极坐标系精品教案
初中数学教案极坐标系

初中数学教案极坐标系初中数学教案一、教学目标通过本节课的学习,学生将能够:1. 理解极坐标系的概念和基本性质;2. 掌握极坐标系中各种图形的绘制方法;3. 运用极坐标系解决实际问题。
二、教学重点和难点1. 教学重点:极坐标系的概念和性质;2. 教学难点:运用极坐标系解决实际问题。
三、教学准备1. 教师准备:- 准备幻灯片或黑板,用于黑板上的绘图;- 准备一些实际问题,用于课堂练习。
2. 学生准备:- 课本、笔记本等学习用具。
四、教学过程导入:1. 教师简要介绍极坐标系的概念,并引导学生回顾直角坐标系的相关知识。
新知呈现:2. 教师通过幻灯片或黑板绘制极坐标系,并解释极坐标系的构造及基本性质。
3. 教师通过实例引导学生理解极坐标系中极角和极径的概念,并解释其表示方法。
示范演示:4. 教师通过绘制圆和其他图形的示范,讲解使用极坐标系绘制图形的方法。
实践演练:5. 学生进行小组活动,按照教师的要求,绘制指定的图形,并在小组内互相讨论、交流。
巩固提高:6. 教师出示一些实际问题,并引导学生运用极坐标系解决问题。
7. 学生进行个人练习,完成课后习题。
拓展延伸:8. 教师引导学生进一步探究极坐标系中其他图形的绘制方法,如椭圆、双曲线等。
五、教学总结本节课我们学习了极坐标系的概念和基本性质,掌握了绘制各种图形的方法,并运用极坐标系解决了一些实际问题。
通过本节课的学习,我们对数学中的极坐标系有了更深入的了解。
六、课后作业1. 完成课后习题;2. 思考:极坐标系在现实生活中有哪些应用?七、板书设计- 极坐标系的构造及基本性质- 极角和极径的概念及表示方法- 绘制图形的方法八、教学反思本节课采用了多种教学方法,如导入、示范演示、实践演练等,帮助学生更好地理解和掌握极坐标系的相关知识。
同时,通过实际问题的引入,培养了学生解决问题的能力。
教学过程中,学生积极参与,课堂氛围较好。
但在讲解极坐标系的性质时,可以增加一些示例图形,以便学生更好地理解。
极坐标系优秀教学设计

极坐标系【教学目标】知识目标:掌握极坐标和直角坐标的互化关系式能力目标:会实现极坐标和直角坐标之间的互化德育目标:通过观察、探索、发现的创造性过程,培养创新意识。
【教学重点】对极坐标和直角坐标的互化关系式的理解【教学难点】互化关系式的掌握【教学模式】启发、诱导发现教学。
【教学准备】多媒体、实物投影仪【教学过程】一、复习引入:情境1:若点作平移变动时,则点的位置采用直角坐标系描述比较方便;情境2:若点作旋转变动时,则点的位置采用极坐标系描述比较方便问题1:如何进行极坐标与直角坐标的互化?问题2:平面内的一个点的直角坐标是)3,1(,这个点如何用极坐标表示?学生回顾理解极坐标的建立及极径和极角的几何意义正确画出点的位置,标出极径和极角,借助几何意义归结到三角形中求解二、讲解新课:直角坐标系的原点O 为极点,x 轴的正半轴为极轴,且在两坐标系中取相同的长度单位。
平面内任意一点P 的指教坐标与极坐标分别为),(y x 和),(θρ,则由三角函数的定义可以得到如下两组公式:{θρθρsin cos ==y x { x y y x =+=θρtan 222说明上述公式即为极坐标与直角坐标的互化公式通常情况下,将点的直角坐标化为极坐标时,取ρ≥0,0≤θ≤π2。
互化公式的三个前提条件1. 极点与直角坐标系的原点重合;2. 极轴与直角坐标系的x 轴的正半轴重合;3. 两种坐标系的单位长度相同。
三、举例应用:例1.(1)把点M 的极坐标)32,8(π化成直角坐标 (2)把点P 的直角坐标)2,6(-化成极坐标变式训练在极坐标系中,已知),6,2(),6,2(ππ-B A 求A ,B 两点的距离例2.若以极点为原点,极轴为x 轴正半轴,建立直角坐标系。
已知A 的极坐标),35,4(π求它的直角坐标, 已知点B 和点C 的直角坐标为)15,0()2,2(--和 求它们的极坐标。
ρ(>0,0≤θ<2π)变式训练把下列个点的直角坐标化为极坐标(限定ρ>0,0≤θ<π2))4,3(),4,3(),2,0(),1,1(----D C B A例3.在极坐标系中,已知两点)32,6(),6,6(ππB A 。
(完整word版)《极坐标系》教学设计

1.2 极坐标系 (谷杨华 )一、授课目的〔一〕核心涵养经过这节课学习,认识极坐标系、能在极坐标系下用极坐标表示点的地址,会进行极坐标和直角坐标的互化,在直观想象、数学抽象中感觉极坐标的特点.〔二〕学习目标1.经过实例,认识极坐标系,领悟用极坐标表示点的特点.2.认识用极坐标系表示点的不独一性.3.能进行极坐标系与平面直角坐标系的互化,领悟在极坐标系和平面直角坐标系中刻画点的地址的差异.〔三〕学习重点1.认识极坐标系的重要性.2.用极坐标刻画点的地址.3.会进行极坐标与直角坐标的互化.〔四〕学习难点1.理解用极坐标刻画点的地址的根本思想.2.认识点与极坐标之间的对应关系.二、授课方案〔一〕课前设计1.预习任务〔 1〕读一读:阅读教材第8 页至第 11 页,填空:极坐标系的建立:在平面内取一个定点 O ,叫做极点;自极点 O 引一条射线 Ox ,叫做极轴;再选定一个长度单位、一个角度单位 (平时取弧度 )及其正方向 (平时取逆时针方向 ),这样就建立了一个极坐标系.极坐标系内一点的极坐标的规定:设M是平面内一点,极点O与点M的距离OM叫做点M 的极径,记为;以极轴Ox为始边,射线OM为终边的角xOM叫做点M的极角,记为.有序数对 ( , ) 叫做点 M 的极坐标,记为 M ( , ) .一般地,不作特别说明时,我们认为0 ,可取任意实数.