正比例(1) 小学数学 六年级数学
六年级数学下册《正比例和反比例》(1)

六年级数学下册《正比例和反比例》(1)一.解答题(共30小题)1.小明家的客厅长6m,宽4m,现在准备铺地砖,每块地砖的面积和所需要的地砖数量如表所示,600 1200 2400每块地砖的面积/cm2所需地砖的数量/块400 200 100所需地砖的数量与每块地砖的面积是否成反比例关系?为什么?2.根据x×y=40,填下表.y 20 40.5x 10 52.53.同学们做早操,每行站的人数与站的行数关系如表:8 12 16 24 48每行站的人数站的行数60 40 30 20 10(1)写出几组对应的行数和每行站的人数的乘积,并比较它们的大小.(2)这个乘积表示什么意义?用关系式表示它与以上两种量之间的关系.4.下列各表中相对应的两个量的比能否组成比例?如果能,把组成的比例写出来.工作时间/时 1 2碾米质量/t 0.6 1.2杆高/m 5 9影长/m 2.5 4.55.一种铅笔每支售价0.5元,把下表填写完整.数量/支0 1 2 3 4 5 6 …总价/元0 0.5 …(1)把铅笔的数量与总价所对应的点在图中描出来,并连线.(2)买7支铅笔需要多少钱?(3)小丽买铅笔花的钱是小明的4倍,小丽买的铅笔支数是小明的几倍?6.工地要运一批水泥,每天运的吨数和运的天数如下表.每天运的吨数/吨60 30 20 15 10运的天数/天 1 2 3 4 6(1)表中相关联的两种量是和.(2)每天运的吨数增加,运的天数就会;每天运的吨数减少,运的天数就会.(3)表中表示的几种量的关系是一定,与成反比例.7.如图所示的图象表示斑马和长颈鹿的奔跑情况.(1)斑马的奔跑路程与奔跑时间是否成正比例关系?长颈鹿呢?(2)估计一下,两种动物18分钟各跑了多少千米?(3)从图象上看,斑马跑的快还是长颈鹿跑的快?8.电脑兴趣小组的同学练习打同一份稿件,下表记录了每人打字所用的时间.欢欢笑笑乐乐跳跳打字所用的时间/分30 40 50 60平均每分钟打字数/80字(1)表中和是两种相关联的量,随着的变化而变化.(2)笑笑打完稿件共用了40分钟,他平均每分钟打个字;跳跳打完稿件共用了60分钟,他平均每分钟打个字,一共打了个字.(3)在本题中,一定,所以和成比例.9.捷悔希望小学操场上直立着4根不同长度的木桩,上午9时整,小霞同学测量出这些木桩的高度及其影子的长度如表木桩高度(米) 1.2 1.8 2.1 2.5影子长度(米)0.72 1.08 1.20 1.5木桩高度与影长的比(1)补充上表.(2)根据上表数据写两个比例.(3)小霞身高150厘米,这时她的影长是多少?10.(1)判断下列说法是否正确(对的画“√”,错的画“×”)①甲、乙两车是同时出发的.②甲和乙行驶的路程相同.③甲车比乙车速度快.(2)从图中可以看出,随着时间的增加,距离有什么变化?11.如图是A汽车行驶路程与耗油量的统计图:下表是B汽车行驶路程与耗油量关系表:耗油量/升3 6 9 12路程/千米20 40680如果驾驶A汽车,行驶50千米耗油多少升?12.根据题中的条件,回答下面的问题.某省打长途电话的时间与话费的对照表通话时间/分钟1 2 3 4 5 6 7 8 …话费/元0.300.60.91.21.51.82.12.4…(1).和是两种相关联的量,增加,也随着增加.(2).通话5分钟需付话费元,2.10元可通话分钟.(3).话费和通话时间这两种量中相对应的两个数的比值都是,这个比值实质表示的.(4).因为比值一定,所以表中的两种量是成的量,它们的关系叫做.13.判断下面各题中的两个量是否成正比例或反比例关系(1)全班人数一定,出勤人数与缺勤人数.(2)已知=3,y与x.