[VIP专享]大学数学偏微分方程理论学习

合集下载

偏微分方程重点知识点总结

偏微分方程重点知识点总结

偏微分方程重点知识点总结一、偏微分方程的基本概念1. 偏导数偏微分方程是指含有多个自变量的函数的偏导数的方程。

在一元函数中,我们只需要考虑函数关于一个自变量的变化率,而在多元函数中,我们需要考虑函数关于每一个自变量的变化率,这就是偏导数的概念。

假设有一个函数f(x, y),它对x的偏导数记作∂f/∂x,对y的偏导数记作∂f/∂y。

分别表示函数f关于x和y的变化率。

2. 偏微分方程的定义偏微分方程是一类包含多个自变量的偏导数的方程。

它通常表示物理、化学或工程问题中的一些基本规律。

偏微分方程通常可以用数学语言描述为F(x, y, u, ∂u/∂x, ∂u/∂y, ∂^2u/∂x^2, ∂^2u/∂y^2,…) = 0其中u是未知函数,x和y是自变量,F是已知函数。

二、偏微分方程的分类1. 齐次偏微分方程和非齐次偏微分方程齐次偏微分方程是指方程中不含有常数项或只含有未知函数及其偏导数项的方程,非齐次偏微分方程是指方程中含有常数项或者其他函数的项的方程。

2. 线性偏微分方程和非线性偏微分方程线性偏微分方程是指偏微分方程中未知函数及其各阶偏导数只含一次且不含未知函数的乘积的方程,非线性偏微分方程是指未知函数及其各阶偏导数含有未知函数的乘积的方程。

3. 定解问题定解问题是指在偏微分方程中,给出一些附加条件,使得可以从整个解的集合中找到符合这些条件的特定解。

定解问题通常包括边界条件和初始条件。

三、偏微分方程的解法1. 分离变量法分离变量法是对于一些特定形式的偏微分方程,可以通过假设解具有特定的形式来进行求解。

例如,对于一些可以分离变量的方程,我们可以假设解为u(x, y) = X(x)Y(y),然后将方程进行变形,从而可以将偏微分方程化简为两个常微分方程,然后对这两个常微分方程分别求解。

2. 特征线法对于二阶线性偏微分方程,可以通过引入特征线的方法进行求解。

特征线方法可以将二阶偏微分方程化为两个一阶偏微分方程,然后对这两个一阶偏微分方程进行分别求解。

大学数学偏微分方程理论学习

大学数学偏微分方程理论学习

偏微分方程理论学习一. 偏微分方程发展简介1. 常微分方程十七世纪微积分创立之后,常微分方程理论立刻就发展起来,当时应用常微分方程,解决几何与理学中的新问题。

结果是在天体理学中不仅能得到并解释早先已经知晓的那些事实,而且得到了性的发现(例如,海王星的发现就是在对微分方程分析的基础上作出的)。

2. 偏微分方程偏微分方程的研究要晚得多,对物理学中出现的偏微分方程研究在十八世纪中叶导致了分析学的一个新的分支------数学物理方程的建立。

J.达朗贝尔(D’Alembert )(1717-1783)、L.欧拉(Euler )(1707-1783)、D.伯努利(Bernoulli )(1700-1782)、J.拉格朗日(Lagrange )(1736-1813)、P.拉普拉斯(Laplace )(1749-1827)、S.泊松(Poisson )(1781-1840)、J.傅里叶(Fourier )(1768-1830)等人的工作为这一学科分支奠定了基础。

它们在考察具体的数学物理问题中,所提出的思想与方法,竟适用于众多类型的微分方程,成为十九世纪末偏微分方程一般理论发展的基础。

十九世纪,偏微分方程发展的序幕是由法国数学家傅里叶拉开的,他于1822年发表的《热的解析理论》是数学史上的经典文献之一。

傅里叶研究的主要是吸热或放热物体内部任何点处的温度随空间和时间的变化规律。

在对物体的物理性状作出一定的限制(如均匀、各向同性)后,他根据物理原理推导出了三维空间的热传导方程其中k 是一个参数,其值依赖于物体的质料。

傅里叶当时解决的是如下特殊的热传导问题:设所考虑的物体为两端保持在温度0度、表面绝热且无热流通过的柱轴。

在此情形下求解上述热传导方程,因为柱轴只涉及一维空间,所以这个问题也就是求解偏微分方程⎪⎪⎩⎪⎪⎨⎧<<=>==∂∂=∂∂,0),()0,(,0,0),(,0),0(T T 222l x x f x T t t l T t T x k x ,其中后面两项分别是边界条件和初始条件。

大学数学易考知识点偏微分方程的基本理论和解法

大学数学易考知识点偏微分方程的基本理论和解法

大学数学易考知识点偏微分方程的基本理论和解法大学数学易考知识点:偏微分方程的基本理论和解法一、引言数学作为一门基础学科,广泛应用于各行各业。

在大学数学课程中,偏微分方程是一个重要的知识点。

本文将介绍偏微分方程的基本理论和解法,帮助大家更好地掌握这一知识点。

二、偏微分方程的基本概念1. 偏微分方程的定义偏微分方程是含有未知函数及其偏导数的方程。

它与常微分方程不同之处在于,偏微分方程中的未知函数不仅依赖于自变量,还依赖于各个自变量的偏导数。

2. 偏微分方程的分类偏微分方程根据方程中出现的未知函数的偏导数的阶数和个数,可以分为常系数偏微分方程和变系数偏微分方程;根据方程类型,可以分为椭圆型、双曲型和抛物型等不同类型的方程。

三、偏微分方程的基本理论1. 解的存在性和唯一性对于线性偏微分方程,满足一定的初值条件和边值条件时,解的存在性和唯一性可以得到保证。

这一结论对于求解实际问题具有重要的意义。

2. 偏微分方程的解的性质偏微分方程解的性质包括可微性、连续性以及一定的物理意义。

解的性质可以通过数学推导和物理分析得到。

四、偏微分方程的解法1. 常系数偏微分方程的解法常系数偏微分方程包括常系数线性偏微分方程和常系数非线性偏微分方程。

对于常系数线性偏微分方程,可以使用特征线法、分离变量法等方法求解;对于常系数非线性偏微分方程,可以使用变量分离法等方法求解。

2. 变系数偏微分方程的解法对于变系数偏微分方程,一般的解法是利用变换法将其转化为常系数偏微分方程。

常用的变换方法包括相似变量法、积分因子法等。

五、应用实例1. 热传导方程的求解热传导方程是一个典型的偏微分方程,描述了物体内部温度随时间和空间的变化规律。

采用分离变量法或者变量分离法可以求解该方程,从而得到物体内部的温度分布。

2. 波动方程的求解波动方程描述了波动现象的传播规律。

通过变量分离法或者特征线法可以求解波动方程,得到波动的传播速度和波形。

六、总结通过对偏微分方程的基本理论和解法的介绍,我们可以看到偏微分方程是数学中一个重要且广泛应用的知识点。

偏微分方程理论的归纳与总结

偏微分方程理论的归纳与总结

偏微分方程理论的归纳与总结一、偏微分方程的分类:1.齐次与非齐次:一个偏微分方程中,如果所有出现的偏导数项的次数相同,且不含常数项,则称其为齐次方程;如果存在常数项,则称其为非齐次方程。

