煤层瓦斯参数测定设计现场施工技术方案
煤层瓦斯含量直接测定方法

X2=/G。
2、2、4煤样粉碎时得解吸瓦斯量
采用排水集气法测定瓦斯量。当煤样罐得出气量小于
1 cm3/min
时,快速打
开煤样罐盖,取出煤样200g称重,精确到0、1g,装入粉碎机得容器内。将容器放
在粉碎机上,盖上粉碎机得盖子,并拧紧压盖。
将粉碎机得出气胶管与水瓶得进气口连接好。 记录初始水瓶读数。 打开粉碎机得开关与秒表,粉碎3~5分钟,每隔5分钟读数,记录排水得体积(cm3)与时刻(min)。直至解吸停止。得到煤样粉碎后解吸瓦斯量 。单位煤重得粉碎后解吸瓦斯量X3=/200。
1)煤样罐通过排气管5与解吸称量仪连接后,随即有从煤样泄出得瓦斯进入量管,用排水称重法将瓦斯收集在水量罐内。
2)每间隔一定时间记录电子称读数t、g(1 g = 1cm3)及测定时间T ,连续
3
观测60~120 min或解吸量小于2cm/min为止。开始观测前30min内,间隔1
min,以后每隔(2~5)min读数一次;同时记录气温、水温及大气压力。
称重记录后,装入粉碎机得容器内。
(2)将容器放在粉碎机上,并拧紧压盖,盖上粉碎机得盖子。将粉碎机得出气胶管与水瓶得进气口连接好。记录初始水瓶读数。
(3)打开粉碎机得开关与秒表,粉碎机开始振动粉碎煤样并脱气,粉碎3~5
分钟,每隔5分钟读数,记录排水得体积(cm3)与时刻(min)。直至解吸停止。
(3)打开煤样罐阀门与秒表,然后按秒表指示得分钟整数时刻,每隔1分钟读数,记录排水得体积(cm3)与时刻(min)。
(4)连续观察记录60~120分钟,当煤样罐得出气量小于1 cm3/min时,关闭煤样罐阀门。
2、5地面粉碎煤样解吸瓦斯操作程序
3
(1)当煤样罐得出气量小于1 cm/min时,快速打开煤样罐盖,取出200g煤样,
《井下直接法测定煤层瓦斯压力数值模拟研究及工程指导》

《井下直接法测定煤层瓦斯压力数值模拟研究及工程指导》篇一一、引言煤层瓦斯压力是煤与瓦斯共采资源的一项关键参数,直接影响到煤炭的安全开采和瓦斯资源的有效利用。
井下直接法作为测定煤层瓦斯压力的常用方法,其准确性和可靠性对于煤矿安全生产具有重要意义。
本文旨在通过数值模拟研究井下直接法测定煤层瓦斯压力的原理及方法,并探讨其在工程实践中的应用与指导。
二、井下直接法测定煤层瓦斯压力原理井下直接法测定煤层瓦斯压力,主要依据煤层中瓦斯气体的渗流特性,通过观测压力传感器数据,从而获得煤层瓦斯压力。
其基本原理包括气体状态方程、瓦斯在煤层中的流动规律等。
数值模拟能够更直观地反映这一过程,有助于我们深入理解井下直接法的原理和操作过程。
三、数值模拟研究(一)模型建立本文采用计算机模拟技术,建立了包含煤层、岩层及井筒等在内的三维地质模型。
该模型基于地质勘查资料和矿区实际条件,真实地反映了矿区的地质结构。
(二)数值模拟过程在模型中,我们设定了合理的瓦斯气体初始状态和流动规律,通过模拟瓦斯在煤层中的渗流过程,观测压力传感器的数据变化,从而得到煤层瓦斯压力的数值。
(三)结果分析模拟结果表明,井下直接法能够有效测定煤层瓦斯压力。
同时,我们分析了不同因素(如煤层厚度、瓦斯含量、井筒结构等)对测定结果的影响,为实际工程提供了理论依据。