(3)三角形的面积一定,它的底与高.(4)正方体的表面积与它的一个面的面积.(5)已知xy=1,y与x.(6)出油率一定,花生油的质量与花生的质量.14.购买同一种茶杯的数量和总价如表:数量/1 3 6 8 …个总价/15 45 90 120 …元用同样多的钱购买不同单价的茶杯和数量如表:单价/5 6 8 10 …元数量/24 20 15 12 …个每个表中两个量的变化各有什么规律?哪个表中的两个量成正比例关系?哪个表中的两个量成反比例关系?15.在下面成正比例关系的两个量的后面画“√”.(1)平行四边形的底一定,它的面积与高..(2)汽车行驶的速度一定,行驶的路程与时间..(3)正方形的面积和边长..(4)订阅《英语报》的份数和总钱数..(5)圆的周长和它的半径..(6)4A=12B(A、B均不为0),A和B..(7)圆的半径和它的面积..(8)李玲的体重和她的身高..16.判断下面每题中两种量是否成反比例,并说明理由.(1)比值一定,比的前项和后项.(2)被减数一定,减数和差.(3)修路的总米数一定每天修的米数和修路的天数.(4)花生的出油率一定,花生的重量和油的重量.(5)分母一定,分子和分数值.17.判断下面各题中的两种量是否成反比例关系,并说明理由(1)煤的数量一定,使用天数与每天的平均用煤量.(2)全班的人数一定,按各组人数相等的要求分组,组数与每组的人数.(3)圆柱体积一定,圆柱的底面积与高.(4)在一块菜地上种的黄瓜与西红柿的面积.(5)书的总册数一定,按各包册数相等的规定包装书,包数与每包的册数.18.如图,一个棱长为a的正方体,它的表面积与棱长是否成比例?体积与棱长是否成比例?19.x、y、z三个相关联的量,并有xy=z.(1)当z一定时,x与y成比例关系.(2)当x一定时,z与y成比例关系.(3)当y一定时,z与x成比例关系.20.判断下面各题中的两种量是否成正比例:(1)圆的周长和直径.(2)圆的面积和半径.(3)圆柱的底面半径一定,侧面积和高.21.根据表格填空:汽车行驶时间/时 3 5 7 9 11 13汽车行驶路程/千240 400 560 720 880 1040米(1)表中两种相关联的量是.(2)当时间扩大时,行驶的路程也随着;当时间缩小时,行驶的路程也随着.(3)在变化过程中,始终没有发生变化.(4)汽车行驶的时间和路程成关系.(5)当汽车行驶8时,路程是千米,汽车要到600千米的地方,需要时.22.下面各题中的量,哪些成正比例,哪些成反比例,哪些不成比例?(1)教室的面积一定,某班学生人数与人均占地面积比例.(2)大豆油的总质量一定,大豆的质量和出油率比例.(3)圆的半径和周长比例.(4)长方形的周长一定,长和宽比例.(5)一袋面粉用去的质量和剩下的质量比例.(6)长度一定的铁丝平均分成若干段,每段长度和截的段数.23.(2015•广东)一些长方形的长与宽的长度变化如下表.长/厘米 5 7.5 10 12.5 15 17.5 …宽/厘米 2 3 4 5 6 7 …(1)若长方形的宽是8厘米,长是厘米;若长是8厘米,宽是厘米.(2)这些长方形的宽与长成比例.如果用y表示长,x表示宽,则y=.(3)这样的长方形中,当周长是70厘米时,它的长和宽各是多少?(列式解答)24.(2015春•利辛县校级月考)一种服装布料每米售价为60元,购买2米、3米、…各需要多少元?(1)填写下表.长度/米 1 2 3 4 5总价/元6 0(2)根据表中的数据,在如图中描出长度和总价对应的点,把这些点按顺序连起来.(3)购买布匹的长度和需要的钱数有什么关系?(4)根据图象判断,购买2.5米布匹需要多少钱?25.(2015•龙泉驿区校级三模)右面的图象表示小军骑车的路程和时间的关系.