2.线性与非线性:一个偏微分方程中若只包含未知函数及其偏导数的一次项,并且未知函数的系数不依赖于未知函数自身及其偏导数,则称其为线性方程;反之,则是非线性方程。

3.定常与非定常:一个偏微分方程中,如果未知函数及其偏导数的系数不依赖于自变量,则称其为定常方程;反之,则是非定常方程。

4.高阶与低阶:一个偏微分方程中,若最高阶偏导数的阶数大于1,则称其为高阶方程;若最高阶偏导数的阶数为1,则称其为一阶方程。

二、偏微分方程的求解方法:1.分离变量法:对于一些特殊的偏微分方程,可以通过分离变量的方式将其转化为一阶常微分方程进行求解。

2.特征线法:对于一些具有特殊形式的偏微分方程,可以通过特征线法来求解。

该方法将方程中的自变量替换为新的变量,使得方程在新的变量系综下变得简单。

3.变换法:通过适当的变量代换,将原方程转化为形式简单的方程或标准的数学物理方程进行求解。

5.数值解法:对于一些复杂的偏微分方程,可以采用数值解法进行近似求解,如有限差分法、有限元法、谱方法等。

三、偏微分方程的应用:1.物理学:偏微分方程在物理学中有着广泛的应用,如热传导方程、波动方程、扩散方程等。

2.工程学:偏微分方程在工程学中也有重要应用,如电磁场方程、流体力学方程、固体力学方程等。

3. 经济学:偏微分方程在经济学中的应用主要用于建模和分析经济系统的动态变化,如Black-Scholes方程、Hamilton-Jacobi-Bellman方程等。

4. 生物学:偏微分方程在生物学中的应用主要用于描述群体的扩散、生物图像处理和生物电传导等问题,如Fisher方程、Gray-Scott方程等。

综上所述,偏微分方程理论是数学中的重要分支之一、通过对偏微分方程的分类、求解方法及其应用的归纳与总结,不仅可以帮助我们更好地理解偏微分方程的本质与特点,还能够为我们解决实际问题提供一个有效的数学工具。

