18.1勾股定理(1)
第十七章 勾股定理学案

- 1 -18.1 勾股定理(一) (一)课前预习 1.直角△ABC 的主要性质是:∠C=90°(用几何语言表示) (1)两锐角之间的关系: (2)若∠B=30°,则∠B 的对边和斜边:命题1:如果直角三角形的两直角边分别为a 、b ,斜边为c ,那么 。
(二)、勾股定理的证明勾股定理的证明方法很多,你能否利用右图:赵爽弦图证明呢?1.已知:在△ABC 中,∠C=90°,∠A、∠B、∠C的对边为a 、b 、c 。
求证: 222a b c +=勾股定理的内容是: 。
(三)学以致用 在Rt△ABC 中,已知两边求第三边-------简称“知二求一” 1.在Rt△ABC 中,90C ∠=︒ , ⑴如果a =6,b =8,求c 的值; ⑵如果a =5,b =12,求c 的值; ⑶如果a =9,c =41,求b 的值; 练习 1.若一个直角三角形的两直角边分别为9和12,则第三边的长为( ) A.13 B. 13 C. 5 D.15 2.若一个直角三角形的斜边长为26,一条直角边长为24,则另一直角边长为( ) A.8 B.10 C.50 D.36 3.在Rt △ABC 中,∠C=90°,若a ︰b =3︰4,c=10,求a ,b 的值。
注意:⑴只有在直角三角形中,才能用勾股定理;⑵在用勾股定理求第三边时,要分清直角三角形的斜边和直角边; (四)当堂检测:1.如图,三个正方形中的两个的面积S 1=25,S 2=144,则另一个的面积S 3为________.2.在Rt△ABC,∠C=90°;⑴ 已知a =b =5,求c ;⑵已知c =17,b =8,求a ;⑶ 已知a ∶b =1∶2,c=5,求a ; ⑷已知b=15,∠A=30°,求a ,c 。
3.一直角三角形的一直角边长为6,斜边长比另一直角边长大2,求斜边的长?4.一个直角三角形的两边长分别为3cm 和4cm ,求第三边的长?5.已知,如图在正ΔABC 中,AB=BC=CA=2cm .求ΔABC 的面积.BDbaD C C A- 2 -EFDCBA18.1 勾股定理(二)(一)回顾复习:1.勾股定理:如果直角三角形的两直角边分别为a 、b ,斜边为c ,那么 。
18.1勾股定理(1)

1 =7 -4 3 4 2
2
S正方形c
A B
图3-1
C
C
A
B
图3-2
即:两条直角边上的正方形 面积之和等于斜边上的正方 形的面积
把C“补”成边长为7的正方 形,面积等于大正方形的面积 减去4个直角三角形的面积。
设:直角三角形的三边长分别是a、b、c
猜想:两直角边a、b与斜边c 之间的关系? A a B b
4米
3米
勾股定理的最大作用就是用在计算上, 请同学们用勾股定理来解答下列各题: 2、在Rt△ABC中,∠C=90°,a、b、c分别 是∠A、∠B、∠C所对的边. (1)已知a=6,b=8,求c; (2)已知a=8,c=17,求b; (3)已知c=15,b=9,求a; (4)已知∠A=45°,c=4,求a2.