(1)看图填表.时间/分30路程/千米24(2)小军骑车行驶的路程和时间成比例,这是因为:.(3)利用图象估计,小军20分钟大约行千米;行20千米大约需要分钟.行驶区间车次起始时刻到站时刻经历时间全程甲地到乙地K12 14:26 22:26 8时640千米26.(2015•衡水模拟)如图是某厂甲、乙两个车间各生产600个零件过程中,生产零件的个数与生产时间的关系图:(1)从图上可以看出两个车间生产零件的个数分别与它们所用的时间成比例.(2)乙车间生产天后赶上甲车间生产的个数,甲、乙两个车间完成任务时,车间所用的时间多(3)当乙完成任务时,甲还有个没做,车间工作效率高,高%.27.(2015春•台安县期中)买笔记本的数量和钱数的关系如下表:数量(本) 1 2 3 4 5 6总价(元)1.53(1)将表格补充完整,根据表中的数据,在图中描点再顺次连接.(2)量没变,数量和总价之间成比例.(3)从图中可以看出,如果买9本笔记本,需要元钱?28.(2015春•海安县校级期中)根据下面的3张表,按要求回答问题.表1:车间装订练习本,练习本用纸的张数和装订的本数如下表.装订的本数1 2 3 4 5 …纸的张数25 50 75 100 125…表2:车间装订练习本,用了的纸张数和剩下的纸张数如下表.用了的张数10020030004005000…剩下的张数90080070006005000…表3:车间装订练习本,每本练习本用纸的张数和装订的本数如下表.装订的本数900 7506045036…纸的张数10 12 15 20 25 …(1)选择正确的答案序号填在横线中.表1中的两种量,表2中的两种量,表3中的两种量.A.成正比例B.成反比例C.不成正比例,也不成反比例(2)根据成正比例的量的数据,在下图中描出所对应的点,再连起来.根据图象判断,装订6本练习本要用张纸,175张纸能装订本.29.(2014•佛山)小丽用自制的橡皮筋来称量物体质量.她把测量的数据制作成的统计图和统计表.(皮筋最多可称量2kg质量)物体质量与皮筋伸长长度的统计表所称质量/g 皮筋伸长长度/cm0 0100 26450……a(a<2000)(1)根据统计图补充表格.(2)填空,我们可以发现与所称物体的质量成(选填“正比”或“反比”)(3)小丽用此皮筋称一袋苹果,皮筋长43厘米,求这袋苹果的质量.30.(2014春•利川市期末)某商场全部商品打八折出售(如图).原价10元的商品,现价8元,原价50元的商品,现价元.请你在左图中描出这个点.如果用x表示商品的原价,y表示商品的现价,那么y=,现价与原价成比例.。
小学六年级数学正反比例

小学六年级数学正反比例一、什么是正反比例1、正比例:正比例是指两个变量之间的变化率是一致的,当其中一个变量增大时,另一个也会相应地增大,反之亦然。
两个值之间的正比例可以用y=ax+b (a>0)这样的函数表达出来。
2、反比例:反比例是指两个变量之间的变化率相反,当其中一个变量增大时,另一个会相应地减小,反之亦然。
反比例可以用y=a/x+b (a>0)的函数表示出来。
二、小学六年级数学中的正反比例1、小学六年级数学中常见的正反比例实例有:(1)时间与内容的正比例:学习的时间与学习的内容正比,也就是说,投入的时间越多,学习的内容就会比较多。
(2)距离与时间的反比例:一般来说,距离和所耗时间是反比例的。
也就是说,距离越大,耗费的时间也就越长。
(3)质量与价格的反比例:大家购买物品也是质量和价格是反比例的。
也就是说,质量越高,价格也就越高。
三、正反比例在小学六年级数学中的应用1、分数的反比例:比如有一个划分为两部分的数,其中一部分是原数的3分之一,另一部分是原数的2分之1,这就是表达反比例的例子,可以让学生掌握反比例的概念。