〔 2〕想一想:点与极坐标有什么关系?一般地,极坐标( , ) 与 ( ,2k ) (k Z ) 表示同一个点.特别地,极点O 的坐标为(0, )(R) .若是规定0,02,那么除极点外,平面内的点可用独一的极坐标( ,) 表示;同时,极坐标 ( ,) 表示的点也是独一确定的.〔 3〕写一写:极坐标系与直角坐标系怎样转变?把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的单位长度.设 M 是平面内任意一点,它的直角坐标是 ( x, y) ,极坐标是 ( , ) ,那么:x cos,y sin2x2y 2, tany( x 0)x2.预习自测〔 1〕在极坐标系中,以下各点中与(2,) 表示的不是同一个点的是()357513A.(2,)B.(2, )C.(2, )D.(2,)3333【知识点】极坐标系【解题过程】由于极坐标 ( , ) 与 ( ,2k ) ( k Z ) 表示同一个点,检验得,选项C不是同一个点【思路点拨】依照点的极坐标定义代入考据可得【答案】 C〔 2〕点A的直角坐标为(0,2),那么点A的极坐标为〔〕A.(2, )B.(2,0)C.( ,2)D.(2,)222【知识点】极坐标与直角坐标互化【解题思路】依照极坐标与直角坐标互化公式可得:0222 2 ,显然2【思路点拨】由极坐标与直角坐标互化可得【答案】 A〔 3〕点 M 的极坐标为(3,) ,那么点M的直角坐标为〔〕4A . (3,3)B . (32,3 2)C . (3 ,33 ) D . ( 3,3 3)2222【知识点】极坐标与直角坐标互化【解题思路】依照极坐标与直角坐标互化公式可得:xcos32, ysin3 222【思路点拨】由极坐标与直角坐标互化可得 【答案】 B〔4〕 A 、B 两点极坐标为 A( 4, ), B( 6,2) ,那么线段 AB 中点的极坐标为________.33【知识点】极坐标与直角坐标互化、中点坐标公式【解题过程】 将 A,B 两点化为直角坐标得A(2,2 3), B( 3, 33) ,因其中点的直角坐标为(1,3) ,化为极坐标得 (1, 4)22 3【思路点拨】 先化为直角坐标, 利用在直角坐标系下的中点坐标公式求出中点, 再化为极坐标【答案】 (1, 4)3(二)课堂设计1.知识回忆( 1〕平面直角坐标系中的点 P 与坐标 (a ,b)是一一对应的 . 2.问题研究研究一 结合实例,认识极坐标系 ★●活动① 提出问题,创立情境如右图 1 是某校园授课平面表示图,假设某同学在授课楼处,请答复以下问题:(1)他向东偏北 60 方向走 120m 后到达什么地址?该地址独一确定吗?(2)若是有人打听体育馆和办公楼的地址,他应怎样描述?〔学生答复〕(1) 他向东偏北 60 方向走 120m 后到达是点 C 图书馆的地址,该地址独一确定 .图 13/1645走 50m .上面刻画地址是以 A 作为基点,并以射线 AB 为参照方向,尔后利用与 A 距离和与 AB 所成角度来描述地址,比方“东偏北 60 ,距离120m〞,即利用“距离〞和“角度〞来刻画平面上点的地址 .在上一节中,我们用“在信息中心的西偏北45 方向,距离680 10m处〞描述了巨响的位置 .即以信息中心为基点,以正西方向为参照,用与信息中心的距离与正西方向所成的角来刻画巨响的地址 .有时它比直角坐标更方便,在现实生活中,有很多的应用,比方台风预告,地震预告,测量、航空、航海中主要采用这种方法 .【设计妄图】从生活实例到数学问题,引入学习极坐标系看法的必要性,形成用角和距离刻画点的地址的直觉 .●活动②互动交流,类比提炼看法我们类比建立平面直角坐标系的过程,怎样建立用距离与角度确定平面上点的地址的坐标系?〔学生谈论交流〕平面直角坐标系的建立是在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称直角坐标系 .平时,两条数轴分别置于水平川址与垂直地址,取向右与向上的方向分别为两条数轴的正方向 .水平的数轴叫做 x 轴或横轴,垂直的数轴叫做 y 轴或纵轴,它们的公共原点 O 称为直角坐标系的原点,以点 O 为原点的平面直角坐标系记作平面直角坐标系 xOy .类比上述过程,我们在平面内取一个定点O ,叫做极点;自极点O 引一条射线 Ox ,叫做极轴;再选定一个长度单位、一个角度单位(平时取弧度 )及其正方向 ( 平时取逆时针方向 ),这样就建立了一个极坐标系.极坐标建立后,怎样来定义平面中的点的极坐标呢?如右图 2,设M是平面内一点,极点 O 与点M的距离 OM 叫做点 M 的极径,记为;以极轴 Ox 为始边,射线 OM 为终边的角xOM 叫做点M的极角,记为有序数对 (, )叫做点 M 的极.坐标,记为 M ( , ).图 2一般地,不作特别说明时,我们认为0 ,可取任意实数.【设计妄图】从特别到特别,类比获取极坐标系,让学生不会感觉极坐标系来得太突然,顺其自然获取点在极坐标系中的定义 . ●活动③ 坚固基础,检查反应例 1在极坐标系里描出以下各点 .2A(3,0) , B(3,) ,C(5, 4),D(3,5 ),E(6,5)423635【知识点】极坐标系的定义、点在极坐标系中 6的表示O【数学思想】数形结合x【解题过程】依照点在极坐标的表示, 表示的是点到极点的距离,表示射线与极轴42533所成的角,所以个点在极坐标的地址如图.54【思路点拨】欲确定点的地址,需先确定 ρ6DF和 θ的值.GAO Bx【答案】如右图.