国家之一。早在三千多年前, 我国是最早了解勾股定理的
国家之一。早在三千多年前, 国家之一。早在三千多年前,周 国家之一。早在三千多年前, 朝数学家商高就提出,将一根直 国家之一。早在三千多年前, 尺折成一个直角,如果勾等于三, 国家之一。早在三千多年前, 股等于四,那么弦就等于五,即 国家之一。早在三千多年前, “勾三、股四、弦五”,它被记 国家之一。早在三千多年前, 载于我国古代著名的数学著作 国家之一。早在三千多年前 《周髀算经》中。
C
B
图1-1
看 一 看
你同 面 去 能学 反 朋 发们 映 友 相 现, 直 家 传 什我 角 作 两 么们 三 客 千 ?也 角 , 五 来形发百 观三现年 察边朋前 下的友, 面某家一 的种用次 图数砖毕 案量铺达 ,关成哥 看系的拉 看,地斯
数学家毕达哥拉斯的发现:
A
B
C
18.1 .1勾股定理(1)

CA b a八年级(下)数学教学案系列编号班级:姓名:课题:18.1.1勾股定理(第1课时)主备:张荣审核:yz 时间:2012 年 3 月第 5 周尊敬的家长:孩子成绩的提高需要家长的配合,为了孩子的进步,请督促您的孩子在家认真预习,并完成课堂前置和反馈练习。
家长签字:【教学目标】1、了解利用拼图验证勾股定理的方法2、掌握勾股定理的简单应用3、理解勾股定理的一般探究方法【课堂前置】1、任意三角形的三边关系2、三角形中,较小两边的平方和与第三边的平方大小有什么关系?3、观察图1、图2,图中的等腰Rt△ABC的三边,数量上有什么关系?4、图4,你认为在其他Rt△中,图3中的结论还成立吗?5、归纳:如果Rt△ABC的两直角边长为a、b,斜边为c,那么_________________6、你能将上面的结论,用右下图加以证明吗?证明过程:二次备课图1 图2图3B C a b cAD 【学习探究】1、下面图形都是由三个正方形拼成的图形,试求出第三个正方形面积:S 1,S 22、依据题意,填空①在Rt △ABC 中,∠C=90°,a=5,b=12,则c=________②在Rt △ABC 中,∠B=90°,a=3,b=4,则c=③在等腰Rt △ABC 中,∠C=90°,则AC :BC :AB=________________④在Rt △ABC 中,∠C=90°,∠A=30°,则AC :BC :AB=________________⑤已知直角三角形的两边长分别为3cm 和5cm ,,则第三边长为_____________3、如图,在Rt △ABC 中,∠C=90°,CD 是斜边AB 上的高 ①若a=6,b=8,求CD 的长;②a=40,c=41,求b ;③若a :b=3 :4, c=15,求b【课堂检测】1、如图,在等腰△ABC 中,AB=10,BC 边上的高AD=8,求BC 的长;S △ABCS 181144400625S 22、已知直角三角形的两边长为4和3,求第三边的长?3、在Rt △ABC 中,周长为12cm ,一直角边为4cm,求斜边的长?【能力提升】1、已知:如图,四边形ABCD 中,AD ∥BC ,AD ⊥DC ,AB ⊥AC ,∠B=60°,CD=25cm ,求AC 、BC 的长。
18.1勾股定理(第1课时)课件

2ab+(b² -2ab+a² )=c² ∴a² =c² +b²
尝试应用
2、一个门框尺寸如图18.1-2所示,一块长3m,宽2.2m的 薄木板能否从门框内通过?为什么? 在RtΔABC中,根据勾股定理: AC =AB +BC =1 +2 =5 所以,AC= 5 ≈2.236 而AC大于木板的宽,所以木板能从门 框内通过。
第十八章
勾股定理
18.1
勾股定理
第1课时
学习目标
1.掌握勾股定理的推导过程 2.会运用勾股定理解简单类型
的题
自学指导
请同学们认真看课本 64至67页内容,边看 书边理解,并思考下列问题: 1.勾股定理是怎样推出来的? 2.看懂66页例题 8分钟后,我们看谁回答的最精彩
情境引入
相传2500年前,毕达哥拉斯有一次在朋友家 里做客时,发现朋友家用砖铺成的地面中反映了直 角三角形三边的某种数量关系.注意观察,你能有
什么发现?
毕达哥拉斯(公元前572----前492年), 古希腊著名的哲学家、数学家、天 文学家。
情境引入
换成下图你有什发现?说出你的观点.
等腰直角三角形斜边的平方等于两直角边的平方和.
课中探究
其它直角三角形是否也存在这种关系? 观察下边两个图并填写下表:
A的面
25
图1-3
4
9
13
结论:如果直角三角形的两直角边长分别为a、b,斜边长为c,
那么 a 2 b2 c 2
当堂检测
1、根据图18.1-1你能写出勾股定理的证明过程吗?