2、重量和体积的反比例:利用试管、称重的方式,让学生观察自己所得的试管中重量和体积的反比例关系,并且按照规律画出反比例的图像,总结出反比例特点,这样就可实现对正反比例的洞察和掌握。
3、面积与周长之间的正比例:通过画图测量形状的面积和周长,从中可以观察面积与周长之间的正比例关系,让学生把正反比例概念掌握其中,从而可以解决有关正反比例的问题。
4、实际问题求解:可以用折线图、比例图等形式来表示,在给定2个变量情况下,实现对反比例、正比例的概念掌握,从而解决实际问题,培养学生使用正反比例进行实际问题求解的能力。
小学数学下册六年级《正比例》教案

小学数学六年级下册《正比例》教案一、结合情境完成活动一:1.结合教材19页的第一题把表填完整。
2.汇报表中填写的数据3.思考老师提的问题:正方形的周长与边长的变化是否有关系?面积与边长的变化是否有关系?4.小组交流自己的思考5.全班汇报思考情况。
6.说正方形的周长、面积与边长的关系式。
7.谈自己的发现。
(预计:周长和边长这两个变量的比值是一个定量,而面积与边长的比值还是一个变量)一、谈话引入上节课我们认识了什么是变化的量,今天这节课我们来研究两个变量之间的关系。
二、提供素材,创设情境1.情境一(课件出示教材第19页的第一题)(1)请根据你的观察,把数据填入表中。
(2)学生汇报反馈表中填写的数据。
(3)问:正方形的周长与边长的变化是否有关系?面积与边长的变化是否有关系?预测:生1:正方形的周长与边长的关系是周长是随着边长的不断增加而增加。
生2:正方形的面积与边长的关系是正方形的面积随着边长的不断增加而增加的。
生3:我从图中发现正方形的周长与边长的变化和面积与边长的变化规律是不一样的。
正方形的周长与边长的变化是一条直线,而面积与边长的变化规律是一条曲线。
)(4)为什么他们的统计图不一样,我们来分析研究他们的关系式吧。
你知道周长与边长的关系式是什么?面积与边长呢?(5)从关系式中你发现了什么?(预计:周长和边长这两个变量的比值是一个定量,而面积与边长的比值还是一个变量)活动二:结合第20页的第2、3题)1. 独立填表。
2. 通过观察,说说你发现的规律?二、比较分析,归纳意义1.观察比较这两张表格的变化情况有没有相同的地方?2.小组交流自己的发现。
3.全班交流小组的发现规律。
(6)你们不仅找到了周长与边长、面积与边长的变化规律,还能用一个算式发现了正方形的周长与边长的变化规律的图像与面积与边长的变化规律的图像不同的原因,你们真是一个善于观察发现的一个探索者。
你们还有兴趣研究吗?2.情景二(课件出示第20页的第2、3题)(1)学生独立填表。
《正比例》教学设计

《正比例》教学设计六年级数学《正比例》教案篇一教学目标1、使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。
2、培养学生概括能力和分析判断能力。
3、培养学生用发展变化的观点来分析问题的能力。
教学重难点重点:成正比例的量的特征及其断方法。
难点:理解两个变量之间的比例关系,发现思考两种相关联的量之间的变化规律。
教学过程一、四顾旧知,复习铺垫商店里有两种包装的袜子,一种是5双一包的,售价为25元,一种是8双一包的,售价为32元。
哪种袜子更便宜?学生独立完成后师提问:你们是怎样比较的?生:我先求出每种袜子的单价,再进行比较。
师:你是根据哪个数量关系式进行计算的?生:因为总价=单价×数量,所以单价=总价÷数量。
师:如果单价不变,商品的总价和数量的变化有什么规律呢?这节课,我们就来研究正比例。