四、工程实践应用与指导(一)工程实践应用井下直接法在实际工程中得到了广泛应用。
通过将模拟结果与实际观测数据对比,验证了该方法的有效性和准确性。
该方法具有操作简便、成本低廉等优点,能够为煤矿安全生产提供有力支持。
(二)工程指导根据数值模拟结果,我们可以为煤矿安全生产提供以下指导:1. 合理布置井筒和压力传感器,确保测量的准确性和可靠性;2. 结合地质勘查资料,分析煤层瓦斯压力的分布规律,为煤矿安全开采提供依据;3. 针对不同地质条件和煤层特性,制定相应的安全技术措施,确保煤矿生产安全;4. 通过实时监测煤层瓦斯压力的变化,预测瓦斯突出等灾害事故的发生,及时采取措施防止事故发生。
大黄山煤层瓦斯基本参数测定及其突出危险性鉴定实施方案

大黄山豫新煤业有限责任公司大黄山煤层瓦斯基本参数测定及其突出危险性鉴定实施方案大黄山豫新煤业有限责任公司通风部2010年3月目录一、前言二、矿井基本情况1、交通位置2、地形地貌3、井田构造4、煤系地层及煤层5、开拓、开采三、通风、瓦斯四、技术方案1、煤样瓦斯参数实验测定1)坚固性系数测定步骤:2)瓦斯放散初速度测定步骤(WFC-2型)3)煤层瓦斯含量4) 煤层瓦斯压力测定5)煤层测压孔布置:五、煤层突出危险性评价六、工作安排说明七、所需设备和材料准备一、前言近年来所属矿井随着开采深度和开采强度的增加,瓦斯灾害越来越严重,矿井安全生产面临着许多新问题。
对于瓦斯矿井而言,瓦斯事故是煤矿的重大灾害和安全隐患之一。
在瓦斯综合防治中为避免盲目性,作到经济、有效、可靠和有预见性,需要对矿井煤层的瓦斯基本情况有一个准确的把握。
通过对瓦斯参数测定,确定煤层的瓦斯压力、煤的相关物理性质等特性,为瓦斯综合治理方案的制定,以及瓦斯抽放设计和综合利用提供基础和依据。
为此,新疆大黄山豫新煤业有限责任公司,根据大黄山煤矿采掘部署情况,现场测定+690、+772、+733中大、+733八尺煤层的瓦斯压力;同时取煤层的煤样,实验室分别测定煤的坚固性系数f、瓦斯放散初速度ΔP。
根据上述煤层瓦斯基本参数的测定并计算的结果,依据有关标准对大黄山煤矿煤层的突出危险性进行鉴定(或评价)。
二、矿井基本情况1、交通位置新疆豫新煤业公司大黄山煤矿位于阜康市、距乌鲁木齐125km,行政区划属阜康市管辖。
矿区以北7km有乌--奇公路和吐--乌--大高等级公路通过,矿区的沥青公路与之相连,交通较为方便。
新疆国土资源厅新疆生产建设兵团农六师大黄山煤矿划定矿区范围。
整个范围由8个拐点圈定,勘探区东西长约3.5km面积8km2。
由农六师于1958年建井,设计年产量9万吨,1997年后,通过逐年的技术改造后,现实际生产能力为60万吨,主要开采中大槽、八尺槽、2、地形地貌矿区地处准噶尔盆地东南缘之博格达山北麓低山~丘陵地带,地表植被稀疏,地形以黄山河为界东西各具特点。
石港矿煤层瓦斯参数测定及瓦斯治理技术分析

煤 层瓦斯 压力 是指煤 孔 隙中所 含游离 瓦斯 的 气 体压 力 , 即气 体 作用 于 孔 隙壁 的压 力 。在 煤 与
瓦斯突 出发生 、 发展 过程 中, 瓦斯 压力起 着 重大 的
作 用 。为 了预 测 深部 煤 层 瓦 斯 涌 出量 、 定石 门 确
始 瓦斯 压 力 、 煤层 瓦 斯 含 量计 算其 透 气 性 系数 。