(高等数学)偏微分方程

(高等数学)偏微分方程

第十四章 偏微分方程物理、力学、工程技术和其他自然科学经常提出大量的偏微分方程问题.由于实践的需要和一些数学学科(如泛函分析,计算技术)的发展,促进了偏微分方程理论的发展,使它形成一门内容十分丰富的数学学科.本章主要介绍一阶偏微分方程、线性方程组及二阶线性偏微分方程的理论.在二阶方程中,叙述了极值原理、能量积分及惟一性定理.阐明了一些解的性质和物理意义,介绍典型椭圆型、双曲型、抛物型方程的常用解法:分离变量法,基本解,格林方法,黎曼方法,势位方法及积分变换法.最后,扼要地介绍了有实用意义的数值解法:差分方法和变分方法.§1 偏微分方程的一般概念与定解问题[偏微分方程及其阶数] 一个包含未知函数的偏导数的等式称为偏微分方程.如果等式不止一个,就称为偏微分方程组.出现在方程或方程组中的最高阶偏导数的阶数称为方程或方程组的阶数.[方程的解与积分曲面] 设函数u 在区域D 内具有方程中所出现的各阶的连续偏导数,如果将u 代入方程后,能使它在区域D 内成为恒等式,就称u 为方程在区域D 中的解,或称正规解. ),,,(21n x x x u u = 在n +1维空间),,,,(21n x x x u 中是一曲面,称它为方程的积分曲面. [齐次线性偏微分方程与非齐次线性偏微分方程] 对于未知函数和它的各阶偏导数都是线性的方程称为线性偏微分方程.如()()()()y x f u y x c yuy x b x u y x a ,,,,=+∂∂+∂∂就是线性方程.在线性方程中,不含未知函数及其偏导数的项称为自由项,如上式的f (x,y ).若自由项不为零,称方程为非齐次的.若自由项为零,则称方程为齐次的.[拟线性方程与半线性方程] 如果一个方程,对于未知函数的最高阶偏导数是线性的,称它为拟线性方程.如()()()()()()0,,,,,,,,,,,,22222122211=+∂∂+∂∂+∂∂+∂∂∂+∂∂u y x c y uu y x b x u u y x a yu u y x a y x u u y x a x u u y x a就是拟线性方程,在拟线性方程中,由最高阶偏导数所组成的部分称为方程的主部.上面方程的主部为()()()22222122211,,,,,,yuu y x a y x u u y x a x u u y x a ∂∂+∂∂∂+∂∂如果方程的主部的各项系数不含未知函数,就称它为半线性方程.如()()()()0,,,,,,2222=∂∂+∂∂+∂∂+∂∂y yu y x d x y u y x c yu y x b x u y x a就是半线性方程.[非线性方程] 不是线性也不是拟线性的方程称为非线性方程.如1)()1(222=∂∂+∂∂+yux u u就是一阶非线性偏微分方程.[定解条件] 给定一个方程,一般只能描写某种运动的一般规律,还不能确定具体的运动状态,所以把这个方程称为泛定方程.如果附加一些条件(如已知开始运动的情况或在边界上受到外界的约束)后,就能完全确定具体运动状态,称这样的条件为定解条件.表示开始情况的附加条件称为初始条件,表示在边界上受到约束的条件称为边界条件.[定解问题] 给定了泛定方程(在区域D 内)和相应的定解条件的数学物理问题称为定解问题.根据不同定解条件,定解问题分为三类.1︒ 初值问题 只有初始条件而没有边界条件的定解问题称为初值问题或柯西问题. 2︒ 边值问题 只有边值条件而没有初始条件的定解问题称为边值问题.3︒ 混合问题 既有边界条件也有初始条件的定解问题称为混合问题(有时也称为边值问题).[定解问题的解] 设函数u 在区域D 内满足泛定方程,当点从区域D 内趋于给出初值的超平面或趋于给出边界条件的边界曲面时,定解条件中所要求的u 及它的导数的极限处处存在而且满足相应的定解条件,就称u 为定解问题的解.[解的稳定性] 如果定解条件的微小变化只引起定解问题的解在整个定义域中的微小变化,也就是解对定解条件存在着连续依赖关系,那末称定解问题的解是稳定的.[定解问题的适定性] 如果定解问题的解存在与惟一并且关于定解条件是稳定的,就说定解问题的提法是适定的.§2 一阶偏微分方程一、 柯西-柯娃列夫斯卡娅定理[一阶偏微分方程的通解] 一阶偏微分方程的一般形式 是0),,,,,,,,(2121=∂∂∂∂∂∂nn x ux u x u u x x x F或()0,,,,,,,211=n n p p p u x x F ,其中()n i x up ii ,,2,1 =∂∂=如解出p 1,可得:p 1 = f (x 1 , x 2 ,…, x n , u , p 2 ,…, p n )当方程的解包含某些“任意元素”(指函数),如果适当选取“任意元素”时,可得方程的任意解(某些“奇异解”除外),则称这样的解为通解.在偏微分方程的研究中,重点在于确定方程在一些附加条件(即定解条件)下的解,而不在于求通解.[一阶方程的柯西问题]()()⎪⎩⎪⎨⎧==∂∂=n x x n n x x u p p u x x x f x u,,|,,,,,,,22211011 ϕ 称为柯西问题,式中),,(2n x x ϕ为已知函数,对柯西问题有如下的存在惟一性定理.[柯西-柯娃列夫斯卡娅定理] 设 f ( x 1 , x 2 ,, x n , u , p 2 ,, p n ) 在点 ( x 10 , x 20 ,, x n 0 , u 0 , p 20 ,, p n 0 ) 的某一邻域内解析,而),,(2n x x ϕ在点( x 20 ,, x n 0 ) 的某邻域内解析,则柯西问题在点 ( x 10 ,, x n 0 ) 的某一邻域内存在着惟一的解析解.这个定理应用的局限性较大,因它要求f 及初始条件都是解析函数,一般的定解问题未必能满足这种条件.对高阶方程也有类似定理.二、 一阶线性方程1. 一阶齐次线性方程[特征方程∙特征曲线∙初积分(首次积分)] 给定一阶齐次线性方程在有些书中写作0),,,,,,,,,(121=∂∂∂∂∂∂nn x u x u t u u x x x t F()()0,,,,,,211211=∂∂++∂∂nn n n x u x x x a x u x x x a (1) 式中a i 为连续可微函数,在所考虑的区域内的每一点不同时为零(下同).方程组()n i ix x x a tx ,,,d d 21 = ( i = 1,2,, n ) 或()()()n n n n n x x x a x x x x a x x x x a x ,,,d ,,,d ,,,d 2121222111 === (2)称为一阶齐次线性偏微分方程的特征方程.如果曲线l : x i = x i (t ) ( i =1,2,, n )满足特征方程(2),就称曲线l 为一阶齐次线性方程的特征曲线.如果函数ψ ( x 1 , x 2 ,, x n )在特征曲线),,2,1()(n i t x x i i ==上等于常数,即ψ ( x 1(t ) , x 2(t ) ,, x n (t ) ) = c就称函数ψ ( x 1, x 2,, x n )为特征方程(2)的初积分(首次积分). [齐次方程的通解]1o 连续可微函数u = ψ ( x 1, x 2,, x n ) 是齐次线性方程(1)的解的充分必要条件是: ψ ( x 1, x 2,, x n )是这个方程的特征方程的初积分.2o 设ψi ( x 1 , x 2 ,, x n ) ( i = 1,2,, n 1-) 是特征方程(2)在区域D 上连续可微而且相互独立的初积分(因此在D 内的每一点,矩阵⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂---n n n n n n x x x x x x x x x 121112221212111ψψψψψψψψψ 的秩为n 1-) ,则u = ω ( ψ1 ( x 1 , x 2 ,, x n ) ,, ψn -1 ( x 1 , x 2 ,, x n ) )是一阶齐次线性方程(1)的通解,其中ω为n 1-个变量的任意连续可微函数. [柯西问题] 考虑方程的柯西问题()()⎪⎩⎪⎨⎧==∂∂==∑n x x ni i n i x x u x u x x x a ,,|0,,,2121011 ϕ 式中ϕ ( x2 ,, x n )为已知的连续可微函数.设ψi ( x 1 , x 2 ,, x n ) ( i = 1,2,, n 1-) 为特征方程的任意n 1-个相互独立的初积分,引入参变量 i ψ (1,,2,1-=n i ),从方程组()()()⎪⎪⎩⎪⎪⎨⎧===--120112201212011,,,,,,,,,n n n n n x x x x x x x x x ψψψψψψ 解出x 2 ,, x n 得()()⎪⎩⎪⎨⎧==--12112122,,,,,,n n nn x x ψψψωψψψω 则柯西问题的解为u = ϕ ( ω2 ( ψ1 , ψ2 ,, ψn -1 ) ,, ωn ( ψ1 , ψ2 ,, ψn -1 ) )2. 非齐次线性方程它的求解方法与拟线性方程相同.