(板书:正比例)二、引导探索,学习新知1、教学例1,学习正比例的意义。
(1)结合情境图,观察表中的数据,认识两种相关联的量。
师出示自学提示:表中有哪两种量?总价是怎样随着数量的变化而变化的?学生自学并在组内交流。
全班交流。
(2)认识相关联的量。
明确:像这样,一种量变化,另一种量也随着变化,这两种量叫做相关联的量。
2、计算表中的数据,理解正比例的意义。
(1)计算相应的总价与数量的比值,看看有什么规律。
学生计算后汇报:= = =…=3、5,每一组数据的比值一定。
(2)说一说,每一组数据的比值表示什么?(彩带的单价,也就是彩带的单价是一个固定的`数)(3)请学生用公式把彩带的总价、数量、单价之间的关系表示出来。
(4)明确成正比例的量及正比例关系的意义。
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
如果用字母y和x表示两种相关联的量,用字母k表示它们的比值(一定),正比例关系可以用下面的式子表示:3、列举并讨论成正比例的量。
新人教版小学数学六年级下册课件:4.1正比例(共26张ppt)

(4)树高与对应影长成正比例关系吗?你是依据什么作出判断的?
成正比例关系,物体的长度和它影子长度比值一定,即物体的长 度和它的影子的长度的成正比例。
7.下表中x和y两个量成正比例,请把表格填写完整。
1.8
0.375
两倍。
教学新知
做一做:一辆汽车行驶的时间和路程如下表。
(1)写出几组路程与相对应的时 间的比,并比较比值的大小。(2)说一说这个比值表示什么。(3)汽车行驶的路程与时间成正比例关系吗?为什么?
80:1=80 160:2=80 比值相等
比值表示速度
成正比例关系。因为路程和时间是相关联的量,并且它们的比值速度是一定的量。
课后习题
(3)造纸吨数与造纸时间成正比例吗?为什么?(4)根据图表判断, 5小时造纸多少吨?
成正比例,因为它们的图像是一条直线,一个量随着另一具量的变化而变化。
7.5吨
6.测量小组几次经过测量不同高度的竹竿直立在地面上,测得它的影子。 其结果记录如下:
竹竿的高度(米)
1
2
3
4
5
…
影子的长度(米)
教学新知
(1)成正比例,因为路程与耗油量的比值一定;(2)成正比例的量的图像是一条直线;(3)7升多一点。
讨论:1.判断两种相关联的量成不成正比例的关键是什么?2.请你说说你对正比例的图像的理解。
教学新知
例一:根据下表填空。
时间(分钟)
1
6
8
……
做口算题数(道)
25
150
200
……
(1)上表中相关联和两具量是( )和( )。(2)写出做题数与时间的比,并求出比值。(3)给出的比值起个名字,再写出上表的文字关系式。
六年级数学知识点:正比例与反比例

六年级数学知识点:正比例与反比例六年级数学知识点:正比例与正比例什么叫正比例?两种相关联的量,一种质变化,另一种量也随着化,假设这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。
如:y/x=k(k一定)或kx=y正比例的意义满足关系式y/x=k(k为常量)的两个变量,我们称这两个变量的关系成正比例。
显然,假定y与x成正比例,那么y/x=k(k为常量);反之亦然。
例如:内行程效果中,假定速度一定时,那么路程与时间成正比例;在工程效果中,假定任务效率一定时,那么任务总量与任务时间成正比例。
留意:k不能等于0.正比例的例子:正方形的周长与边长(比值4)。
圆的周长与直径(比值π)。
购置的总价与购置的数量(比值单价)。
路程的例子:1.速度一定,路程和时间成正比例。
2.时间一定,路程和速度成正比例。
长方形面积:面积一定,长和宽成正比例。