c a
b
∵ 1 ab×4+(b-a)² =c²
2 2 2 2 2
勾股定理(第一课时)教学设计

§18.1勾股定理(第1课时)教学目标:知识与技能:探索直角三角形三边关系,了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。
过程与方法:经历探索与发现直角三角形三边关系的过程,体会数形结合和从特殊到一般的思想方法。
情感态度与价值观:初步了解勾股定理的文化内涵.教学重点:探索并发现勾股定理的过程。
教学难点:勾股定理的面积法证明教学过程一、创设情境引入利用与外星文明交流的设想引入新课二、学习新知探究一:你能发现图1中正方形A、B、C的面积之间有什么数量关系吗?1、正方形A的面积是:;正方形B的面积是:;正方形C的面积是:。
结论:图1中三个正方形A,B,C的面积之间的数量关系是: S A+S B=S C探究二:S A+S B=S C在图2中还成立吗?正方形A的面积是个单位面积.正方形B的面积是个单位面积.正方形C的面积是个单位面积.你是怎样得到正方形C的面积的?与同伴交流交流.结论:图1中三个正方形A,B,C的面积之间的数量关系是: S A+S B=S C至此,我们在网格中验证了:直角三角形两条直角边上的正方形面积之和等于斜边上的正方形面积,即S A+S B=S C。
探究三:借助几何画板进一步探究S A +S B =S C三、猜想:如果直角三角形的两直角边长分别为a ,b,斜边长为c ,那么a 2+b 2=c 2.四、证明(拼图证明)1、利用事先准备好的四块全等的直角三角形尝试拼成一个正方形学生们可能拼成的是以下两种情况:师生结合图形共同完成证明2.得出勾股定理:两直角边长分别为a 、b,斜边长为c ,那么 a 2 + b 2 = c 2 即:直角三角形两直角边的平方和等于斜边的平方。
3.勾股定理文化介绍六、感悟收获学了本节课后我们有哪些收获?七、课后作业1.必做题:(1)课本第57页,习题18.1 第1、2、3、4题;(2)同步练习:18.1(一)。
2.选做题:阅读课本“数学史话”栏目并上网查阅了解勾股定理的有关知识。
勾股定理 PPT课件 10 人教版

练习: 1、求下列图中字母所表示的正方形的面积
A =625
225
400
81
B =144
225
2、求出下列直角三角形中未知边的长度
x 6
8
x
5 13
解:由勾股定理得:
x2=62+82 x2 =36+64 x2 =100 ∵x>0 ∴ x=10
∵ x2+52=132 ∴ x2=132-52
x2 =169-25 x2 =144 ∵x>0
•
80、乐观者在灾祸中看到机会;悲观者在机会中看到灾祸。
相传二千多年前,希腊的毕达哥拉斯学派首先证明了
勾股定理,因此在国外人们通常称勾股定理为毕达哥拉斯 定理。为了纪念毕达哥拉斯学派,1955年希腊曾经发行了 一枚纪念邮票。
试
我们用下面方法来说明勾股定理是正确的
一
c
c
c
c
试
a
a
a
a
b
b
b
b
(a+b)2= 4 ab C2 2
c2 = a2+ b2
•
36、每临大事,心必静心,静则神明,豁然冰释。
•
37、别人认识你是你的面容和躯体,人们定义你是你的头脑和心灵。
•
38、当一个人真正觉悟的一刻,他放弃追寻外在世界的财富,而开始追寻他内心世界的真正财富。
•
39、人的价值,在遭受诱惑的一瞬间被决定。
•
40、事虽微,不为不成;道虽迩,不行不至。
•
41、好好扮演自己的角色,做自己该做的事。
•
2、从善如登,从恶如崩。
•
3、现在决定未来,知识改变命运。
十八章勾股定理全章教案

第十八章勾股定理18.1 勾股定理课时安排: 4课时第1课时 18.1 .1 勾股定理(1)三维目标一、知识与技能让学生通过观察、计算、猜想直角三角形两条直角边的平方和等于斜边的平方的结论.二、过程与方法1.在学生充分观察、归纳、猜想、探索直角三角形两条直角边的平方和等于斜边的平方的过程中,发展合情推理能力,体会数形结合的思想.2.在探索上述结论的过程中,发展学生归纳、概括和有条理地表达活动的过程和结论.三、情感态度与价值观1.培养学生积极参与、合作交流的意识,2.在探索勾股定理的过程中,体验获得结论的快乐,锻炼克服困难的勇气.教学重点探索直角三角形两条直角边的平方和等于斜边的平方的结论。