1 2 瓦斯含量 . 瓦斯 在煤 层 中 的赋 存 状态 一 般 有 两 种 , 吸 即
附状 态 和游离 状 态 ; 而煤 层 瓦 斯 含量 实 际上 是 指
吸附瓦斯 量和 游离 瓦斯量 之和 。其值 的大 小住往 是评 价煤 层瓦斯 储量 和是 否具有 抽采 价值 的重要 指标 。煤层 瓦斯 含量 在开采 推进 过程 中有 较大 的
变化 , 据 区内地 勘钻 孔 含 量 测 值 和开 采 层 原始 根 瓦斯 含量 梯度 推算 值 , 合 确 定石 港 矿 首 采 工作 综
面 1 层 首 采 面 瓦 斯 含 量 值 为 : 2 6 m /. 5煤 2 . 8 tr
(5 2 m /) 1 . 9 t 。
产 , 现高产 、 实 高效 、 高安 全 的 目标 , 具有重 大 的经
石港矿位 于山西省左权 县城北 , 行政 划属 左
定, 石港 矿 1 层 的瓦斯 压力 为 0 6 M a 5煤 . 6 P 。接 近 瓦斯 突 出压力 界线 0 7 MP , 求在采 煤 的 同时 , .4 a要 必 须要 对瓦斯 采 取 一定 的治 理措 施 , 样 才 能保 这
瓦斯 涌 出规 律 , 取 了下 同 的 瓦 斯 治理 方 法 , 采 以达 到 治理 瓦 斯 、 障 生 产 安 全 的 目的 。 保
16#煤层抽采半径测定实施方案

11采区16号煤层抽采半径测定实施方案2020年10月26日方案审核意见11采区16号煤层抽采半径测定实施方案为了准确测定出11采区16#煤层瓦斯抽采半径,为抽采钻孔设计提供科学依据,结合我矿实际情况,特制定本方案。
一、成立瓦斯抽采半径测定工作领导小组组长:*****副组长:*****组员:****领导小组办公室设在通防管理部,**任办公室主任,负责协调钻孔施工、封孔、测压及日常资料的收集、整理、分析、总结等相关工作,并组织编制抽采半径测定报告。
二、抽采半径测试区域16号煤层情况16号煤层为黑灰色,块状,金属光泽,半亮型无烟煤,煤层走向为255°〜263°,倾向为345°〜353°,倾角22°〜38°,平均30°,煤层破坏类型为II〜III,平均厚度1.8m,最大埋深130m。
直接顶为黑灰色含植物碳化碎片的砂质泥岩,直接底通常为黑色泥岩或灰色黏土岩。
16号煤层上距15号煤层法线距离13m,下距17号煤层法线距离6m。
2013年4月,重庆煤科院对肥田煤矿11采区M16瓦斯基本参数进行测定,并出具《***11采区M16煤层瓦斯基本参数测定及煤层突出危险性鉴定报告》,鉴定结论为M16煤层在井田范围内具有煤与瓦斯突出危险性,实测16号煤层的瓦斯参数如下:11采区16号煤层瓦斯吸附常数及工业分析指标等实验室参数测定结果表11采区16号煤层瓦斯参数测定成果表三、测定方法目前应用的钻孔瓦斯有效抽采半径的测试方法主要有钻孔测试法和计算机模拟法及二者相结合的方法。
在有效性指标的确定上,钻孔测试法国内外采用的指标主要有以下三种:瓦斯压力指标、瓦斯含量指标、相对瓦斯压力指标。
计算机模拟法主要应用的指标有含量指标和压力指标。
本次选择钻孔测定法中相对瓦斯压力指标及瓦斯含量现场测定11采区16号煤层抽采瓦斯半径。