都是定一个,变一个。
例如aX=Y中,a不变,那么X与Y 成正比例。
正比例和正比例相反与联络相反之处1.事物关系中都有两个变量,一个常量。
2.在两个变量中,当一个变量发作变化时,那么另一个变量也随之发作变化。
3.相对应的两个变数的积或商都是一定的。
相互转化当正比例中的x值(自变量的值)也转化为它的倒数时,由正比例转化为正比例;当正比例中的x值(自变量的值)转化为它的倒数时,由正比例转化为正比例。
2021年小升初数学正比例的定义及考点什么叫正比例?两种相关联的量,一种质变化,另一种量也随着变化,这两种量中相对应的两个数的积一定。
这两种量叫做成正比例的量。
它们的关系叫做正比例关系。
用k=y*x(一定)x不等于0,k不等于0来表示。
复杂点来说,就是假设一样事物添加了,另一样事物增加,他增加了,另一样事物添加,这两个事物的关系就叫做正比例。
正比例的意义满足关系式xy=k(k为常量)的两个变量,我们称这两个变量的关系成正比例;显然,假定y与x成正比例,那么xy=k(k为常量);反之亦然。
最新新课标人教版小学数学六年级下册《正比例》教案

新课标人教版小学数学六年级下册《正比例》精品教案教学目标:1.利用正比例解决一些简单的生活问题,感受正比例关系在生活中的广泛应用。
2.能根据正比例的意义,判断两个相关联的量是不是成正比例。
3.结合丰富的事例,认识正比例。
教学重点:1、结合丰富的事例,认识正比例。
2、能根据正比例的意义,判断两个相关联的量是不是成正比例。
教学难点:能根据正比例的意义,判断两个相关联的量是不是成正比例。
教学用具:课件教学过程:一、创设情境,生成问题:师:前面我们学习了变化的量,这节课我们将继续探究两种变化的量之间的关系。
(板书课题)二、探索交流,解决问题:(一)、观察1:(课件出示:正方形的周长与边长、面积与边长)1、仔细观察,并把表补充完整。
2、思考:(1)、表中有哪两种量?(2)、周长(面积)是怎样随着边长的变化而变化的?(3)、它们的变化有什么规律?规律相同吗?3、师小结:正方形的周长和面积都随边长的增加而增加,在变化过程中,正方形的周长与边长的比值一定都是4。
正方形的面积与边长的比值是边长,是一个不确定的值。
观察2:课件出示:一种汽车行驶的速度为90千米/小时。
汽车行驶的时间和路程如下:师:请你仔细观察,认真思考:(1)请把下表填写完整。
(2)从表中你发现了什么规律?师小结:路程与时间的比值(速度)相同。
(二)、比较:(课件出示以上三个表)师:观察这三个表,它们有什么相同点和不同点?(小组讨论)如果给它们分类,你认为怎样分才合理?说明理由。
(根据学生的回答,师板书:(一种量随着另一种量的变化而变化,比值相同,成正比例)讨论:一些人买一种苹果,购买苹果的质量和应付的钱数如下。
质量/千克109876543应付的钱数/元302724211815129购买苹果的质量和应付的钱数成正比例吗?为什么?3、总结:(出示,齐读)一种量随着另一种量的变化而变化,并且相对应的两个量的比值(也就是商)相同。
我们就说,这两种量成正比例。
正比例六年级知识点

正比例六年级知识点正比例是数学中的一种基本关系,常常在实际问题中应用。
在六年级学习中,正比例是一个重要的知识点。
本文将对正比例的概念、性质以及相关计算方法进行详细介绍。
1、正比例的概念正比例是指两个变量之间的关系,当其中一个变量的增加(或减少)时,另一个变量也相应地按比例增加(或减少)。
正比例通常表示为y ∝ x,即y和x成正比。
其中,y是因变量,x是自变量,两者之间满足一定的比例关系。
2、正比例的性质(1)零比例:当x为0时,y也为0。
