第三章气体热力学性质
合集下载
理想气体的热力性质

u 0 v T
dp 0
dv du pdv d h pv pdv dh vdp c p cV p dT dT dT dT dT
dh cp dT
dh c dT cp cp (T )
(t 2 t1 )
c
t2 t1
c dt q t1 t2 t1 t2 t1
T1, T2均为变量, 制表太繁复
q c dT c dT
0 0
T2
T 0
T
0
c dT
由此可制作出平均比热容表
T2 T1
2 cT 0 T2 c
T 0
c
T2 T1
c dT cdT q 0 0 T2 T1 T
9
三、比热容的求解方法(或热量的求解方法)
1)利用真实比热容积分 2)取平均比热直线查表 3)取定值比热容 4)利用气体热力性质表 对c作不同的技术处理可得精度不同的热量计算方法 : 真实比热容积分 利用平均比热表 定值比热容 利用气体热力性质表计算热量
10
1.利用真实比热容(true specific heat capacity)积分
cp
及
C p ,m , C CV ,m , C
' p
cV
' V
二、理想气体比定压热容,比定容热容和迈耶公式
1.比热容一般表达式
δq du δw du pdv c dT dT dT dT
u u T , v
( A)
u u du dT dv T v v T
u cV dT
T1 T2
第三章理想气体热力学能、焓、比热容和熵的计算详解

解 由附表1查得空气的比定压热容为1.004 kJ/(kg·K), 则增 压器消耗的功为
ws h1 h2 c p (T1 T2 )
=1.004(300-365.7=-65.96 kJ/kg
3-6 有一输气管断裂,管中压缩空气以高速喷出。设压缩空
气的压力为0.15 MPa,温度为30 ℃,当喷至压力等于0.1 MPa的环
3-3 有一个小气瓶,内装压力为20 MPa、温度为20 ℃的氮 气10 cm3。该气瓶放置在一个0.01 m3的绝热容器中,设容器内为 真空。试求当小瓶破裂而气体充满容器时气体的压力及温度,并
分析小瓶破裂时气体变化经历的过程。
解 由附表1查得氮气的气体常数Rg=0.296 8 kJ/(kg K),故
由附表1查得,氧的摩尔质量为32 g/mol, 于是
q1 2 h2 h1 1 T 2 Cp0, mdT
M T1
1 32
[
25.48
520
300
1.52
103
5220 3020
2
5.062 106
5203
3003 3
1.312 109
5204
3004 4
h520 h800 =24 523 J/mol, h1 020=32 089 J/mol。
于是
q300520 h520 h300 15 395-8 736=6 659 J/mol
q8001020 h1020 h800 32 089-24 523=7 566 J/mol
q8001020 q300520
1
RgT 1 p1
0.2871 310 1500
0.059
4
m3/kg
ws h1 h2 c p (T1 T2 )
=1.004(300-365.7=-65.96 kJ/kg
3-6 有一输气管断裂,管中压缩空气以高速喷出。设压缩空
气的压力为0.15 MPa,温度为30 ℃,当喷至压力等于0.1 MPa的环
3-3 有一个小气瓶,内装压力为20 MPa、温度为20 ℃的氮 气10 cm3。该气瓶放置在一个0.01 m3的绝热容器中,设容器内为 真空。试求当小瓶破裂而气体充满容器时气体的压力及温度,并
分析小瓶破裂时气体变化经历的过程。
解 由附表1查得氮气的气体常数Rg=0.296 8 kJ/(kg K),故
由附表1查得,氧的摩尔质量为32 g/mol, 于是
q1 2 h2 h1 1 T 2 Cp0, mdT
M T1
1 32
[
25.48
520
300
1.52
103
5220 3020
2
5.062 106
5203
3003 3
1.312 109
5204
3004 4
h520 h800 =24 523 J/mol, h1 020=32 089 J/mol。
于是
q300520 h520 h300 15 395-8 736=6 659 J/mol
q8001020 h1020 h800 32 089-24 523=7 566 J/mol
q8001020 q300520
1
RgT 1 p1
0.2871 310 1500
0.059
4
m3/kg
工程热力学03章:理想气体的性质

c q 或 c q
dT
dt
1mol物质的热容称为摩尔热容『Cm, J/(mol·K)』。
标态下1m3 物质的热容为体积热容『C ’, J/(m3N·K)』。
上述三种比热容之间的关系为:
Cm Mc 0.0224141C (3-9)