同类训练在右图 3 的极坐标系中描出以下CE点的地址: F (3, ) , G(4, )443【知识点】极坐标系的定义、点在极坐标系 图中的表示【数学思想】数形结合【解题过程】依照点在极坐标的表示, 表示的是点到极点的距离, 角,所以个点在极坐标的地址如图 3.【思路点拨】欲确定点的地址,需先确定 ρ和 θ的值.【答案】如右图 3. 研究二 研究点与极坐标的对应关系 ●活动①认识差异、辨析极坐标系在图 1 中,用点 A, B,C , D , E 分别表示授课楼,体育馆,图书馆,实验楼,办公楼的地址 .建立合适的极坐标系,写出各点的极坐标 .5 33表示射线与极轴所成的我们以点 A 为极点, AB 所在的射线为极轴〔单位长度为 1m 〕,建立极坐标系,那么 A, B, C , D , E 的极坐标分别为 (0,0), ( 60,0),(120, ),(60 3,), (50, 3)3 2 4建立极坐标系后,给定和 ,就可以在平面内独一确定点 M ,反过来,给点平面内任意一点,也能够找到她的极坐标 ( , ) .可可否和平面直角坐标系中的点和直角坐标相同,极坐标和点事一一对应的关系呢?【设计妄图】经过对点的极坐标的认识,为后边点的极坐标不独一做好铺垫.●活动② 合作研究,解决问题我们来观察以下极坐标表示的点之间有何关系呢?(4, ), (4,2 ), (4,4 ), (4,2)6 666由终边相同的角的定义可知,上述极坐标表示的是同一个点,于是:一般地,极坐标 ( , )和( , 2k )( k Z) 表示同一个点, 所以,极坐标和直角坐标不相同,平面内一个点的极坐标有无数种表示 .特别地,极点 O 的极坐标为 (0, )(R)若是我们规定0,02 ,那么除极点外, 平面内的点可用独一的极坐标 ( , )表示;同时,极坐标 ( ,) 表示的点也是独一确定的.同类训练在极坐标系中,写出以以下图中各点的极坐标( 0,0 2 )A 〔4,0〕B 〔〕 C 〔 〕D 〔〕F 〔〕G 〔〕【知识点】极坐标系的定义、点在极坐标系中的表示【数学思想】数形结合【解题过程】依照点 A 的极坐标,能够获取其他点的极坐标B( 2, ) ,4C(3, ) ,D(1, 5),F(6,4),G(5,5).2 633【思路点拨】 (1)写点的极坐标要注意序次:极径ρ在前,极角 θ在后,不能够把序次颠倒了.(2)点的极坐标是不独一的, 但假设限制 ρ> 0,0≤θ< 2π,那么除极点外, 点的极坐标是独一确定的.【答案】 B(2,) , C(3, 2 ) ,D(1, 5),F(6,4),G(5,5) .4 63 3【设计妄图】经过辨析认识点的极坐标是不独一的,加深对极坐标系的认识.研究三 实现极坐标与直角坐标的互化 ★▲●活动① 归纳梳理、理解实质平面内的一个点既能够用直角坐标表示, 也能够用极坐标来表示, 那么这两种坐标之间有何联系呢?把直角坐标系的原点作为极点, x 轴的正半轴作为极轴, 并在两种坐标系中取相同的长度单位,如图 5 所示.设 M 是平面内任意一点, 它的直角坐标是 ( x, y) ,极坐标是 ( , ) ,于是极坐标与直角坐标的互化公式以下:x cos 2x 2 y 2yysintan0)( x x这就是极坐标和直角坐标的互化公式 .图 5【设计妄图】获取直角坐标与极坐标之间的关系.活动② 坚固基础,检查反应例 2 分别把以下点的极坐标化为直角坐标〔 1〕 )〔 〕(2,2(3,)6 2【知识点】极坐标与直角坐标互化.【解题过程】x cos2cos6 3〔 1〕由所以点的极坐标 ( 2, ) 化为直角坐标为 ( 3,1) .ysin2sin166x cos3cos2 0〔2〕由所以点的极坐标 (3, ) 化为直角坐标为 (0,3) .ysin3sin322【思路点拨】将点的极坐标 ( , ) 化为点的直角坐标 ( x, y) 时,运用到求角 θ的正弦值和余弦值,熟练掌握特别角的三角函数值,灵便运用三角恒等变换公式是重点.【答案】〔 1〕 ( 3,1)〔2〕 (0,3) .同类训练 分别把以下点的极坐标化为直角坐标〔1〕(4, 2)〔2〕( , )3【知识点】极坐标与直角坐标互化.【数学思想】x cos4 cos222【解题过程】〔 1〕3所以点的极坐标) 化为直角坐标为4sin2(4,ysin2 333( 2,2 3).〔2〕由xcos cos 0所以点的极坐标 ( ,) 化为直角坐标为 ( ,0) .ysin sin【思路点拨】将点的极坐标 ( , ) 化为点的直角坐标 ( x, y) 时,运用到求角 θ的正弦值和余弦值,熟练掌握特别角的三角函数值,灵便运用三角恒等变换公式是重点.【答案】〔 1〕 ( 2,2 3)〔 2〕 ( ,0) .例 3 点 B 、C 的直角坐标为 (2,2) , (0, 15) ,求它的极坐标 (ρ>0,0 ≤θ<2π).【知识点】极坐标与直角坐标互化.【解题过程】∵ ρ= x 2+ y 222 ( 2) 22 2, tan2 1 ,且点位于第四象限∴ θ= 7π,24点 B 的极坐标为 (2 2 ,7π).43π又∵ x=0,y<0,ρ=15,∴点 C 的极坐标为 (15, ).y【思路点拨】化点的直角坐标为极坐标时, 一般取 0,0 2 ,即 θ取最小正角 ,由 tan θ= x求 θ时,还需结合在直角坐标系下点 (x, y) 所在的象限来确定 θ的值 .【答案】 B(2 2 ,7π) C(15,3π).42同类训练分别把以下点的直角坐标化为极坐标 (限制 ρ≥0,0≤θ <2π)〔1〕( 3,3) ;〔2〕( 1, 1);〔 3〕( 3,0) .【知识点】极坐标与直角坐标互化.【数学思想】【解题过程】〔 1〕( 3)23223, tan333又由于点在第一象限,所以.