三、 一阶拟线性方程一阶拟线性方程为()()∑==∂∂ni n i n i u x x x R x uu x x x a 12121,,,,,,,, 其中a i 及R 为x 1 , x 2 ,, x n , u 的连续可微函数且不同时为零. [一阶拟线性方程的求解和它的特征方程]()()⎪⎩⎪⎨⎧===u x x x R t un i u x x x a t x n n i i,,,,d d ),,2,1(,,,,d d 2121 或()()()u x x R uu x x a x u x x a x n n n n n ,,,d ,,,d ,,,d 11111 ===为原拟线性方程的特征方程.如果曲线l : x i = x i (t ) ( i =1,2,, n ) , u = u (t ) 满足特征方程,则称它为拟线性方程的特征曲线.设 ψi ( x 1 ,, x n ,u ) ( i = 1,2,, n ) 为特征方程的n 个相互独立的初积分,那末对于任何连续可微函数ω,ω ( ψ1 ( x 1,, x n , u ) , ψ2 ( x 1,, x n , u ) ,, ψn ( x 1,, x n , u ) ) = 0都是拟线性方程的隐式解.[柯西问题] 考虑方程的柯西问题()()()⎪⎩⎪⎨⎧==∂∂==∑n x x ni n i ni x x u u x x x R x u u x x x a ,,|,,,,,,,,212121011 ϕ ϕ为已知的连续可微函数.设 ψ1 ( x 1 , x 2 ,, x n , u ) ,, ψn ( x 1 , x 2 ,, x n , u ) 为特征方程的n 个相互独立的初积分,引入参变量 n ψψψ,,,21 , 从()()()⎪⎪⎩⎪⎪⎨⎧===nn n n n u x x x u x x x u x x x ψψψψψψ,,,,,,,,,,,,2012201212011解出 x 2 ,, x n , u()()()⎪⎪⎩⎪⎪⎨⎧===n n n n n u x x ψψψωψψψωψψψω,,,,,,,,,21212122 则由()()()()()()()0,,,,,,,,,,,,,,,,,,,,,,2121221221121=-≡n n n n n n u x x x u x x x u x x x V ψψψωψψψωϕψψω给出柯西问题的隐式解.四、 一阶非线性方程[完全解·通解·奇异解] 一阶非线性方程的一般形式为()()n i x up p p p u x x x F ii n n ,,2,10,,,,,,,,2121 =∂∂== 若一阶偏微分方程的解包含任意n 个独立的常数,则称这样的解为完全解(全积分). 若V ( x 1, x 2 ,, x n , u , c 1 , c 2,, c n ) = 0为方程的完全解,从()n i c VV i,,2,10,0 ==∂∂= 消去c i ,若得一个解,则称它为方程的奇异解(奇积分).以两个独立变量为例说明完全解与通解、奇异解的关系,设方程()yzq x z p q p z y x F ∂∂=∂∂==,,0,,,,有完全解V (x ,y ,z ,a ,b )=0 ( a ,b 为任意常数),则方程等价于从方程组()⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂=∂∂+∂∂=0,00,,,,q z Vy V p z V x V b a z y x V 消去a ,b 所得的方程.利用常数变易法把a ,b 看作x , y 的函数,将V (x ,y ,z ,a ,b )=0求关于x , y 的偏导数,得00=∂∂⋅∂∂+∂∂⋅∂∂+∂∂+∂∂=∂∂⋅∂∂+∂∂⋅∂∂+∂∂+∂∂ybb V y a a V q z V y V xbb V x a a V p z V x V那末0,0=∂∂⋅∂∂+∂∂⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂yb b V y a a V x b b V x a a V 与V=0联立可确定a ,b .有三种情况:1︒ 0≡∂∂≡∂∂bVa V ,将其与V (x ,y ,z ,a ,b )=0联立可确定不含任意常数的奇异解. 2︒ 如0=∂∂=∂∂=∂∂=∂∂yb x b y a x a ,即回到完全解. 3︒ 当0/,0/≡∂∂≡∂∂b Va V 时,必有()()0,,=∂∂y x b a ,这时,如果不属于情形2︒ ,则a 与b 存在函数关系:b=ω(a ),这里ω为任意可微函数,并从方程V (x ,y ,z ,a ,b )=0和()∂∂∂∂ωV a Vba +'=0消去a ,b ,可确定方程的通解.定理 偏微分方程的任何解包含在完全解内或通解内或奇异解内. [特征方程·特征带·特征曲线·初积分] 在一阶非线性方程:()F x x x u p p p n n 12120,,,,,,,, =中,设F 对所有变量的二阶偏导数存在且连续,称()n i uFp x F t p p F p t u p Ft x i i i ni iii i ,,2,1)(d d d d ,1 =∂∂+∂∂-=∂∂=∂∂=∂∂∑=或u F p x F p u F p x F p p Fp up F x p F xp F x n nnni i i nn ∂∂+∂∂-==∂∂+∂∂-=∂∂=∂∂==∂∂=∂∂∑=d d d d d d 11112211为非线性方程的特征方程.设特征方程的解为x i =x i (t ), u=u (t ), p i =p i (t ) (i =1,2,…,n )称它为非线性方程的特征带.在x 1,x 2,, x n ,u 空间的曲线x i =x i (t ), u=u (t ) (i=1,2,…,n )称为非线性方程的特征曲线.如果函数()n n p p p u x x x G ,,,,,,,,2121 在特征方程的任一解x i =x i (t ) (i =1,2,, n ), u=u (t ), p i =p i (t ) (i =1,2,, n )上等于常数,即()()()()()()()()G x t x t x t u t p t p t p t C n n 1212,,,,,,,, =那末函数()n n p p p u x x x G ,,,,,,,,2121 称为特征方程的初积分.[求完全解的拉格朗日-恰比方法] 考虑两个变量的情况.对于方程F (x ,y ,z ,p ,q )=0,选择使雅可比式()()0,,≠∂∂q p G F 的一个初积分G (x ,y ,z ,p ,q ).解方程组()()F x y z p q G x y z p q a,,,,,,,,==⎧⎨⎪⎩⎪0(a 为任意常数) 得p (x ,y ,z ,a )及q (x ,y ,z ,a ).则方程d z=p d x+q d y的通解V (x ,y ,z ,a ,b )=0(b 是积分d z=p d x+q d y 出现的任意常数)就是方程F (x ,y ,z ,p ,q )=0的完全解.例 求方程()z p q x y 22222+=+的完全解.解 方程的特征方程为()()()qy x z y qp q p z x p q p z z q z y p z x 22222222222d 22d 2d 2d 2d +-=+-=+== 这里成立zpxx p z z p d d d =+ 所以特征方程的一个初积分为z 2p 2 -x 2 .解方程组 ()()z p q x y z p x a22222222+-+=-=⎧⎨⎪⎩⎪ (a 为任意常数) 得 p a x zq y az=+=-22, 积分微分方程dz a x zdx y azdy =++-22 得完全解z x x a y y a a x x a y y ab 22222=++-++++-+ln(b 为任意常数)[某些容易求完全解的方程] 1︒ 仅含p ,q 的方程F (p ,q )=0G =p 是特征方程的一个初积分.从F (p ,q )=0与p=a (a 为任意常数)得q=ψ(a ),积分d z=a d x+ψ(a )d y得完全解z=ax+ψ(a )y+b (b 为任意常数)2︒ 不显含x ,y 的方程F (z ,p ,q )=0 特征方程为zFqqz F p p q F q p F p z q F y p F x ∂∂-=∂∂-=∂∂+∂∂=∂∂=∂∂d d d d d 因此q d p-p d q =0,显然G qp=为一个初积分,由F (z ,p ,q )=0,q=pa (a 为任意常数)解得p=ψ(z ,a ).于是由d z=ψ(z ,a )d x+a ψ(z ,a )d y得()⎰++=b ay x a z z,d ψ (b 为任意常数)可确定完全解.3︒ 变量分离形式的方程()f x p i i i i n,=∑=10特征方程为n n n n i i iin n n x f p x f p p f p z p f x p f x ∂∂-==∂∂-=∂∂=∂∂==∂∂∑=d d d d d 1111111 可取初积分G i =f i (x i ,p i ) , (i =1,2,, n ).从f i (x i ,p i )=a i (i =1,2,, n )解出p i =ϕi (x i ,a i )得完全解()∑⎰=+=ni i i i i b x a x z 1d ,ϕ式中a i ,b 为任意常数,且a i i n=∑=10.[克莱罗方程] 方程()z p x f p p p i i n i n=+=∑121,,,称为克莱罗方程,其完全解为()z c x f c c c i i n i n=+=∑121,,,对c i 微分得x fc i i=-∂∂ (i =1,2,…,n ) 与完全解的表达式联立消去c i 即得奇异解.