热力设备中,工质往往是在接近压力不变或体积不变的 条件下吸热或放热的,因此定压过程和定容过程的比热容最
<4> 平均比热容直线关系式
c
|t2
t1
b 2
t2
t1
(3-17)
§3-4 理想气体的热力学能、焓和熵
一、热力学能和焓 du cV dt cV dT
dh cpdt cpdT
二、状态参数熵
(见1-6节)
ds qrev
T
三、理想气体的熵变计算
ds
cpdT vdp T
cp
dT T
Rg
dp p
v T
C1
pc
p T
C2
vc
pv C3Tc
pv T
C
Rg
(3-1)
注:式(3-1)可反证之
显然,上式中的Rg只与气体种类有关,而与气体所
处状态无关,故称之为某种气体的气体常数。
二、摩尔质量和摩尔体积
摩尔(mol)是表示物质的量的基本单位。
摩尔质量( ) :1mol物质的质量,单位是g/mol或
s12
c T2
T1 p
dT T
Rg
ln
p2 p1
(3-18) (3-19) (3-20)
(3-21) (3-22)
基准状态的确定:
规定p0=101325Pa、T0=0K时,熵s00K 0。则任
气体的热力性质

cx f (T , p)
qx
T2 T1
cxdT
qx
T2 T1
cx
dT
气体的比热容:
比定容热容 (cv) 比定压热容 (cp)
cv
q T
v
qv dT
cp
q T
p
q p dT
对应的特定过程分别是定容过程(过程 进行时保持比体积不变)和定压过程 (过程进行时保持压力不变)
ds cv0 dT Rg dv
T
v
s
a0 Rg
ln T
a1T
a2 2
T
2
a3 3
T
3
Rg
ln
v
C1
f2 T,v
• 若假设cv0为常数
ds cv0 dT Rg dv
T
v
s cv0 lnT Rg ln v C1 f3 T ,v
ds dh vdp T
• 比定压热容是单位质量的物质,在压力不变的条 件下,作单位温度变化时相应的焓变化
2. 理想气体的比热容、热力学能和焓
• 理想气体的热力学能仅仅是温度的函数: u u T • 对于理想气体: h u pv u T RgT hT
理想气体的焓也仅仅是温度的函数
qv
T2 T1
cv
0dT
T2 T1
a0 Rg
a1T
a2T
2
a3T
3
dT
a0 Rg
机械热力学第03章 理想气体的性质

注意: 不是标况时,1标准立方米的气体量不变,但体积变化。
三种比热的关系:
C m = Mc = 0.022414C'
比热与过程有关。常用的有:
定压热容(比定压热容)
cp
及
Cmp , c
' p
定容热容(比定容热容)
cV
' CmV , cV
1. c v
c= δq du + δw du pdv = = + dT dT dT dT ( A)
cv =
1 γ R g , cp = Rg γ 1 γ 1
理想气体可逆绝热过程的绝热指数k=γ
二、用比热计算热量
原理:
对c作不同的技术处理可得精度不同的热量计算方法: 1.定值比热容 工程计算,不用气体分子运动理论导出的结果,误差太大。 工程上,建议参照附表3提供的 常用气体在各种温度下的比热容值
u = u (T , v )
u u du = dT + dv T v v T
定容过程 dv=0
u cV = T v
若为理想气体
u = u(T)
du u du = cV = ( du = cVdT) dT T v dT
cV 是温度的函数
2.
cp
定压过程,dp = 0
第三章 理想气体的性质
基本概念和定律 热力学内容 工质热力性质 过程和循环 状态方程 理想气体 实际气体 比热 内能、焓和 内能、 熵的计算
§3-1 理想气体的概念
理想气体: 理想气体:满足 pv=RgT 理想气体是实际气体在低压高温时的抽象。 理想气体是实际气体在低压高温时的抽象。 实际气体可以近似看作理想气体的条件: 实际气体可以近似看作理想气体的条件: 通常压力下, T>(2.5-3)Tcr时 一般可看作理想气体。 通常压力下,当T>(2.5-3)Tcr时,一般可看作理想气体。 微观上讲,理想气体分子间没有力的作用,故U=U(T) 微观上讲,理想气体分子间没有力的作用,
工程热力学 第三章 理想气体的性质

11
比热容的概念
比热容是单位物量的物质升高1K或1℃所需 的热量。 根据物质的数量和经历的过程不同,可分为:
(1)比热容(质量热容) : 1kg物质的热容,c ,J/(kg·K)。 c q q dT dt
12
比热容的概念
(2)摩尔热容
1 mol物质的热容,Cm,J/(kmol· K)。 Cm Mc
s isi
❖1kg混合气体的比熵变为
d s
c i p,i
dT T
R i g,i
dip pi
❖1mol混合气体的熵变为
dmpp
49
课后思考题
❖理想气体的热力学能和焓是温度的单值函 数,理想气体的熵也是温度的单值函数吗?