(1)相对压力指标法的理论依据压力指标法的理论依据为:预抽煤层瓦斯后,必须对预抽瓦斯防治突出效果进行检验,其检验的指标之一是煤层瓦斯预抽率大于30%(若是突出矿井要满足瓦斯含量小于8m3/t),即抽采后的瓦斯含量小于抽采前的30%以上。
范家沟煤矿煤层瓦斯参数测定施工钻孔安全技术措施

兴文县范家沟煤矿+430m水平煤层瓦斯参数测定施工钻孔及封孔安全技术措施二〇一八年十二月九日审批意见范家沟煤矿+430m水平煤层瓦斯参数测定施工钻孔及封孔安全技术措施一、矿井概况范家沟煤矿隶属于兴文县周家镇,位于宜宾市兴文县城260°方向,直距约30km的周家镇龙洞村三组,矿区中心点地理坐标为:东经104°54′12″,北纬28°14′56″。
矿山有1.0km简易公路与古宋至珙县公路相接,东距兴文县城古宋镇的公路里程为80km,西距珙县火车站31km。
根据2008年12月22日四川省煤炭资源整合办公室“川煤整合函[2008]12号”文,范家沟煤矿矿井走向长0.68km ,倾斜宽1.54km,面积1.083km2,开采B4、B3煤层,开采标高+640~+350m。
矿井于2018年5月17日由宜宾市兴文县安全生产监督管理局批准,开展对井下隐患的整改及六大系统维护工作。
四川矿山安全技术培训中心于2010年10月,对矿井+540m以上开采的B4、B3煤层瓦斯参数进行了测定。
目前我矿新水平新采区已经开拓到+430m水平,原+540m水平测定的煤层瓦斯参数已经不能指导新水平新采区瓦斯治理工作。
按照《煤矿安全规程》、《防治煤与瓦斯突出规定》等相关法律法规要求,必须对+430m水平的煤层瓦斯参数进行测定。
为此,特编制本措施。
本措施经会审后对施工作业人员进行贯彻学习,严格按照措施进行施工。
二、工程概况:1、经四川煤勘院工程技术人员与范家沟煤矿技术人员共同商议,在+430m水平石门回风联络巷至+430m底板抽放巷之间均匀布置4个测压(取样)孔。
分别是B3煤层两个,B4煤层两个。
2、工程量:按照设计,B3煤层测压(取样)孔两个,在+430m水平石门运输巷巷道右侧位置开孔,施工至B3煤层顶板0.5m处终孔,预计B3煤层测压(取样)孔两个施工钻孔共计48m左右;B4煤层测压(取样)孔两个,在+430m水平石门运输巷巷道右侧位置开孔,施工至B4煤层顶板0.5m处终孔,预计B4煤层测压(取样)孔两个施工钻孔共计58m左右。
煤层瓦斯含量井下直接测定方法
加强对操作人员的培训和指导,提高操作水平和责任心。
05 实际应用与案例分析
煤层瓦斯含量井下直接测定方法的应用现状
井下直接测定方法在煤矿生产中得到了广泛应用,为煤层瓦斯含量的准确 评估提供了可靠依据。
随着技术的不断发展,井下直接测定方法在精度、稳定性和可靠性方面得 到了显著提升,为煤矿安全生产提供了有力保障。
间接法
间接法操作简便,但测定结果受多种因素影响, 准确性相对较低。
连续测定法
连续测定法能够实时监测煤层瓦斯含量,但设备 成本较高,且测定精度有待提高。
测定方法的改进与优化建议
加强设备研发
提高设备自动化程度,简化操作流程,降低人为误差。
完善测定标准
制定更加完善的测定标准和方法,提高测定结果的准确性和可靠 性。
VS
压差计法适用于各种类型的煤层,优 点是测量结果准确可靠,缺点是需要 钻孔和安装设备,测量周期较长。
气相色谱法