例 求方程z -xp -yq -pq =0的完全解和奇异解. 解 这是克莱罗方程,它的完全解是z=ax+by+ab对a,b 微分,得x=-b,y=-a ,消去a ,b 得奇异解z=-xy[发甫方程] 方程P (x,y,z )d x+Q (x,y,z )d y+R (x,y,z )d z=0 (1)称为发甫方程,如果P,Q,R 二次连续可微并满足适当条件,那末方程可积分.如果可积分成一关系式时,则称它为完全可积.1︒ 方程完全可积的充分必要条件 当且仅当P,Q,R 满足条件0)()()(=∂∂-∂∂+∂∂-∂∂+∂∂-∂∂yP x Q R x R z P Q z Q y R P (2) 时,存在一个积分因子μ(x,y,z ),使d U 1=μ(P d x+Q d y+R d z )从而方程的通解为U 1(x,y,z )=c特别,当0,0,0=∂∂-∂∂=∂∂-∂∂=∂∂-∂∂yP x Q x R z P z Q y R 时,存在一个函数U (x,y,z )满足 zU R y U Q x U P ∂∂=∂∂=∂∂=,,从而 d U=P d x+Q d y+R d z 所以方程的通解为U (x,y,z )=c所以完全可积的发甫方程的通解是一单参数的曲面族.定理 设对于发甫方程(1)在某区域D 上的完全可积条件(2)成立,则对D 内任一点M (x,y,z )一定有方程的积分曲面通过,而且只有一个这样的积分曲面通过. 2︒ 方程积分曲面的求法设完全可积条件(2)成立.为了构造积分曲面,把z 看成x,y 的函数(设R (x,y,z )≠0),于是原方程化为y RQ x R P z d d d --=由此得方程组()()()()⎪⎪⎩⎪⎪⎨⎧≡-=∂∂≡-=∂∂4,,3,,11z y x Q R Q y z z y x P R P xz发甫方程(1)与此方程组等价.把方程(3)中的y 看成参变量,积分后得一个含有常数 c 的通解 ()cy x z ~;,ϕ= 然后用未知函数()~cy 代替常数 c ,将()()z x y c y =ϕ,;~代入方程(4),在完全可积的条件下,可得()~cy 的一个常微分方程,其通解为 ()()~,cy y c =ψ c 为任意常数,代回()()z x y cy =ϕ,;~中即得发甫方程的积分曲面 z=ϕ(x,y,ψ(y,c ))由于发甫方程关于x,y,z 的对称性,在上面的讨论中,也可把x 或y 看成未知函数,得到同样的结果.例 求方程yz d x+2xz d y+xy d z=0的积分曲面族.解 容易验证完全可积条件成立,显然存在一个积分因子μ=1xyz,用它乘原方程得 0d d 2d =++zz y y x x 积分后得积分曲面族xy 2z=c也可把方程化为等价的方程组⎪⎪⎩⎪⎪⎨⎧-=∂∂-=∂∂y z yz x z xz 2 把y 看成参变量,积分xzx z -=∂∂得通解 zx c= 用未知函数()~cy 代替 c ,将()y c zx ~=代入方程y z y z 2-=∂∂得 ()()yy cy y c ~2d ~d -= 积分后有()~cy c y =2所以原方程的积分曲面族是xy 2z=c五、 一阶线性微分方程组[一阶线性偏微分方程组的一般形式] 两个自变量的一阶线性方程组的形式是()n i F u C x u B t u A i n j j ij n j n j jij j ij ,,2,10111 ==++∂∂+∂∂∑∑∑=== 或()n i f u b x u a t u i n j j ij n j j ij i,,2,1011 ==++∂∂+∂∂∑∑== (1) 其中A ij ,B ij ,C ij ,F i ,a ij ,b ij ,f i 是(x,t )的充分光滑函数. [特征方程·特征方向·特征曲线]⎩⎨⎧=≠==-j i j i t xa ij ij ij ,1,0,0)d d det(δδ称为方程组(1)的特征方程.在点(x,t )满足特征方程的方向txd d 称为该点的特征方向.如果一条曲线l ,它上面的每一点的切线方向都和这点的特征方向一致,那末称曲线l 为特征曲线. [狭义双曲型方程与椭圆型方程] 如果区域D 内的每一点都存在n 个不同的实的特征方向,那末称方程组在D 内为狭义双曲型的.如果区域D 内的每一点没有一个实的特征方向,那末称方程组在D 内为椭圆型的. [狭义双曲型方程组的柯西问题] 1︒ 化方程组为标准形式——对角型因为det(a ij -δij λ)=0有n 个不同的实根λ1(x,t ) ,, λn (x,t ),不妨设),(),(),(21t x t x t x n λλλ<<<那末常微分方程()()n i t x txi ,,2,1,d d ==λ 的积分曲线l i (i =1,2,…,n )就是方程组(1)的特征曲线. 方程()()aijk ij k i i n-==∑λδλ1的非零解(λk (1) ,, λk (n ))称为对应于特征方向λk 的特征矢量. 作变换()()n i u v nj jj i i ,,2,11==∑=λ可将方程组化为标准形式——对角型()()()()n i t x v t x a x v t x t v i nj j ij ii i ,,2,1,,,1=+=∂∂+∂∂∑=βλ 所以狭义双曲型方程组可化为对角型,而一般的线性微分方程组(1)如在区域D 内通过未知函数的实系数可逆线性变换可化为对角型的话,(此时不一定要求 λi 都不相同),就称这样的微分方程组在D 内为双曲型的. 2︒ 对角型方程组的柯西问题 考虑对角型方程组的柯西问题()()()()()()n i x x v t x v t x a x v t x tv i inj i j ij i i i,,2,10,,,,1 =⎪⎩⎪⎨⎧=+=∂∂+∂∂∑=ϕβλ ϕi (x )是[a,b ]上的连续可微函数.设αij ,βi ,λi 在区域D 内连续可微,在D 内可得相应的积分方程组()()()n i tv x t x v il i n j j ij i i i ,,2,1d ,~1 =⎥⎦⎤⎢⎣⎡++=⎰∑=βαϕ 式中 l i 为第i 条特征曲线l i 上点(x,t )与点(x i ,0)之间的一段,(x i ,0)为l i与x 轴上[a,b ]的交点.上式可以更确切地写为()()[]()[]()[]()[]⎰∑⎭⎬⎫⎩⎨⎧+⋅+==t n j i i i j i ij i i i t x x t x x v t x x a t x x t x v 01d ,,,,,,,,,0,,,τττβττττϕ(i =1,2,, n )式中x i =x i (x ︒,t ︒,t )为过点(x ︒,t ︒)的第i 条特征曲线,利用逐次逼近法可解此积分方程.为此令()()()[]()()()()[]()[]()()[]()[]()()()()[]()[]()()[]()[]()n i t x x t x x v t x x a t x x t x v n i t x x t x x v t x x a t x x t x v n i t x x t x v i i tnj i k j i ij i i k ii i tnj i j i ij i i ii i i ,,2,1d ,,,,,,,,,0,,,,,2,1d ,,,,,,,,,0,,,,,2,10,,,}{}{01101010=+⋅+==+⋅+===⎰∑⎰∑=-=τττβττττϕτττβττττϕϕ序列{v i (k )} (k =0,1,2 ,)一致收敛于积分方程的连续可微解v i (x,t ) (i =1,2,, n ),这个v i (x,t )也就是对角型方程组的柯西问题的解.设在区域D 内对角型方程组的柯西问题的解存在,那末解与初值有下面的关系:(i) 依赖区间:过D 中任意点M (x,t )作特征曲线l 1,l n ,交x 轴于B,A ,称区间[A,B ]为M 点的依赖区间(图14.1(a )),解在M 点的值由区间[A,B ]的初值确定而与[A,B ]外的初值无关. (ii) 决定区域:过点A,B 分别作特征曲线l n ,l 1,称l n ,l 1 与区间[A,B ]围成的区域D 1为区间[A,B ]的决定区域(图14.1(b )),在区域D 1中解的值完全由[A,B ]上的初值决定.(iii) 影响区域:过点A,B 分别作特征曲线l 1,l n ,称l 1,l n 与[A,B ]围成的区域D 2为区间[A,B ]的影响区域(图14.1(c )).特别当区间[A,B ]缩为一点A 时,A 点的影响区域为D 3(图14.1(d )).在区域D 2中解的值受[A,B ]上的初值影响,而在区域D 2外的解的值则不受[A,B ]上的初值影响.图14.1[线性双曲型方程组的边值问题] 以下列线性方程组来说明:()⎪⎪⎩⎪⎪⎨⎧<++=∂∂+∂∂++=∂∂+∂∂2122221111λλλλc v b u a x v t v c v b u a xu t u (1) 1︒ 第一边值问题(广义柯西问题) 设在平面(x,t )上给定曲线段⋂AB ,它处处不与特征方向相切.过A,B 分别引最左和最右的特征曲线l 1及l 2.