❖气体的比热容cp、cv究竟是过程量还是状态 量
pp1p2 pK pi i1
41
道尔顿分压力定律
pi p
ni n
xi
pi xi p
即分压力与总压力之比等于摩尔分数(即气 体组分的摩尔数与总摩尔数之比)
42
亚美格分体积定律
❖混合气体中第 i 种组元处于与混合气体压力 和温度时所单独占据的体积称为该组元的 分体积,用 Vi 表示。
❖亚美格分体积定律:理想混合气体的总体 积等于各组元的分体积之和(仅适用于理 想气体)
的关系式
17
cv和cp的关系式
比热容比: c p cV
得 cp 1 Rg
联立式 cp cV Rg
cV
1
1
Rg
18
比热容和温度的关系
❖理想气体的 u 和 h 是温度的单值函数,所 以理想气体的 cV 和 cp 也是温度的单值函 数。
c ft a b t d t2 e t3
比热容的概念
比热容是单位物量的物质升高1K或1℃所需 的热量。 根据物质的数量和经历的过程不同,可分为:
(1)比热容(质量热容) : 1kg物质的热容,c ,J/(kg·K)。 c q q dT dt
12
比热容的概念
(2)摩尔热容
1 mol物质的热容,Cm,J/(kmol· K)。 Cm Mc
s isi
❖1kg混合气体的比熵变为
d s
c i p,i
dT T
R i g,i
dip pi
❖1mol混合气体的熵变为
dmpp
49
课后思考题
❖理想气体的热力学能和焓是温度的单值函 数,理想气体的熵也是温度的单值函数吗?
❖气体的比热容cp、cv究竟是过程量还是状态 量
pp1p2 pK pi i1
41
道尔顿分压力定律
pi p
ni n
xi
pi xi p
即分压力与总压力之比等于摩尔分数(即气 体组分的摩尔数与总摩尔数之比)
42
亚美格分体积定律
❖混合气体中第 i 种组元处于与混合气体压力 和温度时所单独占据的体积称为该组元的 分体积,用 Vi 表示。
❖亚美格分体积定律:理想混合气体的总体 积等于各组元的分体积之和(仅适用于理 想气体)
的关系式
17
cv和cp的关系式
比热容比: c p cV
得 cp 1 Rg
联立式 cp cV Rg
cV
1
1
Rg
18
比热容和温度的关系
❖理想气体的 u 和 h 是温度的单值函数,所 以理想气体的 cV 和 cp 也是温度的单值函 数。
c ft a b t d t2 e t3
工程热力学理想气体性质

h dh , T p dT
理想气体的比热容
du cV dT
dh
c
,
p
dT
理想气体的cV 和cp仅仅是温度的函数
定压热容与定容热容的关系
迈耶公式
c p cV Rg
,C p,m CV ,m R
比热容比:比值cp/cV称为比热容比,或质量热 容比,用γ表示
Cm xiCm,i
C iCi
Cm M eqc 0.0224141 C
t2 cdt
t1
t2 t1
q
t2 cdt
00C
t1 00C
cdt
c
t2 00C
t2
c
t1 00C
t1
c
t2 t1
c
t t2
0oC 2
t2
c
t1 0oC
t1
t1
附表5列有几种常用气体的平均比定压热容,平均 比定容热容可由平均比定压热容按迈耶公式确定
平均比热容直线关系式
气体
混合气体的比定压热容和比定容热容之间也满足 迈耶公式
混合气体的折合摩尔质量和折合气体常数
混合气体的成分是指各组成的含量占总量的百分
数,有质量分数、摩尔分数和体积分数三种表示
方法
wi
mi m
,xi
ni n
,i
Vi V
假拟单一气体分子数和总质量恰与混合气体相同,
其摩尔质量和气体常数就是混合气体的折合摩尔
第三章 理想气体的性质
3-1 理想气体的概念
理想气体
理想气体是一种实际上不存在的假想气体,其分子 是弹性的、不具体积的质点,分子间相互没有作用 力
第三章__理想气体热力性质及过程

容积成分: i
Vi V
, i
1
摩尔成分: xi
ni n
, xi
1
换算关系:
i xi
i
xi M i xi M i
xi M i M eq
xi Rg,eq Rg ,i
,
xi
i Rg,i
Rg ,e q
分压力的确定:
由
piV=ni RT PVi=ni RT
ppi V Vi i ,
2
u 1 cVdT
如果取定值比热或平均比热,又可简化为
二、焓
ucVT
也可由热Ⅰ导得 d h(cVRg)dT cpdT
同理,有
