拟人类智能的一条重要途径,反映了人脑功能的若干基本特征,如并 行信息处理、学习、联想、模式分类、记忆等。
人工神经网络(ANN)可看成是以人工神经元为节点,用有向加权 弧连接起来的有向图。
20 世 纪 80 年 代 以 来 , 人 工 神 经 网 络 ( ANN , Artificial Neural Network)研究取得了突破性进展。神经网络控制是将神经网络与控制 理论相结合而发展起来的智能控制方法。它已成为智能控制的一个新的 分支,为解决复杂的非线性、不确定、未知系统的控制问题开辟了新途 径。
y 是神经元的输出。
神经元的输出 y=f(w*u+θ )
人工神经网络基本要素 —神经元
可见,神经元的实际输出还取决于所选择的作用函数f(x)。神经元的阈值 可以看作为一个输入值是常数1对应的连接权值。根据实际情况,也可以 在神经元模型中忽略它。关于作用函数的选择将在后面详细讨论。在上述 模型中,w和θ是神经元可调节的标量参数。设计者可以依据一定的学习规 则来调整它。
每个神经元的突触数目有所不同,而且各神经元之间的连接强度 和极性有所不同,并且都可调整,基于这一特性,人脑具有存储信息的 功能。图1.1 生物神经元的结构
人工神经网络基本要素 —神经元
神经生理学和神经解剖学的研究 结果表明,神经元是脑组织的基 本单元,是神经系统结构与功能 的单位。
• 大脑
Brain
在此有向图中,人工神经元就是对生物神经元的模拟,而有向弧则 是轴突—突触—树突对的模拟。有向弧的权值表示相互连接的两个人 工神经元间相互作用的强弱。
神经网络基本介绍PPT课件
神经系统的基本构造是神经元(神经细胞 ),它是处理人体内各部分之间相互信息传 递的基本单元。
每个神经元都由一个细胞体,一个连接 其他神经元的轴突和一些向外伸出的其它 较短分支—树突组成。
轴突功能是将本神经元的输出信号(兴奋 )传递给别的神经元,其末端的许多神经末 梢使得兴奋可以同时传送给多个神经元。
将神经网络与专家系统、模糊逻辑、遗传算法 等相结合,可设计新型智能控制系统。
(4) 优化计算 在常规的控制系统中,常遇到求解约束
优化问题,神经网络为这类问题的解决提供 了有效的途径。
常规模型结构的情况下,估计模型的参数。 ② 利用神经网络的线性、非线性特性,可建立线
性、非线性系统的静态、动态、逆动态及预测 模型,实现非线性系统的建模。
(2) 神经网络控制器 神经网络作为实时控制系统的控制器,对不
确定、不确知系统及扰动进行有效的控制,使控 制系统达到所要求的动态、静态特性。 (3) 神经网络与其他算法相结合
4 新连接机制时期(1986-现在) 神经网络从理论走向应用领域,出现
了神经网络芯片和神经计算机。 神经网络主要应用领域有:模式识别
与图象处理(语音、指纹、故障检测和 图象压缩等)、控制与优化、系统辨识 、预测与管理(市场预测、风险分析) 、通信等。
神经网络原理 神经生理学和神经解剖学的研究表 明,人脑极其复杂,由一千多亿个神经 元交织在一起的网状结构构成,其中大 脑 皮 层 约 140 亿 个 神 经 元 , 小 脑 皮 层 约 1000亿个神经元。 人脑能完成智能、思维等高级活动 ,为了能利用数学模型来模拟人脑的活 动,导致了神经网络的研究。
(2) 学习与遗忘:由于神经元结构的可塑 性,突触的传递作用可增强和减弱,因 此神经元具有学习与遗忘的功能。 决定神经网络模型性能三大要素为:
《神经网络电子教案》课件
《神经网络电子教案》PPT课件第一章:神经网络简介1.1 神经网络的定义1.2 神经网络的发展历程1.3 神经网络的应用领域1.4 神经网络的基本组成第二章:人工神经元模型2.1 人工神经元的结构2.2 人工神经元的激活函数2.3 人工神经元的训练方法2.4 人工神经元的应用案例第三章:感知机3.1 感知机的原理3.2 感知机的训练算法3.3 感知机的局限性3.4 感知机的应用案例第四章:多层前馈神经网络4.1 多层前馈神经网络的结构4.2 反向传播算法4.3 多层前馈神经网络的训练过程4.4 多层前馈神经网络的应用案例第五章:卷积神经网络5.1 卷积神经网络的原理5.2 卷积神经网络的结构5.3 卷积神经网络的训练过程5.4 卷积神经网络的应用案例第六章:递归神经网络6.1 递归神经网络的原理6.2 递归神经网络的结构6.3 递归神经网络的训练过程6.4 递归神经网络的应用案例第七章:长短时记忆网络(LSTM)7.1 LSTM的原理7.2 LSTM的结构7.3 LSTM的训练过程7.4 LSTM的应用案例第八章:对抗网络(GAN)8.1 GAN的原理8.2 GAN的结构8.3 GAN的训练过程8.4 