所以点( 3,3)的极坐标为(23,3) .3〔 2〕( 1)2(1)22, tan11515又由于点在第三象限,所以.所以点( 1,1)的极坐标为 (2,) .44〔 3〕( 3)2023,极角为,所以点 (3,0)的极坐标为 (3,) .【思路点拨】化点的直角坐标为极坐标时,一般取0,02y ,即θ取最小正角 ,由 tan θ=x求θ时,还需结合在直角坐标系下点(x, y) 所在的象限来确定θ的值.【答案】〔 1〕)〔〕5〔〕(2 3, 2 (2,) 3 (3, ).34【设计妄图】坚固检查极坐标与直角坐标互化公式.3.课堂总结知识梳理〔1〕极坐标系的建立:在平面内取一个定点 O ,叫做极点;自极点 O 引一条射线 Ox ,叫做极轴;再选定一个长度单位、一个角度单位 (平时取弧度 )及其正方向 (平时取逆时针方向 ),这样就建立了一个极坐标系.〔2〕极坐标系内一点的极坐标的规定:设M是平面内一点,极点O与点M的距离OM叫做点 M 的极径,记为;以极轴Ox为始边,射线OM为终边的角xOM叫做点M的极角,记为.有序数对(, ) 叫做点 M 的极坐标,记为 M ( , ) .一般地,不作特别说明时,我们认为0 ,可取任意实数.〔3〕若是规定0,02,那么除极点外,平面内的点可用独一的极坐标( ,) 表示;同时,极坐标 ( ,) 表示的点也是独一确定的.〔4〕把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,以以下图.设 M 是平面内任意一点,它的直角坐标是(x, y) ,极坐标是 ( , ) ,于是极坐标与直角坐标的互化公式以下:x cos 2x 2y 2y( xysintan0)x重难点归纳( 1〕极坐标系就是用长度和角度来确定平面内点的地址 .极坐标系的建立有四个要素: ①极点;②极轴;③长度单位;④角度单位和它的正方向 .四者缺一不能.( 2〕写点的极坐标要注意序次:极径 ρ在前,极角 θ在后,不能够颠倒序次( 3〕假设两个坐标系吻合三个前提条件: (1)极点与直角坐标系的原点重合 ; (2) 极轴与直角坐标系的 x 轴的正半轴重合 ; (3) 两种坐标系的单位长度相同 .那么其互相转变:2x2y 2, tany( x0)直角坐标x极 坐 标M (x, y)M ( , )x cos , y sin〔三〕课后作业 基础型 自主打破1.极坐标系中,点 P(2 ,1) 到极点的距离是 ( )A . 0B . 1C .2D . 2【知识点】极坐标的定义.【解题过程】由极坐标定义 P(2 ,1)2 ,故 P 到极点的距离为 2π.【思路点拨】依照极坐标的定义进行判断. 【答案】 D .2.以下各点中与极坐标 (5, ) 表示同一个点的是 ().7A .(5, 6)B .(5,15)C .(5, 6)D .(5,)777 7【知识点】点在极坐标系中的表示. 【数学思想】【解题过程】依照极坐标 (5,)和(5, 2k )(kZ ) 表示同一个点,取 k 1 ,得选项 B .77【思路点拨】极坐标 (, )和(,2k )(k Z ) 表示同一个点.【答案】 B.3.在直角坐标系中点P 1, 3 ,那么它的极坐标是A.2,B.4C.2,D.4 2,2,3333【知识点】极坐标与直角坐标互化.【解题过程】由于(3)2122, tan3 3 ,且点在第四象限,所以选C1【思路点拨】依照极坐标与直角坐标互化来求解.【答案】 C.4.O为极点,π,B 5,7π)A 2,,那么S AOB (36【知识点】极坐标和直角坐标的互化,三角形面积.【数学思想】数形结合思想π,B 5,7π,所以 AOBπ,那么三角形为直角三角形,那么面【解题过程】由于 A 2,362积为12 5 5 ,所以选D. 2【思路点拨】依照极坐标的点对应的直角坐标系中的点解析解析其几何关系计算即可.【答案】 D.5.规定0,R ,那么极轴上极点以外的点的极坐标为________.【知识点】点与极坐标系的关系.【数学思想】【解题过程】由于在极轴上且不是极点,所以极角2k , k Z , 极径0 ,所以极坐标为( ,2k )( k Z ) .【思路点拨】依照极坐标的定义来办理.【答案】 ( ,2k )( k Z) .11/166.极坐标系中,与点(3,) 关于极轴所在直线对称的点的极坐标是________.3【知识点】点的极坐标.【解题过程】由于(3,) 关于极轴所在直线对称的点为(3,) .33【思路点拨】将点描在极坐标系中来求解.【答案】 (3,) .3能力型师生共研7.在极坐标系中,到极点的距离等于到极轴的距离的点能够是〔〕A.(1,0)B.(2,)C.(3,)D.(4,)42【知识点】极坐标的定义、点的极坐标.【数学思想】数学结合【解题过程】由题意知y ,又由 y sin ,sin,所以sin1,所以选 C 【思路点拨】结合极坐标的定义和极坐标与直角坐标的转变.【答案】 C8.点的极坐标分别为A(3,), B(2,23,π),D(- 4,),求它们的直角3),C(422坐标.【知识点】直角坐标与极坐标互化.【解题过程】依照 x=ρcos θ, y=ρsin θ得 A32 3 2,B (-, 3 ),C( 3 ,0),D(0,222-4)【思路点拨】利用极坐标与直角坐标互化公式求解.【答案】 A32 3 2,B (-,3),C(3 ,0),,-4)(,)12D(022研究型多维打破9.点的直角坐标分别为A(3, 3 ),B(0,5),C(-2, 23 ),求它们的极坐标 (ρ≥ 0,0θ≤3<2π).