2
h 1 cpdT
hcpT
结论:理想气体的u、h 均是温度的单值函数。
三、 熵变的计算
由可逆过程
ds du pd
T
ds du
cp
Rg 1
三、 真实比热容、平均比热容和定值比热容
1. 真实比热容(精确,但计算繁琐)
cpa0a 1 Ta2T2a3 T3
c V (a 0 R g) a 1 T a 2 T 2 a 3 T 3
qp
2 1
cpdt
2
q 1 cdt
2. 平均比热容(精确、简便)
cV
ln
T2 T1
Rg
ln
2 1
s
c
p
ln
T2 T1
Rg
ln
p2 p1
s
c
p
ln
2 1
cV
ln
p2 p1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、定压比热与定容比热的关系:
1、迈耶公式:
cp0
dh dT
d dT
u RgT
cv0 Rg
迈耶公式
R的物理意义:Rg为在定压过程中,温度升高1K时, 1kg工质对外输出的膨胀功。
即:
cp0 cv0 Rg
将上式两面同乘M:
C p0.m Cv0.m R 8.314510 J / mol.K
分析:
u f (T ) u12 u13 u14 u15
2、内能的计算:
对于定容加热过程:
qv cvdT qv du w du qv
对理想气体,定容比热以cv0表示:
w 0
du cv0dT
2
u12 u2 u1 cv0dT
其中:
t2
q cdt 面积12DE1
c t2 m t1
t2 t1
t1
cm
t2 t1
—为气体温度从t1升
高到t2的平均比热。
2
q
cdt
面积12DE1
c t2 t1
t2
t1
1
为了便于制表,再作以下推导:
q 面积12DE1
=面积A2D0A 面积AIE0A
其中,a0、a1、a2、a3 的值由实验确定,其值随气体的种类而异。
其值在附表2中可查。
cp0 cv0 Rg
四、热量的计算
t2
q cdt
t1
只要知道c =f ( t ) ,通过积分, 就可以求出气体从t1升高到t2所 需热量。但积分较麻烦,可以
用平均比热计算。下面介绍平
均比热的概念。
定压质量比热cp:表示在定压下,1kg质量的工质温度每
变化1K所放出或吸进的热量。
cp
q
dT
p
定容质量比热cv:表示在定容下,1kg质量的工质温度每
变化1K所放出或吸进的热量。
cv
q
dT
v
考虑:cp与cv谁大谁小? cp>cv
4、与工质所处的状态有关: 实验证明,实际气体的 比热 是温度和压力的函数, 即 c = f(t、p),但对于理想气体,比热仅仅是温度的单 值函数,即 c = f(t)。
2、根据开口系统能量方程:
q dh vdp cp0dT vdp
ds q dh vdp cp0dT vdp
T
T
T
ds
cp0
dT T
Rg
dh cp0dT
2
h12 h2 h1 cp0dT 1
利用经验公式,积分计算。
计算方法:
利用平均比热法计算。 利用热力性质表计算。
利用定值比热计算。
1、利用经验公式,积分计算。
t2
u12 u2 u1 cv0dT
t1
t2
a0' a1T a2T 2 a3T 3 dT
其中u1、u2、h1、h2可通过热力性质表查取。
4、定值比热法:
不考虑比热随温度的变化关系,将比热作为常数处理。
在实际计算中,当温度变化范围不大或对计算要求不 十分精确时,常采用此方法。
根据分子运动的学说,理想气体的内能是按气体分子
运动的自由度平均分配的 ,当不考虑分子内部的振动时,
理想气体的内能与温度是线性关系,从而得出理想气体 内能表达式:
对任意气体:
cv
q
dT
v
u T
V
对理想气体:
u f T
cv 0
du dT
说明:理想气体的定容比热为单位质量的物质在任何过
程中,温度升高1K时,比热力学能增加的数值。由于比
热力学能是状态参数,所以cv0也是仅仅和物质状态参 数有关的热力学参数。
实验结果表明:空气自由膨胀前后温度相同。
过程分析:
取A+B内空气为闭口系统: 根据热力学第一定律
Q dU W
过程中 Q 0
dU 0
W 0
逻辑推理,过程中,气体的压力、比容变化了,只
有温度不变,所以理想气体内能是温度的单值函数。
即:
u=f(T)
思考题: 图示,点2、3、4、5在同一 条等温线上, 比较△u12、△u13、△u14、 △u15 谁大谁小?