从而发现勾股定理.教学难点以直角三角形的边为边的正方形面积的计算.教具准备学生准备若干张方格纸。
教学过程一、创设问题情境,引入新课活动1问题1:在我国古代,人们将直角三角形中的短的直角边叫做勾,长的直角边叫做股,斜边叫做弦.根据我国古算书《周髀算经》记载,在约公元前1100年,人们已经知道,如果勾是三,股是四,那么弦是五,你知道是为什么吗?问题2:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队能否进入三楼灭火?问题3:我们再来看章头图,在下角的图案,它有什么童义?为什么选定它作为2002年在北京召开的国际数学家大会的会徽?二.实际操作,探索直角三角形的三边关系活动2问题1:毕达哥拉斯是古希腊著名的哲学家、数学家、天文学家,相传2500年前,一次,毕达哥拉斯去朋友家作客.在宴席上,其他的宾客都在尽情欢乐,高谈阔论,只有毕达哥拉斯却看着朋友家的方砖地而发起呆来.原来,朋友家的地是用一块块直角三角形形状的砖铺成的,黑白相间,非常美观大方.主人看到毕达哥拉斯的样子非常奇怪,就想过去问他.谁知毕达哥拉斯突然恍然大悟的样子,站起来,大笑着跑回家去了.同学们,我们也来观察下面图中的地面,看看你能发现什么?是否也和大哲学家有同样的发现呢?问题2:你能发现下图中等腰直角三角形ABC有什么性质吗?问题3:等腰直角三角形都有上述性质吗?观察下图,并回答问题:(1)观察图1正方形A中含有________个小方格,即A的面积是________个单位面积;正方形B中含有________个小方格,即B的面积是________个单位面积;正方形C中含有________个小方格,即C的面积是________个单位面积.(2)在图2、图3中,正方形A、B、C中各含有多少个小方格?它们的面积各是多少?你是如何得到上述结果的?与同伴交流.(3)?活动3问题1:等腰三角形有上述性质,其他的三角形也有这个性质吗?如下图,每个小方格的面积均为1,请分别计算出下图中正方形A、B、C,A'、B'、C'的面积,看看能得出什么结论.(提示:以斜边为边长的正方形的面积,等于虚线标出的正方形的面积减去四个直角三角形的面积.)问题2:给出一个边长为0.5,1.2,1.3,这种含小数的直角三角形,也满足上述结论吗?我们通过对A、B、C,A'、B'、C'几个正方形面积关系的分析可知:一般的以整数为边长的直角三角形两直角边的平方和也等于斜边的平方,一个边长为小数的直角三角形是否也有此结论?我们不妨设小方格的边长为0.1,我们不妨在你准备好的方格纸上画出一个两直角边为0,5,1.2的直角三角形来进行验证.生:也有上述结论.这一结论,在国外就叫做“毕达哥拉斯定理”,而在中国则叫做“勾股定理”.而活动1中的问题1提到的“勾三,股四,弦五”正是直角三角形三边关系的重要体现.勾股定理到底是谁最先发现的呢?我们可以自豪地说:是我们中国人最早发现的.证据就是《周髀算经》,不仅如此,我们汉代的赵爽曾用2002年在北京召开的国际数学家大会的徽标的图案证明了此结论,也正因为为了纪念这一伟大的发现而采用了此图案作徽标.下节课我们将要做更深入的研究.大哲学家毕达哥拉斯发现这一结论后,就已认识到,他的这个发现太重要了.所以,按照当时的传统,他高兴地杀了整整一百头牛来庆贺.三、例题剖析活动4问题:(1)如下图,一根旗杆在离地面9m处断裂,旗杆顶部落在离旗杆底部12m处,旗杆折断之前有多高?(2)求斜边长17cm,一条直角边长15cm的直角三角形的面积.解:(1)解:由勾股定理可求得旗杆断裂处到杆顶的长度是:92+122=15(m);15+9=24(m),所以旗杆折断之前高为24m.(2)解:另一直角边的长为172-152=8(cm),所以此直角三角形的面积为12×8×15=60(cm2).师:你能用直角三角形的三边关系解答活动1中的问题2.请同学们在小组内讨论完成.四、课时小结1.掌握勾股定理及其应用;2.