【知识点】直角坐标与极坐标互化.222y 得 A(2 3,3 34 ).【解题过程】 (2)依照 ρ=x +y , tan θ=x),B (, ) ,C(4,3636【思路点拨】利用极坐标与直角坐标互化公式求解.【答案】 A( 2 3,),B ( 3,3) ,C(4, 4).6 36310.某大学校园的局部平面表示图如图:用点 O ,A ,B ,C ,D ,E ,F , G 分别表示校门,器材室,操场,公寓,授课楼,图书馆,车库,花园,其中 ABBC , OC 600 m.建立合适的极坐标系,写出除点B 外各点的极坐标〔限制0,02π 且极点为〔 0, 0〕〕 .【知识点】极坐标系的建立、极坐标刻画点的地址.【解题过程】以 O 为极点,OA 所在射线为极轴建立极坐标系, 由于 OC600 , AOCπ ,6π .故 C 600,6又 OA600 π 300 3, OD600 sinπ 300 , OE 3002 ,OF 300,cos66OG 1502 .故A300π3πF 300, π3π,,,,, D300,E 3002,,G 15023 0244【思路点拨】解决问题的重点是依照极坐标系计算即可.【答案】 A 300 3,0 π ,E 3003π, F 300, π , G 150 3π, D 300,2,2,244自助餐1.在极坐标系中,A( 2, ), B(6, ) ,那么 OA, OB 的夹角为 ( ).6 6A.B.06【知识点】极坐标的定义.【数学思想】数形结合思想.【解题过程】以以下图,夹角为C. D.536.3【思路点拨】将 A, B 两点的极坐标标在极坐标系中可得.【答案】 C2.设点 P 对应的复数为- 3+3i,以原点为极点,实轴正半轴为极轴建立极坐标系,那么点P 的极坐标为 ()A. 3 2,3πB.-3 2,5π4453C. 3,4πD.-3,4π【知识点】复数、极坐标与直角坐标互化.【解题过程】复数33i 对应的点的直角坐标为( 3,3),由(3)23223, tan3 1 ,且点在第二象限,所以选A.3【思路点拨】先把复数化为直角坐标,再化为极坐标.【答案】 A.3.在直角坐标系xOy 中 ,以 O 为极点 ,x 正半轴为极轴建立极坐标系,且在两种坐标系中取相同的单位长度 ,将点 P 的极坐标π. 2,化成直角坐标4【知识点】极坐标与直角坐标互化.【解题过程】由点Pπ,设点 P的直角坐标为 (x,y), 所以的极坐标为 2,4ππ2 .x 2cos2, y 2sin44【思路点拨】依照极坐标与直角坐标互化公式求解.2,2【答案】.4.以极点为原点,极轴的方向为 x 轴的正方向,建立直角坐标系,那么极坐标5M (2021, ) 表3示的点在第 ________象限.【知识点】极坐标与直角坐标互化.【解题过程】依照 xcos2021 cos5 2021 , y sin2021 sin5 2021 3 ,3232所以点在第四象限.【思路点拨】依照极坐标与直角坐标互化公式求解.【答案】四5.在极坐标系中 ,分别求以下条件下点 M (3,) 关于极轴的对称点 M 的极坐标 :3(1) 0, 0,2 .(2)0, R【知识点】极坐标系中点的刻画.【解题过程】 1)当0,0,2时,点 M (3, ) 关于极轴的对称点 M 的极坐标为 (3, 5) .33(2)0,R 时,点 M (3,) 关于极轴的对称点 M 的极坐标为 (3,2k 5 )(k Z ) .33【思路点拨】依照点在极坐标的刻画来求解.【答案】〔 1〕 (3, 5 ) ;〔 2〕 (3,2k5)(k Z ) .336.在极坐标系中,三点 M (2,), N (2,0), P(2 3, ) .3 6(1)将 M ,N ,P 三点的极坐标化为直角坐标;(2)判断 M ,N ,P 三点可否在一条直线上.【知识点】极坐标与直角坐标互化x =ρcos θ, 得 M 的直角坐标为 (1,-3);【解题过程】 (1)由公式y =ρsin θ,N 的直角坐标为 (2,0);P 的直角坐标为 (3, 3).33-0(2)∵k MN =2-1= 3,k NP = 3- 2 = 3,∴ k MN =k NP ,∴ M , N , P 三点在一条直线上.【思路点拨】依照极坐标与直角坐标互化公式求解.【答案】〔 1〕M(1,-3), N(2,0),P(3,3);〔 2〕在同一条直线上.。
极坐标系优秀PPT教案

π 4
练一练
题组2:在极坐标系里描出下列各点
A(3, 0) B(6, 2 ) C (3, )
2
D(5, 4 )
3
E(3, 5 )
6
F (4, )
G(6, 5 )
3
解析: 2
5
6
C
E
F
A O
B X
4
D
3
G 5 3
新课讲解
四、1、负极径的定义
说明:一般情况下,极径都是正值;在某些必要情 况下,极径也可以取负值,
引一条射线Ox,叫做极轴,
再选定一个长度单位和角度单 O 位及它的正方向 通常取逆时针
x
方向 ,
这样就建立了一个极坐标系,
新课讲解
二、极坐标系内一点的极坐标的规定:
对于平面上任意一点M,用 表示线段OM的长度,用 表
示从Ox到OM 的角度, 叫做
点M的极径, 叫做点M的极角, 有序数对 , 就叫做M的极坐 标,
2 在平面直角坐标系上,平面上所有点的集合与全体有序实数对 x , y 的集合建立一一对应;
3 在空间直角坐标系上,空间上所有点的集合与全体三元有序实数对 x , y , z 的集合建立一一对应;
复习回顾
直角坐标系
数
平面直角
轴
坐标系
R
x,y
空间直角 坐标系
x,y,z
复习回顾