这表示在正比例关系中,自变量和因变量同时为0,即呈零比例。
(2)比例常数:在正比例关系中,自变量x每增加(或减少)一个单位,因变量y也相应增加(或减少)一个单位。
这个单位的增量与自变量的变化成正比,比例关系中的常数称为比例常数。
比例常数可表示为k,即y = kx。
(3)比例函数图像为一条直线:正比例关系可用一条直线表示。
当自变量x为0时,因变量y为0,因此直线经过原点;当自变量每增加一个单位时,因变量也相应增加一个单位,因此直线是从原点开始逐渐上升的。
3、正比例的计算方法在求解正比例问题时,常常需要根据已知条件计算未知量。
(1)已知任意两个变量的值,求比例常数k:根据正比例关系式y = kx,将已知的x和y代入其中,可求得比例常数k的值。
(2)已知一个变量的值和比例常数k,求另一个变量的值:根据正比例关系式y = kx,将已知的x或y代入其中,可解出另一个变量的值。
示例问题:已知y和x成正比,且当x为3时,y为6。
求当x为8时,y 的值。
解法:根据已知条件可得,y = kx。
将x为3时,y为6代入其中,得到6 = 3k,解得k = 2。
将k = 2代入比例关系式,可得y = 2x。
当x为8时,代入计算可得y = 2*8 = 16。
因此,当x为8时,y的值为16。
4、正比例的实际应用正比例在现实生活中有许多应用,下面以两个例子说明。
(1)速度和时间的关系:当一个物体在匀速运动时,速度与运动所用的时间成正比。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)都有两种相关联的量。 (2)相对应的两个数的比值(也就是商)
一定。
两种相关联的量,一种量变 化,另一种量也随着变化, 如果这两种量中相对应的两 个数的比的比值一定,这两 种量就叫做成正比例的量, 它们之间的关系叫做正比例 关系。
观察上表,你发现了哪些信息, 你能解决哪些问题?
时间和路程是两种相关联的量
路程
=速度(一定)
时间
看一看
观察这两张表,它们有什么共同点?
1. 石头.剪子.布游戏的情况
次数(次) 1 2 3 4 5 6 7 … 分数(分) 5 10 15 20 25 30 35 …
2.一列火车行驶的时间和所行路程如下表。
如果用x和y表示两种相关联的量, 用k表示它们的比值,那么上面 这种数量关系式可以怎样写呢?
可以用 y/x =k (一定) 来表 示。
ห้องสมุดไป่ตู้
考一考
王敏调查一种花布,米数和总价如 下表:
米数(米) 1 2 3 4 5 6 7 … 总价(元) 1.3 2.6 3.9 5.2 6.5 7.8 9.1 …
做一做
北师大版六年级下册
观察
石头、剪子、布游戏的情况:
次数(次) 1 分数(分) 5
23 10 15
45 20 25
6 7… 30 35 …
1.表中有哪两种量? 2.分数是怎样随着次数变化的? 3.相对应的分数和次数的比分别是
多少?比值是多少?
议一议
一列火车行驶的时间和所行路程如下表。
时间(时) 1 2 3 4 5 6 7 8 … 路程(千米) 50 100 150 200 250 300 350 400 …
判断下面每题中的两种量是不是成正比例, 并说明理由。
1.每包书中册数相同,包数和总册数。 2.全班的学生人数一定,每组的人数和组数。 3.房间地面面积一定,房间里的人数和每人
所占的面积。 4.和一定,加数和另一个加数。 5.一个人的年龄和他的体重。
解决生活中的数学问题
现在某体育用品店声称:如果买50只 篮球以下,每只42元;如果买50只篮球以上 (包括50只),每只40元. 请问总价同篮球的 数量是不是成正比例, 如果成 正比例, 那 是 在什么情况?