会构造直角三角形,利用勾股定理解简单应用题.五.布置作业六.板书设计18.1.1勾股定理(1)第2课时勾股定理(2)三维目标一、知识与技能1.掌握勾股定理,了解利用拼图验证勾股定理的方法.2.运用勾股定理解决一些实际问题.二、过程与方法1.经历用拼图的方法验证勾股定理,培养学生的创新能力和解决实际问题的能力.2.在拼图的过程中,鼓励学生大胆联想,培养学生数形结合的意识.三、情感态度与价值观1.利用拼图的方法验证勾股定理,是我国古代数学家的一大贡献,借助此过程对学生进行爱国主义的教育.2.经历拼图的过程,并从中获得学习数学的快乐,提高学习数学的兴趣.教学重点经历用不同的拼图方法验证勾股定理的过程,体验解决同一问题方法的多样性,进一步体会勾股定理的文化价值.教学难点经历用不同的拼图方法证明勾股定理.教具准备每个学生准备一张硬纸板.教学过程一、创设问题情境,引入新课活动1问题:我们曾学习过整式的运算,其中平方差公式(a+b(a-b)=a2-b2,完全平方公式(a±b)2=a2±2ab+b2是非常重要的内容.谁还能记得当时这两个公式是如何推出的?生:这两个公式都可以用多项式乘以多项式的乘法法则推导.如下:(a+b)(a-b)=a2-ab+ab-b2=a2-b2,所以(a+b)(a-b)=a2-b2;(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2;(a-b)2=(a-b)(a-b)=a2-ab-ab+b2=a2-2ab+b2;所以(a±b)2=a2±2ab+b2;生:还可以用拼图的方法说明上面的公式成立.例如:图(1)中,阴影部分的面积为a2-b2,用剪刀将(1)中的长和宽分别为(a-b)和b的长方形剪下来拼接成图(2)的形式便可得图(2)中阴影部分的面积为(a+b)(a-b).而这两部分面积是相等的,因此(a+b)(a-b)=a2-b2成立.生:(a+b)2=a2+2ab+b2也可以用拼图的方法,通过计算面积证明,如图(3)我们用两个边长分别a和b的正方形,两个长和宽分别a和b的长方形拼成一个边长为(a+b)的正方形,因此这个正方形的面积为(a+b)2,也可以表示为a2+2ab+b2,所以可得(a+b)2=a2+2ab+b2.师:你能用类似的方法证明上一节猜想出的命题吗?二、探索研究活动2我们已用数格子的方法发现了直角三角形三边关系,拼一拼,完成下列问题:(1)在一张纸上画4个与图(4)全等的直角三角形,并把它们剪下来.(2)用这4个直角三角形拼一拼,摆一摆,看能否得到一个含有以斜边c为边长的正方形,你能利用拼图的方法,面积之间的关系说明上节课关于直角三角形三边关系的猜想吗?(3)有人利用图(4)这4个直角三角形拼出了图(5),你能用两种方法表示大正方形的面积吗?大正方形的面积可以表示为:_______________,又可以表示为________________.对比两种衷示方法,你得到直角三角形的三边关系了吗?生:我也拼出了图(5),而且图(5)用两种方法表示大正方形的面积分别为(a+b)2或4× ab+c2.由此可得(a+b)2=4×12 ab+c2.化简得a2+b2=c2.由于图(4)的直角三角形是任意的,因此a2+b2=c2,即直角三角形两直角边的平方和等于斜边的平方。
18.1勾股定理(第一课时) 优质课评选教案

课题:18.1勾股定理(第一课时)授课教师:刘健芬教材:义务教育课程标准实验教科书《数学》八年级下册(人民教育出版社)一、教学目标:【知识与能力目标】1、理解并掌握勾股定理的内容和证明,能够运用勾股定理进行简单的计算;2、培养学生动手操作、合作交流、逻辑推理的能力。
【过程与方法目标】让学生经历“观察-猜想-归纳-验证”的数学思想的形成过程,并体会数形结合和从特殊到一般的数学思想方法。
【情感态度与价值观】激发学生热爱祖国悠久文化的思想感情,培养学生的民族自豪感和钻研精神。
二、教学重点和难点:【教学重点】勾股定理的发现、验证和简单应用。
【教学难点】用面积法、拼图法证明勾股定理。