建立坐标系是为了确定点的位置,由此,在所创建的坐标系中, 应满足: 任意一点都存在一个坐标与之对应;反之,依据一个点的坐标 就能确定这个点的位置; 而确定点的位置即为求出此点在设定的坐标系中的坐标,
O
M x
特别强调:表示线段OM的长度,即点M到极点O的距
极坐标系的概念教学设计

极坐标系的概念教学设计一、教学目标:1.了解极坐标系的概念和基本性质;2.掌握如何在直角坐标系和极坐标系之间进行转换;3.掌握在极坐标系下表示点的方法;4.能够用极坐标系描述简单图形。
二、教学重点与难点:1.教学重点:极坐标系的概念和基本性质;2.教学难点:在极坐标系下表示点的方法。
三、教学准备:1.教师准备:PPT、投影仪、白板、黑板笔;2.学生准备:直角坐标系与极坐标系的相关知识。
四、教学过程:Step 1 引入新课 (10分钟)1.引导学生回顾直角坐标系的概念和性质;2.提问:在直角坐标系中,我们如何用两个坐标值x和y来定位一个点?是否能用其他方式来表示点的位置?3.出示极坐标系的图形,引导学生思考极坐标系的概念。
Step 2 极坐标系的概念与性质 (15分钟)1.解释极坐标系的概念:极坐标系是由极轴和极角组成的,极轴是用来表示点到极点的距离的半直线,极角是用来表示点到极点的半直线与固定半直线的夹角;2.引导学生分析极坐标系的性质:极坐标系是二维坐标系,极轴是从极点出发的一条非负半直线,极角的范围是[0,2π),极坐标系中,每一个点都有唯一的极坐标。
Step 3 直角坐标系与极坐标系的转换 (20分钟)1.提示学生极坐标系直角坐标系的转换方法:- x = r * cosθ- y = r * sinθ2.在白板上画出一个示例图形,并引导学生进行转换练习。
Step 4 极坐标系中点的表示方法 (20分钟)1.解释如何用极坐标表示平面上的点:极坐标的标记方式是(r,θ),其中,r表示点到极点的距离,θ表示点与固定半直线的夹角;2.在黑板上画出一个示例图形,引导学生练习用极坐标表示点的方法。
Step 5 极坐标系的应用 (20分钟)1.示范用极坐标系描述简单图形;2.引导学生进行实际练习。
Step 6 小结与课堂练习 (15分钟)1.积极小结本课的内容:回顾极坐标系的概念和性质,直角坐标系与极坐标系的转换,极坐标系中点的表示方法,以及极坐标系的应用;2.针对性布置相关课后习题。
极坐标 教案

极坐标教案教案标题:极坐标教案一、教学目标1. 了解极坐标的概念和基本性质;2. 掌握极坐标下点的表示方法;3. 学会在极坐标下进行坐标变换和图形绘制;4. 能够应用极坐标解决实际问题。
二、教学重点和难点重点:极坐标的基本概念和性质,点的极坐标表示方法,极坐标下的坐标变换和图形绘制。
难点:极坐标与直角坐标系的转换,极坐标下的曲线方程的表示和理解。
三、教学过程1. 导入新知识通过展示极坐标系和直角坐标系的对比,引导学生了解极坐标的概念和基本特点。
2. 讲解极坐标的表示方法介绍极坐标下点的表示方法,包括极径和极角的概念,以及极坐标与直角坐标系之间的转换关系。
3. 案例分析通过具体的案例分析,引导学生掌握极坐标下的坐标变换和图形绘制方法,例如绘制简单的极坐标曲线和解决相关实际问题。
4. 练习与讨论设计一些练习题目,让学生在课堂上进行练习,并进行讨论和答疑,加深对极坐标的理解和掌握。
5. 拓展应用引导学生将极坐标应用到实际问题中,例如极坐标下的坐标变换和图形绘制在工程、物理等领域的应用。
6. 总结反思对本节课的内容进行总结,强调极坐标的重要性和应用价值,鼓励学生多加练习和思考。
四、教学资源1. 极坐标系和直角坐标系的对比图;2. 相关极坐标的案例分析题目;3. 极坐标下的图形绘制工具。
五、作业布置布置相关练习题目,巩固学生对极坐标的理解和掌握。
六、教学反思根据学生的学习情况和反馈,及时调整教学策略,不断完善教学内容和方法,提高教学效果。
七、教学评价通过课堂练习、作业完成情况和学生的表现,对学生的学习情况进行评价,并及时进行指导和辅导。
极坐标系教学设计与教学反思

极坐标系教学设计与教学反思教学设计:极坐标系一、教学目标1.了解和掌握极坐标系的基本概念和表示方式。
2.能够将直角坐标系转化为极坐标系。
3.通过练习和实例分析,掌握极坐标系的应用。
二、教学重点和难点重点:极坐标系的基本概念和表示方式。
难点:将直角坐标系转化为极坐标系。
三、教学过程1.导入(5分钟)通过问题启发学生思考:在绘图中,有时我们需要将坐标点表示为距离原点的距离和与x轴正方向的夹角。
你认为这种表示方式叫什么?用什么坐标系表示?2.引入(10分钟)通过PPT介绍极坐标系的概念和表示方式,让学生对极坐标系有一个初步的了解。
3.讲解(15分钟)以直角坐标系转化为极坐标系为例,详细讲解转化的步骤和方法。
同时结合图表和实例,让学生更清晰地理解。
4.示范(10分钟)通过示范练习,让学生跟随教师一起练习将直角坐标系转化为极坐标系。
教师先做一个示范,然后指导学生进行练习。
5.练习(15分钟)学生在作业本上完成一系列的练习题,巩固对极坐标系的认识和掌握。
6.拓展(10分钟)通过实例分析,引导学生思考极坐标系的应用。
如在极坐标系中,如何表示点的对称关系、如何表示点的共线关系等。
7.课堂小结(5分钟)对本节课的要点进行总结,回答学生提出的问题,澄清疑惑。
四、教学反思1.本节课的教学设计的目标明确,突出了极坐标系的基本概念和表示方式。
通过引入问题和实例分析,能够激发学生的学习兴趣,帮助他们更好地理解极坐标系的概念。
2.在讲解过程中,我使用了PPT和图表来让学生更直观地了解极坐标系,帮助他们形成正确的概念。
同时,我在讲解过程中也加入了实例分析和示范练习,让学生能够操作和应用所学的知识。