气相色谱法是一种通过分析瓦斯成分来确定瓦斯含量的方法。该方法需要使用气相色谱仪等精密仪器,对操作人员的技能要 求较高。
气相色谱法适用于各种类型的煤层,优点是测量结果准确可靠,缺点是需要使用精密仪器和经验丰富的操作人员,测量成本 较高。
02 直接测定方法
采集器法
采集器法是通过采集煤样,然后在地 面实验室测量瓦斯含量的方法。这种 方法需要使用专用的采集器和密封容 器,确保煤样在运输和储存过程中不 发生瓦斯泄漏。
采集器法适用于各种类型的煤层,特 别是不易解吸的煤层。该方法的优点 是测量结果准确可靠,缺点是测量周 期较长,需要大量的人力和物力。
04 测定方法的选择与优化
测定方法的适用条件
煤层条件
适用于各种煤层条件,包括薄煤层、厚煤层、松软煤 层和硬煤层等。
煤层瓦斯基础参数测定
煤层瓦斯参数测定技术方法总结目录第一章层瓦斯压力测定 0(一)固体材料封孔测定瓦斯压力 0(二)胶圈粘液封孔测定瓦斯压力 (1)第二章煤层瓦斯含量测定 (3)(一)采取煤样及瓦斯解吸速度测定 (3)(二)计算采样过程中的损失瓦斯量 (4)(三)残余瓦斯含量测定 (6)第三章瓦斯含量系数测定 (7)(一)测定原理 (7)(二)测定方法 (8)第四章煤层透气性系数的测定与计算 (9)(一)计算公式 (9)(二)测定与计算步骤 (10)(三)测定中的注意事项 (11)第五章煤的坚固性系数测定 (13)(一)测定原理 (13)(二)测定方法与步骤 (14)第六章煤的瓦斯放散指数测定 (15)(一)测定仪器 (15)(二)测定步骤 (15)第七章瓦斯吸附常数测定 (16)(一)瓦斯含量欲瓦斯吸附量、瓦斯压力及温度之间的关系 (16)(二)采用容量法测定等温吸附曲线计算a 、 b值的原理 (17)(三)、测定过程 (17)第八章预测瓦斯突出危险性参数测定 (18)(一)单项参数测定及计算 (18)(二)区域预测 (22)(三)工作面预测 (23)(四)防突措施效果检验 (25)第九章瓦斯储量、可抽量及抽放率计算 (26)(一)瓦斯储量计算 (26)(二)可抽瓦斯量概算 (26)(三)抽放率 (27)第十章抽放管路中的瓦斯流量测定与计算 (28)(一)参数测定 (28)(二)流量计算 (29)第十一章钻孔排放瓦斯有效半径测定 (36)(一)根据瓦斯压力确定排放瓦斯有效半径的方法 (36)(二)根据瓦斯流量确定排放瓦斯有效半径的方法 (36)第十二章钻孔瓦斯流量衰减系数的测定于计算 (37)第十三章瓦斯涌出量及其计算 (38)(一)掘进巷道的瓦斯涌出 (38)(二)、回采工作面瓦斯涌出量计算 (40)第一章煤层瓦斯压力测定(一) 固体材料封孔测定瓦斯压力首先在距测压煤层一定距离(≥5m)的岩巷打孔,孔径一般取φ68—φ108mm。
瓦斯基础参数测定
1.煤层基础参数现场测定实验方案1.1煤层瓦斯压力1.1.1测试原理直接测定法是用钻机由岩层巷道或煤层巷道向预定测量瓦斯地点打一钻孔,然后在钻孔中放置测压装置、再将钻孔严密封闭堵塞并将压力表和测压装置相连来测出瓦斯压力。
如果在测定中能保证钻孔封闭严密不漏气,则压力表显示的数值即为测点的实际瓦斯压力,直接测定法的关键是封闭钻孔的质量。
根据封孔原理的不同,一般将封孔方法分为被动式与主动式。
本次采用主动式封孔技术。