三、教学方法与手段:【教学方法】引导探索法(让学生分小组讨论)【学法指导】自主探索、合作交流的研讨式学习方式【教具准备】多媒体课件,三角尺【学具准备】三角尺、剪刀和边长分别为a、b的两个连体正方形纸片四、教学过程教学过程设计活动1 创设情境→激发兴趣2002年在北京召开的第24届国际数学家大会,它是最高水平的全球性数学科学学术会议,被誉为数学界的“奥运会”.这就是本届大会会徽的图案. 它象一个转动的风车,挥舞着手臂,欢迎来自世界各国的数学家们.(1)你见过这个图案吗?(2)你听说过“勾股定理”吗?会徽教师出示照片及图片.学生观察图片发表见解.教师作补充说明:这个图案是我国汉代数学家赵爽用来证明勾股定理的“赵爽弦图”加工而来,展现了我国古代对勾股定理的研究成果,是我国古代数学的骄傲.教师应重点关注:(1)学生对“赵爽弦图”及勾股定理的历史是否感兴趣;(2)学生对勾股定理的了解程度.通过欣赏图片,了解历史,介绍与勾股定理有关的背景知识,激发学生学习兴趣,自然引出本节课的课题.(板书课题)活动2 观察特例→发现新知毕达哥拉斯是古希腊著名的数学家.相传在2500年以前,他在朋友家做客时,发现朋友家用地砖铺成的地面反映了直角三角形的三边的某种数量关系.(1)同学们,请你也来观察下图中的地面,看看能发现些什么?地面图18.1-1(2)你能找出图18.1-1中正方形A、B、C面积之间的关系吗?(3)图中正方形A、B、C所围等腰直角三角形三边之间有什么特殊关系?教师展示图片,提出问题.学生独立观察图形,分析思考其中隐藏的规律.学生通过直接数等腰直角三角形的个数,或者用割补的方法将正方形A、B中小等腰直角三角形补成一个大正方形得到:正方形A、B的面积之和等于大正方形C的面积.教师引导学生,由正方形的面积等于边长的平方归纳出:等腰直角三角形两条直角边的平方和等于斜边的平方.通过讲传说故事来进一步激发学生学习兴趣,使学生在不知不觉中进入学习的最佳状态.通过层层设问,引导学生发现新知.并且让学生参与探索,感受数学学习的过程,也有利于培养学生的语言表达能力,体会数形结合的思想。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4
SA+SB=SC
两直角边的平方和 等于斜边的平方
探究二:
一般的直角三角形 三边关系
A
C
S正方形c
1 = 4× × 4× 3 +1 2
B
图3
C A B
图4
= 25 单位面积) (单位面积)
分割成若干个直角边为 整数的三角形
A a B b
如果直角三角形的两条直角 边长分别是a、 , 边长分别是 、b,斜边长 猜想:两直角边 两直角边a、 为c.猜想 两直角边 、b
A
b
C
c a
B
米的梯子AC斜靠在墙上 例2:将长为 米的梯子 斜靠在墙上, :将长为5米的梯子 斜靠在墙上, BC长为 米,求梯子上端 到墙的底端 长为2米 求梯子上端A到墙的底端 长为 B的距离 的距离. 的距离
解:在Rt△ABC中,∠ABC=90° △ 中 ° ∵BC=2 ,AC=5 ∴AB2= AC² - BC² = 5²-2² C =21 舍去负值) ∴ AB= 21(米) (舍去负值) 舍去负值
分层测试:
A组: 组 1、在 ∆ABC中,∠ C = 90 ° 、 , AB=7, AC=3,求BC的长 的长. 求 的长 A
b
C
A
c a
B
D
B组: 组 2、如图,在矩形 、如图,在矩形ABCD中, 中 DE⊥AC于E,设AE=8, ⊥ 于 , , 且AD=10, EC = 4, 求DE 和AB的长 的长
第十八章 18.1
勾股定理
勾股定理(一) 勾股定理(
历史因你而改二全体学生去凌峰山风 景区游玩,同学们看到山势险峻, 景区游玩,同学们看到山势险峻,查看景区示意 图得知:凌峰山主峰高约为900 如图: 900米 图得知:凌峰山主峰高约为900米,如图:为了方 便游人,此景区从主峰A处向地面B 便游人,此景区从主峰A处向地面B处架了一条 缆车线路,已知山底端C处与地面B处相距1200 缆车线路,已知山底端C处与地面B处相距1200 请问缆车路线AB长应为多少 米, ∠ACB = 90°,请问缆车路线 长应为多少? 请问缆车路线 长应为多少?