T
Pdv
根据c的定义式:
c
q
dT
u T
v
u v
T
P
dv dT
定容过程:
cv
q
dT
v
u T
V
上式可见;定容比热等于在定容条件下,温度升高 1K时,比热力学能增加的数值。
u
i 2
RgT
i —为分子运动自由度。
单原子分子:三个移动自由度,i = 3;
双原子分子:三个移动自由度,两个转动自由度 ,i = 5;
三原子分子:三个移动自由度,三个转动自由度 ,i = 6;
考虑温度影响,加以修正,i = 7。
前述:
cv0
du dT
d dT
i 2
RgT
i 2
曲线AB反映了 c与 t 的变化关系,温度越 高,比热越大。
二、比热与状态参数的关系:
由于热量与过程有关,而在热力设备中最常见的加热 方式是压力不变或容积不变,所以比热容分为定压比热 和定容比热。
质量比热
定容比热cv 定压比热cp
同理,还有摩尔定压和定容比热即容积定压和定容比热。
下面以质量比热为例进行分析。
1、定容比热cv0
根据热力学第一定律: q du pdv 1
对任意气体: u f T、v du u dT u dv 2
T v v T
将(2)代入(1):
q v
u v
vdp
根据c的定义式:
c
q
dT
h T
p
h p
T
v
dp dT
定压过程:
cp
q
dT
p
h T p
上式可见;定压比热等于在定压条件下,温度升高1K时, 比焓增加的数值。
1
只要知道定容比热cv0随温度的变化关系,便可利用 上述公式计算理想气体比热力学能的变化。
思考:是否一定是定容过程,才可用上述公式进行计算?
二、焓
1、焓是温度的单值数:
由焓的定式:
h u pv u RgT
即:
h f (T )
2、焓的计算:
对于定压加热过程: qp cpdT
3—3 理想气体的熵
根据熵的定义式、热力学第一定律及理想气体状态 方程,可导得熵的计算式。
一、熵的微分表达式:
1、根据闭口系统能量方程:
q du pdv cv0dT pdv
ds q du pdv cv0dT pdv
T
T
T
ds
cv0
dT T
Rg
dv v
1
C t2 0
t
2-c0t1
t1
c t1 0
和c0t
2
为气体从0℃升高到t1和从0℃升
高到t2的平均比热。
cm
t 0
可通过附表3-1查取。
cm
t2 t1
cm
t2 0
t2
cm
t2 t1
tt1
01
五、理想气体内能,焓变化量计算的方法
du cv0dT
2
u12 u2 u1 cv0dT 1
cv0
du dT
cp0
dh dT
由于理想气体的比热力学能和焓都是温度的单值函数, 所以,理想气体的比热也只是温度的单值函数。不同气 体比热与温度的关系可以通过实验确定。近似地表示为:
cp0 a0 a1T a2T 2 a3T 3
cv0 a0' a1T a2T 2 a3T 3
qp dh vdp dp 0
dh qp
对理想气体,定压比热以cp0表示:
dh cp0dT
2
h12 h2 h1 c p0dT
1
3—2 理想气体的比热
比热是物质的重要热力学性质之一,在热力学中, 主要是建立比热的概念,并应用比热的 实验数据作为 热量分析和计算的基础。
一、比热的概念(质量比热)
比热容是1kg的物质在温度每变化1K(1℃)时, 所吸收或放出的热量。
在一般情况下,加热可使气体温度升高,且温升与加 热量成正比,即:
q cT
c : 平均比热,即在温度间隔△T=T2-T1内使气体温 度升高1K时,所需热量。
瞬时比热(真实比热):
lim c
q q J / kg.K
Rg
cp0
cv
Rg
i2 2 Rg
定值摩尔热容:
Cvm
i 2
R
i2 Cpm 2 R
凡原子数目相同的气体,定值摩尔热容是相同的 ,
t2
u12 cv0dT cv0 T2 T1
t1
t2
h12 cp0dT c p0 T2 T1
t1
说明:
因为定值比热只考虑分子移动、转动动能,而没 有考虑分子内部原子的振动动能,因而没有解释比热 随温度的变化关系,一般,对于单原子气体,没有原 子振动的影响,比热在很大温度范围内变化较小,数 值与定值比热接近,而双原子或多原子气体,受原子 振动的影响,比热随温度变化,所以当温度较高时定 值比热与实验数据相差较大。