主动式封孔测压其基本原理是:固体封液体、液体封气体,即采用液体作为封孔介质,以解决固体物不能严密封闭钻孔周边裂隙孔道的困难,并保持封孔液体的压力在测定过程中始终大于瓦斯压力,粘液在压力作用下渗入钻孔周边裂隙,杜绝瓦斯的泄漏;为了维持封孔液体的压力和防止液体向钻孔内渗透,在封孔液体段的两端用固体封闭钻孔,形成用固体封液体、用液体封气体的封孔系统。
实践表明:在石灰岩、砂岩和页岩岩层的钻孔中,均能严密封闭钻孔,准确测得煤层的瓦斯压力。
经过几十年的发展,目前主动式瓦斯测压封孔装置主要有:普通胶圈-压力粘液封孔测压仪、可变形胶圈-压力粘液封孔测压仪、胶囊-压力粘液封孔测压仪、胶圈(囊)-三相泡沫密封液测压仪等。
MWYZ系列化主动式煤层瓦斯压力测定仪主要由钢丝胶囊、护管和连接罐、尼龙压力管(瓦斯管、胶囊液管和压力粘液管)、储能罐和压力粘液罐、手动试压泵、粘液封孔材料以及测压仪表等配件组成。
1.1.2测定仪器测试仪器选用华北科技学院研发的MWYZ-IV型和MWYZ-III型主动式煤层瓦斯压力测定仪各一套。
具体技术参数如表1.1所示。
表1.1 测压仪参数表1.1.3测点布置为了最大限度反应原始状态下的瓦斯压力,选择测压地点时可参考以下原则:1)目标煤层周围无采空区,尽量选取在最近几年新开拓的岩石巷道;2)瓦斯压力测量地点一般选择在岩石比较完整,周边地质结构单一的岩巷中进行;测压钻孔及其见煤点应避开地质构造裂隙带、巷道的卸压圈和采动影响范围,测压煤层周围岩石致密完整、无破碎带;3)煤层50m范围内无断层和大的裂隙;岩层无淋水,岩柱(垂高)至少大于10m;4)同一地点测压应打两个测压钻孔,钻孔口距离应在其相互影响范围外,其见煤点的距离除石门测压外应不小于20 m。
测定瓦斯压力测定技术方案
巩义铁生沟煤业有限责任公司15采区二1煤层瓦斯基本参数测定技术方案编制单位:河南理工大学编制人:杨韶昆2013年09月28日技术方案会审表煤层瓦斯基本参数是煤层瓦斯储量计算、瓦斯涌出量预测、煤与瓦斯突出危险性预测、瓦斯抽放评价和煤矿瓦斯灾害综合治理的基础性参数。
巩义铁生沟煤业有限公司是一年产量120万吨的生产矿井。
根据河南省煤炭工业局“豫煤安[2006]251号”文件(2006年4月)批复,铁生沟煤矿瓦斯等级鉴定结果为高瓦斯矿井。
矿井15采区为新开接替采区,目前,15采区三条岩石下山巷道已掘进完成,为了采区安全生产,早期掌握该区瓦斯赋存情况,在揭煤前必须进行煤层瓦斯含量、压力及煤层透气性系数等基本参数的测定工作。
以期指导矿井安全生产工作,对采区揭煤和瓦斯抽放设计提供依据。
为提高瓦斯基本参数准确和精度,确保各项测定工作的顺利进行,特编制本方案。
一、取样钻孔兼测压孔布置按照煤炭行业标准MT/T638-1996中有关测压钻孔的要求,在具体选择测压孔位置时,应避开地质构造裂隙带、采动等影响范围,测压孔见煤点与地质构造裂隙带、采动影响范围至少要大于40m;同一地点设2个测压孔时,两个测压孔的见煤点的距离应大于20m。
根据以上要求并结合现有的巷道条件,本次测定取样工作安排在15采区上、下车场内,同一测点分别设置2个钻孔,下山联络巷内设置2个钻孔。
本次测定工作计划共布置6个取样钻孔,其中上下车场和中部联络巷内各设置1个测压孔。