2、直角∆ABC的一条直角边a=10,斜边 c=26,则b= 、直角∆ABC的一条直角边a=10,斜边 c=26, 的一条直角边a=10, ( 24 ).
a=6, 3、已知:∠C=90°,a=6, a:b=3:4, a=6 求b 和c .
b=8 c=10
a
c
b
小结
1、本节课我们经历了怎样的过程? 本节课我们经历了怎样的过程? 经历了从实际问题引入数学问题然后发现定理,再到探 经历了从实际问题引入数学问题然后发现定理, 索定理,最后学会验证定理及应用定理解决实际问题的过程. 索定理,最后学会验证定理及应用定理解决实际问题的过程 2、本节课我们学到了什么? 本节课我们学到了什么? 通过本节课的学习我们不但知道了著名的勾股定理,还 通过本节课的学习我们不但知道了著名的勾股定理, 知道从特殊到一般的探索方法及借助于图形的面积来探索、 知道从特殊到一般的探索方法及借助于图形的面积来探索、 验证数学结论的数形结合思想. 验证数学结论的数形结合思想 3、学了本节课后我们有什么感想? 学了本节课后我们有什么感想? 很多的数学结论存在于平常的生活中, 很多的数学结论存在于平常的生活中,需要我们用数学 的眼光去观察、思考、发现,这节课我们还受到了数学文化 的眼光去观察、思考、发现, 辉煌历史的教育. 辉煌历史的教育
A的面 的面 积(单位 单位 面积) 面积
B的面 的面 积(单位 单位 面积) 面积
C的面 的面 积(单位 单位 面积) 面积
C A
图1
9
9
18 8
图2
4 B C 图1 A B 图2 (图中每个小方格代表一个单位面积) 图中每个小方格代表一个单位面积)
A、B、 、 、 C面积 面积 关系 直角三 角形三 边关系
看 一 看
能 发 现 什 么 ?
同 学 们 , 我 们 也 来 观 察 一 下 案 , 看 看 你 图
面 反 映 直 角 三 角 形 三 边 的 某 种 数 量 系 , 关
去 朋 友 家 作 客 , 发 现 朋 友 家 用 砖 铺 成 的 地 相 传 两 千 五 百 前 , 一 次 毕 达 哥 拉 斯 年
图1-1
图1-2
这是2002年国际数学家大会会标 年国际数学家大会会标 这是
c a
b
∵
1 2
ab×4+(b-a)²=c² ×
2ab+(b²-2ab+a²)=c² ( )
∴a²+b² =c²
赵爽弦图
结论: 结论:
直角三角形中,两条直角边的平方和,等 于斜边的平方. B
在Rt△ABC中,∠C=900 , 边BC、AC、AB所对应的边 勾 a 分别为a、b、c则存在下列 C 关系, a2+b2=c2
C A B C 图1 A B 图2 (图中每个小方格代表一个单位面积) 图中每个小方格代表一个单位面积)
9
图2
9
C A B C 图1 A B 图2 (图中每个小方格代表一个单位面积) 图中每个小方格代表一个单位面积)
S正方形c
1 = 4 × × 3 × 3 = 18 2
(单位面积) 单位面积)
分“割”成若干个直 角边为整数的三角形
a
b
c
A
勾 股 世 界
两千多年前, 两千多年前 , 两千多年前,古希腊有个毕达哥拉斯 两千多年前,古希腊有个哥拉 斯学派, 他们发现了勾股定理, 斯学派, 他们发现了勾股定理 学派,他们首先发现了勾股定理, , 学派,他们首先发现了勾股定理,因此 因此在国外 在国外人们通常称勾股定理为毕达哥拉斯 人们通常称勾股定理为毕达哥拉斯定理。 人们通常称勾股定理为毕达哥拉斯定理。 定理。为了纪念毕达哥拉斯学派, ,1955年希腊 定理。为了纪念毕达哥拉斯学派,1955 为了纪念毕达哥拉斯学派, 为了纪念毕达哥拉斯学派 年希腊 年希腊曾经发行了一枚纪念票。 年希腊曾经发行了一枚纪念票。 