要求函数u (x,t ),v (x,t )在⋂AB ,l 1及l 2围成的闭区域D 上满足方程组,且在⋂AB 上取给定的函数值(图14.2(a )).2︒ 第二边值问题(古沙问题) 设l 1是过P 点的第一族特征线,l 2是第二族特征线,在l 1的一段PA 上给定v (x,t )的数值,在l 2的一段PB 上给定u (x,t )的数值,过A 点作第二族特征线,过B 点作第一族特征线相交于Q .求在闭区域PAQB 上方程组的解(图14.2(b )).3︒ 第三边值问题 设AB 为非特征曲线的曲线弧,AC 为一特征线弧,且在AB 与AC 之间不存在过A 点的另外特征曲线,过C 点作第二族特征线与过B 点的第一族特征线交于E 点,在AC 上给定v (x,t )的数值,在AB 上给定u (x,t )的数值,求ACEBA 所围成的闭区域D 上的方程组的解(图14.2(c)).图14.2[边值问题的近似解——特征线法] 以上定解问题,可用逐步逼近法求解,也可用特征线法求解的近似值.以第一边值问题为例说明.在曲线AB 上取n 个分点A 1,A 2,, A n ,并记A 为A 0,B 为A n +1,过A 0按A 0的第二特征方向作直线与过A 1按A 1的第一特征方向作直线相交于B 0;过A 1按A 1第二特征方向作直线与过A 2按A 2的第一特征方向作直线相交于B 1 ,最后得到B n (图14.3).用如下的近似公式来确定方程组(1)的解u (x,t ),v (x,t )在B i (i =0,1,2,…,n )的数值:()()()()()()(){}()[]()()()()()()(){}()[]u B u A B A a A u A b A v A c A A v B v A B A a A u A b A v A c A A i i i i i i i i i i i i i i i i i i i i -=++⨯+-=++⨯+⎧⎨⎪⎩⎪+++++++--11111111112122212121211λλ图14.3于是在一个三角形网格的节点上得到u,v 的数值.再经过适当的插值,当n 相当大,A i 、A i +1的距离相当小时,就得到所提问题的足够近似的解.[特殊形式的拟线性方程组——可化约系统] 一般的拟线性方程组的问题比较复杂,目前研究的结果不多,下面介绍一类特殊形式的拟线性方程组——可化约系统.如果方程组⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂+∂∂+∂∂=∂∂+∂∂+∂∂+∂∂0022221111x v D t v C x u B tu A xv D t v C x u B t uA 中所有的系数只是u,v 的函数,称它为可化约系统. 考虑满足条件()()0,,≠∂∂t x v u 的方程组的解u=u (x,t ),v=v (x,t ).x,t 可以表示成u,v 的函数,且()()()()()()()()v u t x u t x v v u t x u x t v v u t x v tx u v u t x v x t u ,,,,,,,,,,∂∂∂∂=∂∂∂∂∂∂-=∂∂∂∂∂∂-=∂∂∂∂∂∂=∂∂ 原方程化为⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂-∂∂-∂∂=∂∂+∂∂-∂∂-∂∂0022221111u t D u x C v t B vx A ut D u x C v t B v xA 这是关于自变量u,v 的线性方程组.这样就把求拟线性方程组满足()()0,,≠∂∂t x v u 的解,化为解线性方程组的问题.而此线性方程组满足条件()()0,,≠∂∂v u t x 的解,在(x,t )平面上的象即为原来拟线性方程组的解.§3 二阶偏微分方程一、 二阶偏微分方程的分类、标准形式与特征方程考虑二阶偏微分方程()0),,,,,,(111,2=∂∂∂∂+∂∂∂∑=nnnj i j i ij x u x u u x x F y x u x a (1) 式中a ij (x )=a ij (x 1,x 2,…,x n )为x 1,x 2,…,x n 的已知函数.[特征方程·特征方向·特征曲面·特征平面·特征锥面]代数方程()01,=∑=nj i jiijaa x a称为二阶方程(1)的特征方程;这里a 1,a 2,…,a n 是某些参数,且有012≠∑=ni i a .如果点x ︒=(x 1︒,x 2︒,…,x n ︒)满足特征方程,即()01,o =∑=nj i jiijaa x a则过x ︒的平面()01o=-∑=nk kk k x x a 的法线方向l :(a 1,a 2,…,a n )称为二阶方程的特征方向;如果一个(n 1-)维曲面,其每点的法线方向都是特征方向,则称此曲面为特征曲面;过一点的(n 1-)维平面,如其法线方向为特征方向,则称这个平面为特征平面,在一点由特征平面的包络组成的锥面称为特征锥面.[n 个自变量方程的分类与标准形式] 在点P (x 1︒,x 2︒,…,x n ︒),根据二次型()∑=nj i jinijaa x x x a 1,o o 2o 1,,, (a i 为参量)的特征根的符号,可将方程分为四类:(i) 特征根同号,都不为零,称方程在点P 为椭圆型.(ii) 特征根都不为零,有n 1-个具有同一种符号 ,余下一个符号相反,称方程在点P 为双曲型.(iii) 特征根都不为零,有m n -个具有同一种符号(n >m >1),其余m 个具有另一种符号,称方程在点P 为超双曲型.(iv) 特征根至少有一个是零,称方程在点P 为抛物型.若在区域D 内每一点方程为椭圆型,双曲型或抛物型,则分别称方程在区域D 内是椭圆型、双曲型或抛物型.在点P 作自变量的线性变换可将方程化为标准形式:椭圆型:∑==+∂∂ni ix u1220Φ双曲型:∑==+∂∂-∂∂n i ix ux u 22120Φ超双曲型:()10112222>>=+∂∂-∂∂∑∑=+=m n x ux u m i nm i ii Φ抛物型:()00122>=+∂∂∑-=m x umn i iΦ 式中Φ为不包含二阶导数的项.[两个自变量方程的分类与标准形式] 方程的一般形式为0,,,,222222122211=⎪⎪⎭⎫⎝⎛∂∂∂∂+∂∂+∂∂∂+∂∂y u x u u y x F y u a y x u a x u a (2) a 11,a 12,a 22为x ,y 的二次连续可微函数,不同时为零. 方程a 11d y 22-a 12d x d y +a 22d x 2=0称为方程(2)的特征方程.特征方程的积分曲线称为二阶方程(2)的特征曲线. 在某点P (x 0,y 0)的邻域D 内,根据Δ=a 122-a 11a 12的符号将方程分类: 当Δ>0时,方程为双曲型; 当Δ=0时,方程为抛物型; 当Δ<0时,方程为椭圆型.在点P 的邻域D 内作变量替换,可将方程化为标准形式:(i ) 双曲型:因Δ>0,存在两族实特征曲线11),(c y x =ϕ,22),(c y x =ϕ,作变换),(1y x ϕξ=,),(2y x ϕη=和,,ηηξ-=+=s t s 方程化为标准形式),,,,(2222tus u u t s t u s u ∂∂∂∂=∂∂-∂∂Φ或),,,,(12ηξηξΦηξ∂∂∂∂=∂∂∂uu u u (ii ) 抛物型: 因Δ=0,只存在一族实的特征曲线c y x =),(ϕ,取二次连续可微函数),(y x ψ,使0),(),(≠∂∂y x ψϕ,作变换),(y x ϕξ=,),(y x ψη=,方程化为标准形式),,,,(222ηξηξΦη∂∂∂∂=∂∂uu u u (iii ) 椭圆型:因Δ<0,不存在实特征曲线,设c y x i y x y x =+=),(),(),(21ϕϕϕ为11221121212d d a a a a a x y -+=的积分,y x ϕϕ,不同时为零,作变量替换),(1y x ϕξ=,),(2y x ϕη=,方程化为标准形式),,,,(32222ηξηξΦηξ∂∂∂∂=∂∂+∂∂uu u u u二、 极值原理·能量积分·定解问题的惟一性定理椭圆型方程、抛物型方程的极值原理及双曲型方程的能量守恒原理是相应方程的解所具有的最基本性质之一,在定解问题的研究中起着重要的作用. [椭圆型方程的极值原理与解的惟一性定理]1︒ 极值原理 设D 为n 维欧氏空间E n 的有界区域,S 是D 的边界,在D 内考虑椭圆型方程()()()()x x x x f u c x ub x x u a Lu ni i i n j i j i ij =+∂∂+∂∂∂≡∑∑==11,2式中a ij (x ),b i (x ),c (x ),f (x )在D 上连续,c (x )≤0且二次型()∑=nj i j i ij a a a 1,x 正定,即存在常数μ>0,对任意x D ∈和任意的a i 有()∑∑==≥ni i nj i jiija aa a 121,μx定理1 设u (x )为D 内椭圆型方程的解,它在D 内二次连续可微,在D 上连续,且不是常数,如f (x )≤0(或f (x )≥0),则u (x )不能在D 的内点取非正最小值(或非负最大值). 如果过边界S 上的任一点P 都可作一球,使它在P 点与S 相切且完全包含在区域D 内,则有 定理2 设u (x )为椭圆型方程在D 内二次连续可微,在D 上连续可微的解,且不是常数,并设f (x )≤0(或f (x )≥0).若u (x )在边界S 上某点M 处取非正最小值(或非负最大值),只要外法向导数错误!未定义书签。