3.本节课的教学过程中,我注重学生的参与和互动。
通过引导学生思考问题和解答问题,帮助他们更深入地理解和掌握极坐标系。
同时,通过练习和作业,巩固学生的学习成果。
4.但是,在教学中我发现一些问题。
有些学生对概念理解不够清晰,可能需要更多的实例分析和练习。
《极坐标系》教案新人教A版选修

数学:1.2《极坐标系》教案(新人教A版选修4-4)极坐标系【基础知识导学】1.极坐标系和点的极坐标极点、极轴、长度单位、角度单位和它的方向构成极坐标系的四要素,缺一不可。
规定:当点M在极点时,它的极坐标可以取任意值。
2.平面直角坐标与极坐标的区别在平面直角坐标系内,点与有序实数对(x,y)是一一对应的,可是在极坐标系中,虽然一个有序实数对只能与一个点P对应,但一个点P却可以与无数多个有序实数对对应,极坐标系中的点与有序实数对极坐标不是一一对应的。
3.极坐标系中,点M的极坐标统一表达式。
4.如果规定,那么除极点外,平面内的点可用唯一的极坐标表示,同时,极坐标表示的点也是唯一确定的。
5.极坐标与直角坐标的互化(1)互化的前提:①极点与直角坐标的原点重合;②极轴与X轴的正方向重合;③两种坐标系中取相同的长度单位。
(2)互化公式,。
【知识迷航指南】【例1】在极坐标系中,描出点,并写出点M的统一极坐标。
【点评】点的统一极坐标表示式为,如果允许,还可以表示为。
【例2】已知两点的极坐标,则|AB|=______,AB与极轴正方向所成的角为________.解:根据极坐标的定义可得|AO|=|BO|=3,∠AOB=600,即?AOB为等边三角形,所以|AB|=|AO|=|BO|=3, ∠ACX=【点评】在极坐标系中我们没有定义两点间的距离,我们只要画出图形便可以得到结果.【例3】化下列方程为直角坐标方程,并说明表示的曲线.(1),((2)【解】(1)根据极坐标的定义,因为,所以方程表示直线. (2)因为方程给定的不恒为0,用同乘方程的两边得:化为直角坐标方程为即,这是以(1,)为圆心,半径为的圆.【点评】①若没有这一条件,则方程表示一条射线.②极坐标方程化为直角坐标方程,方程两边同乘,使之出现2是常用的方法.【解题能力测试】1.已知点的极坐标分别为,,,,求它们的直角坐标。
1.已知点的直角坐标分别为,求它们的极坐标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、极坐标系
教学目标:
知识与技能
(1)认识极坐标系;能在极坐标系中,用极坐标刻画点的位置;
(2)体会极坐标系与平面直角坐标系的区别,能进行极坐标和直角坐标间的互化。
过程与方法
通过生活实际问题,引导学生探究、发现,激发学生的好奇心,进而得出建立极坐标系的必要性。
情感、态度与价值观
通过多媒体展示现实生活中的图片,激发学生好奇心和求知欲;培养学生“学数学,用数学”
的应用意识,让学生切身体会“数学源于生活,服务于生活”。
教学重点和难点:
重点:能用极坐标刻画点的位置,能进行极坐标与直角坐标的互化。
难点:理解用极坐标刻画点的位置的基本思想;认识点与极坐标之间的对应关系。
教学基本流程:
一、建立问题情景,体会引进新坐标系的必要性。
大家有没有见过这种图片?台风的卫星云图。
众所周
知台风危害很大,所以我们非常关注台风中心的位置。
气象台会把它和平面地图组合起来从而得到一张台风
的路径图。
根据路径图,及时播报台风中心的位置。
从小
到大我们听过很多次台风预报。
今天也请大家来当一回主
播,根据这张图你来描述一下台风中心位置。
【设计意图】引入学习极坐标系概念的必要性,形成用角
和距离刻画点的位置的直觉。
让学生称为学习的主人,积
极参与。
看一下气象台是怎么播报的:“今年第8号台风“凤
凰”,今天下午4时中心位置已经到达温州东南偏南方向大
约800公里附近的洋面上,也就是在北纬22.3度,东经123.8度”(利用信息技术,播放这段视频,给学生更为直观地感受,也能更加激发学生此时学习的热情。
在此,要及时评价学生的描述,加以表扬和补充。
)
问:哪些条件刻画了台风中心的位置?
东经123.8度,北纬22.3度。
温州东南偏南方向大约800公里的海面上。
经纬度可以准确刻画地球表面任意一点的位置,在这张平面地图上,
相交的两条经纬线,是不是也准确刻画了这张平面地图上的任意一点?如
果把平面地图延伸开来,经纬线是不是也能刻画整个平面上任意一点的位
置?你得到什么样的启发?
1637年笛卡尔受天文地理的经度、纬度启发,创建了平面直角坐标系,用横坐标和纵坐标确定平面中任意一点的位置。
平面直角坐标系我们研究得很透彻了,今天就不研究了。
再来看天气预报,“也就是”,这三字说明两种定位方式都可以确定台风中心的位置。
【设置疑问】为什么台风预报时两个都会提及?(一个精确,一个通俗易懂形象)
我们就用大家熟悉的定位方式来刻画一下台风中心的位置。
用参照点、角度和距离刻画平面中的点的思想,就称为极坐标思想,这样建立起来的坐标系就称为极坐标系(板书课题)
【设计意图】引导学生通过类比,尝试自己建立极坐标系,再通过交流合作,(当学生遇到困难时,适时提醒必修五中学习的方位角概念)解决问题,教师加以引导、补充。
从而告诉学生:引进极坐标系的概念的必要性,形成用角和距离刻画点的位置的直觉。
二、极坐标系的概念
给出概念:(多媒体演示,教师板书,学生在课本中画
出)
在平面内取一个定点O,叫做极点;自极点O 引一条射线Ox,
叫做极轴; 再选定一个长度单位,一个角度单位(通常用弧度)
及其正方向(通常取逆时针方向),这样就建立了一个极坐标
系.