曾经发行了一枚纪念邮票. 曾经发行了一枚纪念邮票 国家之一。早在三千多年前, 国家之一。早在三千多年前, 我国是最早了解勾股定理的 国家之一。早在三千多年前, 国家之一。早在三千多年前, 国家之一。早在三千多年前, 国家之一。早在三千多年前,周 国家之一。早在三千多年前, 国家之一。早在三千多年前, 朝数学家商高就提出, 朝数学家商高就提出,将一根直 国家之一。早在三千多年前, 国家之一。早在三千多年前, 尺折成一个直角,如果勾等于三, 尺折成一个直角,如果勾等于三, 国家之一。早在三千多年前, 国家之一。早在三千多年前, 股等于四,那么弦就等于五, 股等于四,那么弦就等于五,即 国家之一。早在三千多年前, 国家之一 、股四、弦五” 勾三、股四、弦五” “勾三。早在三千多年前, ,它被记 国家之一。早在三千多年前, 国家之一。早在三千多年前, 载于我国古代著名的数学著作 国家之一。 国家之一。早在三千多年前 周髀算经》 《周髀算经》中.
数学家毕达哥拉斯的发现: 数学家毕达哥拉斯的发现:
A
B
C
A、B、C的面积有什么关系? 、 、 的面积有什么关系 的面积有什么关系? SA+SB=SC 直角三角形三边有什么关系? 直角三角形三边有什么关系? 两直边的平方和等于斜边的平方
探究一:等腰直角三角形三边关系 等腰直角三角形三边关系
A的面 的面 积(单位 单位 面积) 面积 图1 B的面 的面 积(单位 单位 面积) 面积 C的面 的面 积(单位 单位 面积) 面积
E B C
作业
必做题:课本 页第 页第1、 、 题 必做题:课本77页第 、2、3题. 选做题: 选做题:收集有关勾股定理的其它 证明方法,下节课展示、 证明方法,下节课展示、 交流. 交流
股
b
c
弦 A
此结论被称为“勾股定理”.
勾股定理
如果直角三角形的两直角边分别为a, , 如果直角三角形的两直角边分别为 ,b, 斜边为c, 斜边为 ,那么 a2 + b2 = c2. 即直角三角形两直角边的平方和等于斜边的平方. 即直角三角形两直角边的平方和等于斜边的平方
B 90° ∵ ∠C=90° ∴ a2 + b2 = c2 C
与斜边c 之间的关系? 与斜边 之间的关系?
c
C
SA+SB=SC
a2+b2=c2
结论: 结论:
直角三角形中,两条直角边的平方和, 直角三角形中,两条直角边的平方和, 等于斜边的平方. 等于斜边的平方.
读一读
我国古代把直角三角形中较短的直角边称为勾, 我国古代把直角三角形中较短的直角边称为勾 , 较长的直角边称为股, 斜边称为弦.图 称为 称为“ 较长的直角边称为股 , 斜边称为弦 图 1-1称为 “ 弦图 最早是由三国时期的数学家赵爽在为《 ”,最早是由三国时期的数学家赵爽在为《周髀算经 作法时给出的.图 是在北京召开的 是在北京召开的2002年国际数 》 作法时给出的 图 1-2是在北京召开的 年国际数 学家大会( 学家大会(TCM-2002)的会标,其图案正是“弦图 - )的会标,其图案正是“ 它标志着中国古代的数学成就. ”,它标志着中国古代的数学成就
∠ ACB = 90 °
,
AC=900米,BC=1200米, 米 米 求斜边AB的长. AB的长 求斜边AB的长
勾股定理的运用一 已知直角三角形的任意两条边 求第三条边长. 长,求第三条边长
2=a2+b2 c 2=c2-b2 a 2=c2-a2 b
在直角三角形ABC中 在直角三角形ABC中,∠C=900,∠A、∠B、 ABC 所对的边分别为a ∠C所对的边分别为a、b、c 已知a=1 b=2, a=1, (1) 已知a=1,b=2,求c 已知a=10 c=15, a=10, (2) 已知a=10,c=15,求b