偏微分方程理论的归纳与总结

偏微分方程理论的归纳与总结

偏微分方程理论的归纳与总结偏微分方程是数学中的一个重要分支,它研究的是含有多个未知函数的方程,其中的未知函数是关于多个自变量的函数。

偏微分方程的研究对于理解自然界中的现象和发展科学技术具有重要意义。

在过去的几个世纪里,人们通过总结和归纳,逐渐建立了偏微分方程的理论体系。

偏微分方程的研究始于19世纪,著名的数学家欧拉、拉普拉斯、傅里叶等为偏微分方程的理论奠定了基础。

他们研究了常见的偏微分方程类型,如波动方程、热传导方程、拉普拉斯方程等,并给出了一些基本的解法。

随后,泊松、高斯等学者继续发展了偏微分方程的理论和解法,为后来的研究提供了重要的参考。

随着工业、天文学、物理学等学科的快速发展,人们遇到了更加复杂和多样的问题,已有的偏微分方程理论有时不能很好地解决这些问题。

于是,数学家们开始探索新的偏微分方程类型和解法。

20世纪是偏微分方程研究的重要时期,很多杰出的数学家为此做出了巨大贡献。

他们提出了更加复杂的偏微分方程模型,研究了抽象的偏微分方程理论,发展了更加高级和深奥的解法。

总结起来,偏微分方程的理论可以归纳为以下几个方面。

首先是分类。

根据方程的形式、性质和应用领域,偏微分方程可以被划分为多个类型。

常见的类型包括椭圆型、双曲型和抛物型方程。

椭圆型方程描述静态问题,如拉普拉斯方程;双曲型方程描述波动问题,如波动方程;抛物型方程描述演化问题,如热传导方程。

每种类型的方程都有其特定的性质和解法。

其次是解法。

偏微分方程的解法可以归为分析解法和数值解法两大类。

分析解法是通过推导公式或利用已知解的性质来求得方程的解。

数值解法则是通过将偏微分方程离散化,转化为代数方程组,然后利用计算机进行求解。

数值解法的发展使得人们能够处理更加复杂和现实的问题,对于科学和工程领域的发展起到了巨大的推动作用。

再次是理论。

偏微分方程的理论研究主要包括存在性、唯一性和稳定性等方面。

针对不同的方程类型,数学家们通过选择适当的函数空间、利用分析和几何的方法,研究了方程解的存在性和唯一性。

大学数学偏微分方程

大学数学偏微分方程

大学数学偏微分方程在大学数学学科中,偏微分方程是一个重要的研究领域。

它是数学领域中研究描述多变量函数与其偏导数之间关系的方程。

偏微分方程广泛应用于物理学、工程学以及其他科学领域,并且在现代科学研究和技术应用中扮演着重要角色。

本文将介绍偏微分方程的基本概念、分类以及一些经典的偏微分方程模型。

1. 偏微分方程的基本概念偏微分方程描述了多个变量之间的关系,其中包括未知函数、偏导数以及自变量之间的关系。

偏微分方程可以分为线性和非线性两类,它们分别具有不同的性质和求解方法。

2. 偏微分方程的分类根据方程中未知函数的阶数以及变量的个数,偏微分方程可以分为常微分方程、偏微分方程以及它们的组合。

常见的偏微分方程包括椭圆型、双曲型和抛物型方程,它们分别对应于不同的物理问题和数学模型。

3. 椭圆型偏微分方程椭圆型偏微分方程在自变量的各个方向上具有平衡性,常用于描述稳态问题和静态现象。

其中最著名的方程是拉普拉斯方程和泊松方程,它们在电场、热传导等领域中有着广泛的应用。

4. 双曲型偏微分方程双曲型偏微分方程在自变量的某些方向上具有超越性,常用于描述波动传播和传输问题。

典型的双曲型偏微分方程包括波动方程和传输方程,它们在声波传播、电磁波传输等领域中具有重要意义。

5. 抛物型偏微分方程抛物型偏微分方程在自变量的某些方向上具有光滑性,常用于描述动态演化和扩散现象。

常见的抛物型偏微分方程有热传导方程和扩散方程,它们在热传导、扩散以及化学反应等问题中有着广泛应用。

6. 经典的偏微分方程模型偏微分方程在实际问题中的应用非常广泛,其中一些经典的模型具有重要的科学和工程意义。

比如,热传导方程可以描述物体的温度分布和热平衡状态;波动方程可用于描述机械波的传播和振动现象;扩散方程可以描述溶质在溶液中的传输和浓度分布。

综上所述,大学数学中的偏微分方程是一门重要的数学学科,它用于描述多变量函数与其偏导数之间的关系。

偏微分方程具有广泛的应用领域,包括物理学、工程学等。

高等数学中的偏微分方程理论

高等数学中的偏微分方程理论

高等数学是现代数学的重要分支之一,其中偏微分方程理论是高等数学的核心内容之一。

偏微分方程是描述自然界中各种变量之间关系的数学工具,广泛应用于物理学、工程学、经济学等各个领域。

偏微分方程理论主要研究的是偏微分方程的求解方法、解的存在性与唯一性以及解的性质等问题。

在实际应用中,我们往往需要解决各种复杂的物理问题,而偏微分方程理论为我们提供了一种强大的数学工具,可以通过数学分析的方法来研究和求解这些问题。

偏微分方程的求解方法有很多种,其中最基本的方法是分离变量法。

通过假设解可以表示为各个变量的乘积形式,再将方程代入,得到一系列常微分方程,进而可以求解得到解的表达式。

此外,还有变换法、特征线法、格林函数法等求解方法。

解的存在性与唯一性是偏微分方程理论中的一个重要问题。

偏微分方程往往是由物理规律所确定的,我们希望通过数学方法验证解的存在性,即是否存在一个满足方程的解。

同时,我们也关注解的唯一性,即是否存在多个满足方程的解。

对于线性偏微分方程,可以通过利用简化的方法,利用矩阵的特征值和特征向量来确定解的存在性与唯一性。

解的性质是偏微分方程理论中的另一个重要问题。

解的性质包括解的连续性、解的光滑性以及解的稳定性等。

通常情况下,我们希望解是连续的,即变量之间的关系是连续的。

对于某些特殊的问题,我们还需要解的光滑性,即解在某个区域内是无穷次可导的。

此外,解的稳定性也是一个重要的性质,即微小扰动不会改变解的形态。

偏微分方程理论的研究不仅仅是理论的探索,更是为了解决实际问题。

通过偏微分方程理论,我们可以定量地描述各种现象,预测未来的变化趋势,进而制定相应的措施。

例如,在物理学中,通过偏微分方程理论可以研究电磁场的传播、热传导等问题;在经济学中,可以通过偏微分方程研究价格变动、市场供需关系等问题。

总之,高等数学中的偏微分方程理论是现代数学的重要组成部分,对于研究自然界中各种现象、解决实际问题具有重要作用。

它提供了一种强大的数学工具,通过数学分析的方法,可以求解各种复杂的物理问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

偏微分方程理论学习一.偏微分方程发展简介1.常微分方程十七世纪微积分创立之后,常微分方程理论立刻就发展起来,当时应用常微分方程,解决几何与理学中的新问题。

结果是在天体理学中不仅能得到并解释早先已经知晓的那些事实,而且得到了性的发现(例如,海王星的发现就是在对微分方程分析的基础上作出的)。

2.偏微分方程偏微分方程的研究要晚得多,对物理学中出现的偏微分方程研究在十八世纪中叶导致了分析学的一个新的分支------数学物理方程的建立。

J.达朗贝尔(D’Alembert )(1717-1783)、L.欧拉(Euler )(1707-1783)、D.伯努利(Bernoulli )(1700-1782)、J.拉格朗日(Lagrange )(1736-1813)、P.拉普拉斯(Laplace )(1749-1827)、S.泊松(Poisson )(1781-1840)、J.傅里叶(Fourier )(1768-1830)等人的工作为这一学科分支奠定了基础。

它们在考察具体的数学物理问题中,所提出的思想与方法,竟适用于众多类型的微分方程,成为十九世纪末偏微分方程一般理论发展的基础。

十九世纪,偏微分方程发展的序幕是由法国数学家傅里叶拉开的,他于1822年发表的《热的解析理论》是数学史上的经典文献之一。

傅里叶研究的主要是吸热或放热物体内部任何点处的温度随空间和时间的变化规律。

在对物体的物理性状作出一定的限制(如均匀、各向同性)后,他根据物理原理推导出了三维空间的热传导方程,xk z y x ∂∂=∂∂+∂∂+∂∂T T T T 2222222其中k 是一个参数,其值依赖于物体的质料。

傅里叶当时解决的是如下特殊的热传导问题:设所考虑的物体为两端保持在温度0度、表面绝热且无热流通过的柱轴。

在此情形下求解上述热传导方程,因为柱轴只涉及一维空间,所以这个问题也就是求解偏微分方程⎪⎪⎩⎪⎪⎨⎧<<=>==∂∂=∂∂,0),()0,(,0,0),(,0),0(T T 222l x x f x T t t l T t T x k x ,其中后面两项分别是边界条件和初始条件。

傅里叶为解这个方程用了分离变量法,他得到满足方程和边界条件的级数解为∑∞=-=1)/(.sin ),(T 2222n t l k n n lx n e b t x ππ为了满足初始条件,必须有∑∞==1.sin)(n n lx n b x f π这就促使傅里叶不得不考虑任给一个函数,能否将它表示成三角级数的问题。

傅里叶得出的结论是:每个函数都可以表示成 ∑∞=<<=1.0,sin )(n n x nx b x f π这样,每个可由上式乘以,再从0到积分而得到。

他还指n b ,...)2,1(sin =n nx π出这个程序可以应用于表达式 ∑∞=<<+=10.0,cos 2)(n n x nx a a x f π接着,他考虑了任何函数在区间的表达式,利用对称区间上的任何)(x f ),(ππ-函数可以表示成一个奇函数和一个偶函数之和这一事实,傅里叶可以将区间上的任何函数表示为),(ππ-)(x f∑∞=++=10),sin cos (2)(n n n nx b nx a a x f 其系数由 ⎰-=πππ,cos )(1nxdx x f a n ⎰-≥=πππ1,sin )(1n nxdx x f b n 确定,这就是我们通常所称的傅里叶级数。