GAN的应用案例第九章:强化学习与神经网络9.1 强化学习的原理9.2 强化学习与神经网络的结合9.3 强化学习算法的训练过程9.4 强化学习与神经网络的应用案例第十章:神经网络的优化算法10.1 梯度下降算法10.2 动量梯度下降算法10.3 随机梯度下降算法10.4 批梯度下降算法10.5 其他优化算法简介第十一章:神经网络在自然语言处理中的应用11.1 词嵌入(Word Embedding)11.2 递归神经网络在文本分类中的应用11.3 长短时记忆网络(LSTM)在序列中的应用11.4 对抗网络(GAN)在自然语言中的应用第十二章:神经网络在计算机视觉中的应用12.1 卷积神经网络在图像分类中的应用12.2 递归神经网络在视频分析中的应用12.3 对抗网络(GAN)在图像合成中的应用12.4 强化学习在目标检测中的应用第十三章:神经网络在推荐系统中的应用13.1 基于内容的推荐系统13.2 协同过滤推荐系统13.3 基于神经网络的混合推荐系统13.4 对抗网络(GAN)在推荐系统中的应用第十四章:神经网络在语音识别中的应用14.1 自动语音识别的原理14.2 基于神经网络的语音识别模型14.3 深度学习在语音识别中的应用14.4 语音识别技术的应用案例第十五章:神经网络在生物医学信号处理中的应用15.1 生物医学信号的特点15.2 神经网络在医学影像分析中的应用15.3 神经网络在生理信号处理中的应用15.4 神经网络在其他生物医学信号处理中的应用重点和难点解析重点:1. 神经网络的基本概念、发展历程和应用领域。
智能控制系统 -神经网络-PPT课件
1 1T 2 J E e ( n ) E e ( n )( e n ) k 2 2 k
13
误差纠正学习
w J 用梯度下降法求解 k 对于感知器和线性网络:
1
感知器网络
感知器是1957年美国学者Rosenblatt提出的 一种用于模式分类的神经网络模型。 感知器是由阈值元件组成且具有单层计算单元 的神经网络,具有学习功能。 感知器是最简单的前馈网络,它主要用于模式 分类,也可用在基于模式分类的学习控制和多 模态控制中,其基本思想是将一些类似于生物 神经元的处理元件构成一个单层的计算网络
w ( p w ) 若 神 经 元 k 获 胜 k j j k j w 0 若 神 经 元 k 失 败 k j
wkj
pj
k
5.2
前向网络及其算法
前馈神经网络(feed forward NN):各神经元接受 前级输入,并输出到下一级,无反馈,可用一 有向无环图表示。 图中结点为神经元(PE):多输入单输出,输 出馈送多个其他结点。 前馈网络通常分为不同的层(layer),第i层的输入 只与第i-1层的输出联结。 可见层:输入层(input layer)和输出层(output layer) 隐层(hidden layer) :中间层
5.1
神经网络的基本原理和结构
1
神经细胞的结构与功能
神经元是由细胞体、树突和轴突组成
图 生物神经元模型
神经网络的基本模型
2
人工神经元模型
人工神经网络是对生物神经元的一种模拟和简化,是 神经网络的基本处理单元。
神经元输出特性函数常选用的类型有:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
技术路线 语音唤醒的技术路线大致可归纳为三代 第一代:基于模板匹配的KWS 第二代:基于HMM-GMM的KWS
第三代:基于神经网络的方案
第一代:基于模板匹配的KWS
训练和测试的步骤比较简单,训练就是依据注册语 音或者说模板语音进行特征提取,构建模板。测试时, 通过特征提取生成特征序列,计算测试的特征序列和模 板序列的距离,基于此判断是否唤醒。 第二代:基于HMM-GMM的KWS
语音唤醒技术介绍
语音唤醒和语音识别的区别
语音识别 只能处理一段一段的语音数据,也就是待识别的语音有明确的开始和
结束,比如siri(苹果智能语音助手)按下home键,开始录音说话,松 开录音结束,返回识别结果
语音唤醒 它是处理连续不断的语音流,比如语音开关24小时不间断的检测麦
克录音中的关键词信息
语音唤醒可以和语音识别技术结合
语音唤醒技术介绍
“唤醒词”对用户体验的影响
唤醒词组成方式方面:
在以“名字”为基础的不同组合方式中 “名字+名字”的叠词式组合方式最受用户喜欢 “品牌+名字”的组合方式最不被用户喜欢; 就“名字”本身而言 “小+字”的名字最受用户喜欢。
语音唤醒技术介绍
“唤醒词”对用户体验的影响
语音要素方面:
声调:用户最喜欢阴平,同时相较“仄声”,用户更加喜欢 “ 平声” 声母:用户更加喜欢尾音声母为零声母,而包含了z、c、s的 舌尖前音最不被用户所喜欢; 韵母: 按照韵母发音时的口型开口情况来看,用户更喜欢开 口口型较大的齐口呼和开口呼;另外按照韵母结构来看,音 节韵母为单韵母的词最受用户的喜欢。
CONTENTS用及展望
语音唤醒技术介绍
语音唤醒:有时也称为关键词检测(Keyword spotting),也就是在连续不断 的语音中将目标关键词检测出来,一般目标关键词的个数比较少(1~2个居 多,特殊情况也可以扩展到更多的几个)。
语音唤醒识别(Wake-UpWord Speech Recognition)是用来识别特定的唤 醒词,将激活信号传递给硬 件设备来实现智能控制。与 大词汇量的语音识别技术不 同的是,它是一个基于小语 料的识别系统, 它要求对 唤醒词的激活率要尽量接近 百分百,而其他的词汇尽量 为零。
将唤醒任务转换为两类的识别任务, 识别结果为 Keyword和non-keyword
第三代:基于神经网络的方案
神经网络方案又可细分为几类: 第一类是基于HMM的KWS,同第二代唤醒方案不同之处在 于,声学模型建模从GMM转换为神经网络模型。 第二类融入神经网络的模板匹配,采用神经网络作为特 征提取器。 第三类是基于端到端的方案,输入语音,输出为各唤醒 的概率,一个模型解决
CNN介绍
Stride=1
Convolution
CNN介绍
Stride=1
CNN介绍
滤波器(红色框)在输入图像滑 过(卷积操作),生成一个特征 图。另一个滤波器(绿色框)在 同一张图像上卷积可以得到一个 不同的特征图。
Convolution
CNN介绍
空间池化(Spatial Pooling)(也叫做亚采用或者下采样)降低了各个特征图的维度,但可以保持大部分重 要的信息。空间池化有下面几种方式:最大化、平均化、加和等等。
评估性能 网上也有多种开源的小型语音识别引擎,可以实现单独的语音唤醒功能,性能参差不齐。
常用框架 唤醒可以看成是一种小资源的关键词检索任务。其计算资源小,空间存储资源小,因此其系统 框架与关键词检索有一定区别。目前常用的系统框架有以下两种:
1. 基于HMM 的keyword/filler 系统
常用框架
常用框架
2. 端到端系统
第二种系统不再采用解码这样一个步骤,直接是由端到端的模式,即输入是语音,输出直 接是关键词。这样的系统包括三个部分:如上图,第一步是特征的提取,第二步通常是一个 神经网络,它的输入是语音特征,输出是各个关键词和非关键词即Filler这样一个后验概率。 由于第二步的网络是以帧为单位输出后验值的,就需要第三步对后验值以一定的窗长进行平 滑,平滑后的后验值如果超过一定的阈值会被认为是唤醒了。
用于检测语音开始的位置,替换掉按键,比如Amazon Echo(亚马逊公司研 制的智能音箱),其语音交互流程被划分为五个环节 – 唤醒、响应、输 入、理解、反馈。
评估性能 该怎样评价语音唤醒的效果呢? 召回率:表示的是正确被唤醒的次数占总的应该被唤醒的比例。召回率越高性能越好; 虚警率:表示不该被唤醒的却被唤醒的概率。虚警率越低越好。 实时率:从用户的体验角度来说,就是设备反应的速度,唤醒对于这一反应速度的要求是很高的。 功耗:由于很多设备是依靠电池或者是充电式的,只有低能耗才能保证设备的续航时间。
语音唤醒技术综述
keyword spotting
姓名
语音唤醒
语音交互的过程与平时人与人之间交流的方式非常相似,有问有答。比如某 个阴天,你对同事呼喊称:“小明”,小明听到了抬头看你表示在听,你接 着问“今天会下雨么?”小明打开手机查了一下今天的天气预报,然后回答 你说“天气预报说下午3-4点有雷阵雨”。
唤醒可以看成是一种小资源的关键词检索任务。其计算资源小,空间存储资源小,因此其系统 框架与关键词检索有一定区别。目前常用的系统框架有以下两种:
1. 基于HMM 的keyword/filler 系统
第一种被称为基于隐马尔科夫模型的Keyword and Filler系统,这类系统的关键是上图 中左侧的解码模块,它与语音识别器中的解码器类似,也是通过维特比算法来获取到最优 的路径,但是与语音识别中LVCSR(大规模词表语音识别)系统的区别在于解码网络具体 的构建,语音识别中的解码网络包含所有词典中的词汇,而唤醒的解码网络如上图右侧包 含了Keyword和Filler的途径,除了关键词以外的词汇都包含在Filler路径当中,不是每 一个词都会有相应的路径,这样的网络会比语音识别的网络小很多,有针对性地对关键词 进行解码,可选的路径就少了很多,解码的速度也会得到大幅度的提升。对于解码出来的 候选再作一个判断,就完成这样一套技术方案的整体构架