开孔位置布置在距巷道底板高度1.6m处,开孔仰角在35°~45°,与巷道走向夹角为90°。
每个测点两测点相距20米以远。
由于采区内煤层厚度变化较大,为保证取样成功,决定在每个钻孔中根据不同深度分别取2个煤样。
取样位置在见煤1.5m和进入煤层3m处。
钻孔开孔平面位置图如图1、钻孔剖面图见图2所示。
钻孔布置参数见表1。
表1 钻孔布置参数表图2 钻孔布置剖面图以上6个钻孔见煤后,利用取芯钻,根据要求采取煤样,然后将煤样立即装入特制的煤样罐中进行密封,并利用瓦斯解吸仪在现场解吸测定瓦斯解吸量;然后密闭后送至实验室进行残余瓦斯含量的测定等瓦斯基本参数和工业分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新河矿业有限公司3煤层瓦斯参数测定现场施工技术方案煤层瓦斯基础参数测定项目一览表项目名称依据标准备注煤层瓦斯基础参数测定瓦斯压力直接测定AQ/T1047-2007煤矿井下煤层瓦斯压力的直接测定方法工业分析测试GBT 212-2008煤的工业分析方法真相对密度测试GBT 217-2008煤中真相密度测定方法视相对密度测试GB 6949-2010-T 煤的视相对密度测定方法孔隙率测试GBT 23561.4-2009煤和岩石物理力学性质测定方法坚固性系数测试GB_T 23561.12-2010煤的坚固性系数测定瓦斯放散初速度△P测试AQ 1080-2009瓦斯放散初速度测定方法瓦斯吸附常数测试GBT 19560-2008 煤的高压等温吸附试验方法煤的破坏类型AQ1024-2006煤与瓦斯突出性鉴定规范煤层瓦斯含量井下自然解吸瓦斯量GB/T 23250-2009煤层瓦斯含量井下直接测定方法AQ1066-2008煤层瓦斯含量井下直接测定方法残存瓦斯含量测定一、概况新河矿业自2000年9月开工建设,2003年建成开始联合试运转,2005年7月正式生产。
原设计生产能力0.3Mt/a,2008年后,在对井底车场、主要水平大巷及主提升、通风等矿井主要生产系统进行了扩容与改造的同时,对新河、唐口矿井井田边界进行了优化调整,经山东省国土资源厅批准,将相邻的唐口矿井630采区划归新河矿井开采,目前-400m生产水平处于收尾阶段,-980m水平正在进行开拓准备。
唐口矿井630采区划归新河矿井后,结合现场开采情况,将采区分为530采区、630采区和730采区,为确定新增加采区煤层的瓦斯参数,在530胶带集中巷及轨道集中巷施工瓦斯钻孔对煤层的瓦斯参数进行测定。
二、地质及水文地质条件(一)地层产状工作面穿越永东闸向斜两翼,西部处在永东闸西向斜的西翼,受两向斜构造影响,地层产状变化较大,走向SE~NE~SE,倾向SW~SE~SW,倾角5~29°,平均10°左右。
(二)褶曲根据矿井延深区三维地震勘探资料,延深区发育有两个褶曲,分别为永东闸向斜、永东闸西向斜,受其影响地层产状变化较大。
其特征如下:1、永东闸西向斜:位于延深区中部,永东闸以西。
轴向NW,延展长度约1.23km,幅度约40m。
该向斜两翼不对称,西翼倾角较陡可达30°,东翼相对较缓为11°。
2、永东闸向斜:位于延深区东部,永东闸北侧,T21-1孔以西。
轴向不明显,北部为NNE、南部转为NW,延展长度约0.58km,幅度约30m,西翼倾角较缓,在5°左右。