为了处理无穷区域上的热传导问题,傅里叶同时还导出了现在所谓的“傅里叶积分”: ⎰⎰∞∞∞--=0.)(cos )(1)(dt t x u t f du x f π 需要指出的是,傅里叶从没有对“任意”函数可以展成傅里叶级数这一断言给出过任何完全的证明,它也没有说出一个函数可以展开为三角级数必须满足的条件。

然而傅里叶本人对此充满信心,因为他的信念有几何上的根据。

傅里叶的工作不仅发展了偏微分方程的理论,而且使函数概念得以改进,同时也标志着人们从解析函数或可展成泰勒级数的函数中解放出来。

傅里叶的前辈都曾坚持一个函数必须是可用单个式子表示的,而傅里叶级数却可以表示那些在区间或的不同部分有不同解析式的函数,不论这些表示式相互是),0(π),(ππ-否连续地接合着。

特别是,一个傅里叶级数是在一整段区间上表示一个函数的,而一个泰勒级数仅在函数的解析点附近表示该函数。

事实上,傅里叶的主要思想早在1807年他提交巴黎科学院的一篇关于热传导的论文中就出现了,但是这篇论文在拉格朗日等人评审后遭到拒绝。

1811年,他又提交了经过修改的论文,以争取科学院为热传导问题所设立的高额奖金。

这次他虽然获了奖,但仍因受到缺乏严格性的批评而未能将论文发表在当时科学院的《报告》里。

1824年,傅里叶成为科学院的秘书,这回他终于能够把他1811年的论文原封不动地发表在《报告》里,而这已经是在他的名著《热的解析理论》出版两年以后的事情了。

十九世纪偏微分方程的另一个重要发展是围绕着位势方程来进行的,这方面的代表人物格林(G.. Green)是一位磨坊工出身、自学成才的英国数学家。

位势方程也称拉普拉斯方程: .0V V V V 222222=∂∂+∂∂+∂∂=∆zy x 拉普拉斯曾采用球面调和函数法解这个方程,不过他得到一个错误的结论,认为这个方程当被吸引的点(x,y,z)位于物体内部时也成立。

这个错误由泊松加以更正。

泊松指出,如果点(x,y,z)在吸引体内部,则满足方程,其中πρ4V -=∆是吸引体密度,它也是x,y,z 的一个函数。

拉普拉斯和泊松的方法都只适用于ρ特殊的几何体,格林则认识到函数的重要性,并赋予它“位势”(potential)的V 名称,与前人不同的是,格林发展了函数的一般理论。

他求解位势方程的方V 法与用特殊函数的级数方法相反,称为奇异点方法。

他在1828年私人印刷出版的小册子《关于数学分析应用于电磁学理论的一篇论文》中,建立了许多推动位势论的进一步发展极为关键的定理与概念,其中以格林公式 ⎰⎰⎰⎰⎰∂∂-∂∂=∆-∆σd nU V n V U dv U V V U )()((n 为物体表面指向外部的法向,dv 是体积元,d 是面积元)和作为一种带奇σ异性的特殊位势的格林函数概念影响最为深远。

格林是剑桥数学物理学派的开山祖师,他的工作培育了汤姆逊(W.Thomson)、斯托克斯(G.Stokes)、麦克斯韦(J.C.Maxwell)等强有力的后继者,他们是十九世纪典型的数学物理学家。

他们的主要目标,是发展求解重要物理问题的一般数学方法,而他们手中的主要武器就是偏微分方程,以至于在十九世纪,偏微分方程几乎变成了数学物理的同义词。

剑桥数学物理学派的贡献使经历了一个多世纪沉寂后英国数学在十九世纪得以复兴,麦克斯韦1864年导出的电磁场方程 ,)(1rot tE c H ∂∂=ε ,)(1rot tH c E ∂∂-=μ ,)(ρε=E div 0)(=H div μ是十九世纪数学物理最壮观的胜利,正是根据对这组方程的研究,麦克斯韦预言了电磁波的存在,不仅给科学和技术带来巨大的冲击,同时也是偏微分方程威名大振。

爱因斯坦在一次纪念麦克斯韦的演讲中说:“偏微分方程进入理论物理学时是婢女,但逐渐变成了主妇,”他认为这是从十九世纪开始的,而剑桥数学物理学派尤其是麦克斯韦在这一转变中起了重要的作用。

除了麦克斯韦方程,十九世纪导出的著名偏微分方程组还有粘性流体运动的纳维(C.L.M.H. Navier)-斯托克斯和弹性介质的柯西方程等。

所有这些方程都不存在普遍解法。

不过,十九世纪的数学家们已经逐渐认识到在偏微分方程的情形,无论是单个方程还是方程组,通解实际上不如初始条件和边界条件已给出的特殊问题的解有用。

因此他们在求解定结问题方面作了大量工作。

对18、19世纪建立起来类型众多的微分方程,数学家们求显式解的努力往往归于失败,这种情况促使他们转而证明解的存在性。

最先考虑微分方程解的存在性问题的数学家是柯西。

他指出:在求显式解无效的场合常常可以证明解的存在性。

他在19世纪20年代对形如的常微分方程给出了第一个存y'y)f(x,在性定理,这方面的工作被德国数学家李普希茨(R. Lipschitz)、法国数学家刘维尔(J.Liouville)和皮卡(C.E. Picard)等追随。

柯西也是讨论偏微分方程解的存在性的第一人,他在1848年的一系列论文中论述了如何将任意阶数大于1的偏微分方程化为偏微分方程组,然后讨论了偏微分方程组解的存在性并提出了证明存在性的强函数方法。

柯西的工作后来被俄国女数学家柯瓦列夫斯卡娅(C.B.Ковалевская)独立地发展为包括拟线性方程和高阶组在内非常一般的形式。

有关偏微分方程解的存在唯一性定理在现代文献中就称为“柯西-柯瓦列夫斯卡娅定理”。

柯瓦列夫斯卡娅是历史上为数不多的杰出女数学家之一。

她出生于莫斯科一个贵族家庭,17岁时就在彼得堡一位海军学校教师指导下掌握了微积分。

然而当时俄国的大学拒收女生,为了求学深造,他只好出走德国,先在海德堡大学学习一年,后来慕名到柏林求见威尔斯特拉斯。

初次见面,威尔斯特拉斯出了一堆难题考她,估计她多半做不出来,但一周以后,当柯瓦列夫斯卡娅如期带着完满的答卷回来见他时,这位名重一时的数学家对她的数学才能不再怀疑。

当时的柏林大学跟俄国的大学一样不收女生,威尔斯特拉斯决定为柯瓦列夫斯卡娅单独授课,每星期日下午一次,四年不曾中断。

在这四年时间里,柯瓦列夫斯卡娅不仅学完了大学的全部数学课程,而且还写出了三篇重要论文,其中一篇就是前面提到的关于偏微分方程解存在性的研究。

这些工作是那么出色,以至于哥廷根大学在没有经过考试和答辩的情况下破格授予她博士学位,使她成为历史上第一位女数学博士。

由于18世纪的大量开发,常微分方程的求解在19世纪反而局限于用分离变量法解偏微分方程时所得到的那些方程,并且多半使用级数解,这引导出一串特殊函数,如贝塞尔(Bessel)函数、高斯(Gauss)超几何函数等等。

在十九世纪后半叶,对常微分方程研究的理论方面变得突出,并且在常微分方程解析理论和定性理论两个大的方向上开拓了常微分研究的新局面,其中重大发展都与庞加莱(H. Poincare)的名字联系着。

庞加莱从27岁起任巴黎大学教授,直到他去世。

他是欧拉、柯西之后最多产的数学家,并且在研究领域的广泛方面很少有人能与他相比。

每年他在巴黎大学讲授一门不同的科目,而在每一门科目中,他都留着他自己的创造印记。

庞加莱、克莱因和希尔伯特,是在19和20世纪数学交界线上高耸着的三个巨大身影。

他们放射着19世纪数学的光辉,同时照耀着通往20世纪数学的道路。

在19世纪末,数学发展呈现出一派生机勃勃的景象,这与18世纪形成了鲜明的对比。

相关文档
最新文档