如图:设M 是平面内一点,极点O 与点M 的距离|OM|叫做点M 的极径,记为;
ρ以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的极角,记为;
θ有序实数对( )叫做点M 的极坐标,记为;
,ρθ(,)M ρθ
一般地,不做特殊说明时,我们认为(教师板书)
0,ρθ≥∈R 【小试身手】如图在平面地图上建立极坐标,试写出台风中心的极坐标(学生思考、口55(800,)(800,)(800,)(800,2)3333
k πππππ→-→→+答,教师多媒体展示,教师板书)
例题讲解:课本P9-10例1和例2,多媒体展示
【设计意图】初步熟悉极坐标系的有关概念。
教师提问:直角坐标系下,点与它的坐标一一对应,在极坐标系下,点与它的极坐标是否也有一一对应的关系呢?
【设计意图】通过比较,辨析极坐标系,进一步认识极坐标系的特点。
教师展示和板书结论:
极点O 的极坐标?,我们发现给出一个点对应的极坐标不唯一;反过(0,0)(0,)R θθ∈→来,
如果给出一个极坐标(2,),那它对应的点是否唯一?(唯一)
π;除极点外,平面内点可用唯一的极坐标()表示;同时,极坐0,02ρθπ>≤<如果规定,ρθ标()表示的点也是唯一的。
,ρθ【设计意图】引导学生通过类比尝试自己建立极坐标系,初步熟悉极坐标系的有关概念。
三、极坐标系与平面直角坐标系的区别
现在我们学习了两种坐标系,我们来比较一下它们有哪些区别? 平面直角坐标系
极坐标定位方式
横坐标、纵坐标角度和距离点与坐标
点与坐标一一对应点与极坐标不一一对应外在形式
原点,x ,y 轴极点,极轴本质两线相交定点圆与射线相交定点
【设计意图】通过比较,辨析极坐标系,进一步认识极坐标系的特点。
四、极坐标系的历史
平面直角坐标系是由笛卡儿创建的,问:又是谁第一个提出极坐标系?他为什么要提出极坐标系?
伯努利(瑞士):1691年《教师学报》最先发表了上述有关极坐标系的理论;
丹尼尔·伯努利,(Daniel Bernoulli 1700~1782)瑞士物理学家、数学家、医学家。
1700年2月8日生于荷兰格罗宁根。
著名的伯努利家族中最杰出的一位。
他是数学家J.伯努利的次子,和他的父辈一样,违背家长要他经商
学教授,后任动力学教授,1750年成为物理学教授。
牛
顿(英国):完成于1671年,发表于1736年《流数法与无穷级数》---把极坐标看成是
确定平面上的点的位置的方法,并与其他9种坐标系进行转换;
并为幂级数的研究做出了贡献。
数学家们认为极坐标有着很大的作用,并实现了它与其他坐标系的转换,现在我们也学习了两种坐标系,那我们也来转换一下看看。
【设计意图】通过数学史的介绍,使学生进一步认识极坐标系的来源,接受数学文化的熏陶,培养学生一定的数学文化修养;并过渡至坐标系的转换。
五、极坐标与平面直角坐标的互化
【设计意图】引导学生认识建立两种坐标之间关系的基本思想。
为实现转换,要把两个坐标系放在同一个平面中,应当如何建立这两个坐标系呢?
原点与极点重合,极轴与x 轴的正半轴重合;取相同的单位长度。
牛顿也是这样想的,具体来试一下;
试一试:试将刚才所描述的台风中心的极坐标化成直角坐标5(800,)3
π(教师板书)55800cos ,800sin 33
x y ππ=⨯=⨯设M 是平面内任意一点,它的直角坐标是
,极坐标是,那么两者之间的关
(,)x y (,)ρθ系? ,(板书)cos ,sin x y ρθρθ==222,tan (0)y x y x x ρθ=+=
≠你能联想到过去所学的哪个知识?——任意角的三角函数的定义。
例题讲解:课本P11例3和例4
【设计意图】熟悉并记忆公式,由学生独立完成。
【探究思考】如左图 ,假设当距离台风中心700公里时应当发布台风蓝色警报,问福州是否已发布台风蓝色警报?4(200,)3
π
分析:本质是根据极坐标研究两点的距离。
解:根据图象:福州距离台风中心的距离为(多媒体展示,教师板书)
d =100700
==>所以还未发布橙色警报。
通过刚才这个例子我们是否可以猜测:。
1122(,),(,),
||A B AB ρθρθ=已知点则能否证明?
【设计意图】通过探究,目的是为了给出在极坐标系中计算两点间距离的公式,同时也告诉学生极坐标系下的两点坐标可以转化为平面直角坐标,在平面直角坐标系中加以证明。
(教师板书证明过程),再次强调,互化公式把两个坐标系紧密地联系在了一起。
六、定位思想和极坐标的提升
最后我们再来看这张卫星云图,大家看到这个云图,试想如果一个物体被台风卷了进去后,它可能会做什么样的运动?
研究:理想化条件下:
物体绕台风中心逆时针旋转,角速度弧度/小时,离台风中心的距离以5
12
公里/小时速度减小,到中心后停止,台风中心不动,在离台风中心100公
里A处放飞一个物体M,求t 小时后物体的位移?
分析:关键是确定t小时后物体的位置,哪种定位方式能更好确定位置呢?
结论:通过这个例子我们发现,在研究某些问题时,用极坐标系会更加方
便。
【设计意图】极坐标系引入的必要性,及定位思想的提升,带着问题下课。
七、课堂小结
【设计意图】整理知识,在比较中加深对极坐标系有关概念的认识。
1.极坐标系与哪些知识有联系?极坐标与直角坐标在刻画点的位置时有什么区别?
2.极坐标与平面直角坐标的互化
3.极坐标系下的两点距离公式
八、作业布置课本P12习题1.2第1、3、4、5题
九、板书设计。