(三)断层根据延深区三维地震勘探资料分析,工作面掘进过程中将揭露断层1条,落差11m,对巷道掘进影响较大。
该掘进工作面附近各断层特征见下表:表3: 断层构造情况表断层名称性质产状落差(m)影响程度走向(°)倾向(°)倾角(°)F1 正断层310 220 50 11 小(4)主要含水层530胶带集中巷掘进工作面沿3煤底板掘进,水文地质条件简单,主要受3煤顶底板砂岩及三灰含水层影响。
1、3煤顶底板砂岩含水层根据水文补勘DM-203孔资料,3煤顶底板砂岩含水层厚44.76m,主要由浅灰色、灰色和深灰色粗、中、细砂岩组成,发育少量高角度裂隙,岩石较破碎。
钻孔抽水试验资料表明,单位涌水量为0.004613L/s·m ,富水性弱。
另外,从-980m水平二节胶带暗斜井掘进揭露3煤顶板砂岩情况看,掘进过程中仅有少量顶板淋水,水量小。
2、三灰含水层该区域三灰厚4.82m,裂隙发育,充填方解石。
水文补勘DM-201孔三灰含水层抽水试验资料表明,单位涌水量0.000551 L/s·m,富水性弱。
三灰上距3煤层48.5m,对掘进无直接影响,但由于本区煤层埋藏深,三灰水压较高,构造复杂区域断层带、裂隙发育地段可能成为导通含水层通道,因此三灰为开采3煤层底板进水型直接充水含水层。
三、工程设计(一)布置原则钻孔位置充分考虑施工现场对瓦斯钻孔的影响,将施工瓦斯钻孔前后1个卸压孔均用水泥进行封堵严密,尽量减小卸压钻孔对其的影响,且不影响井下正常生产。
(二)钻孔结构采用SGZ-3B型煤矿用坑道钻机,钻具组合:φ50×5.5mm地质钻杆,φ75mm钻头。
采用2ZBQ-10/15型注浆泵,浆液搅拌采用自制0.15m3水泥浆搅拌桶。
钻孔采用一级结构,采用φ75mm钻头开孔钻进50m,其中钻进30米后取芯2米。
施工完毕后孔内预留4分测压管(最里段安设一根花管),外段30米用水泥浆注浆封孔。
(三)钻孔位置及参数为准确测定煤层瓦斯压力,使测出的瓦斯压力值能够代表煤层的原始瓦斯压力,测定煤层瓦斯压力地点要避开断层、褶皱、裂隙带等地质构造带,使钻孔周围煤层处于原始状态。
通过察看矿井相关资料及井下实地考察结合煤层揭露情况,共布置3组测点(6个测压钻孔)测定3煤层的原始瓦斯压力测定。
瓦斯钻孔位置示意图见图1。
1#测点布置在530胶带集中巷L8右侧50m处与75~80m处,与巷道呈80°夹角,倾角8°开孔,终孔位置在3煤层顶板;2-1#钻孔布置在530轨道集中巷向里距离3-1#钻孔50m左右,2-2#钻孔布置在2-1#钻孔右侧距其35m左右处,垂直与巷道左帮开孔,终孔位置在3煤层顶板;3#测点布置在530胶带集中巷运输联络巷与530胶带集中巷交汇处及530胶带集中巷运输联络巷与530轨道集中巷交汇处附近(3-1#钻孔在530胶带集中巷运输联络巷与530胶带集中巷交汇处向内40m处、3-2#钻孔在530胶带集中巷运输联络巷与530轨道集中巷交汇处),两钻孔均垂直所在巷道侧帮,3-1#钻孔倾角8°开孔,3-2#钻孔倾角7°开孔,终孔位置在3煤层顶板(预计两钻孔孔深均为60.0m左右)。
0ⅨⅪⅩⅪⅫ6301工作面5302工作面5303工作面530轨道集中巷530胶带集中巷53-01 H =11m ∠52° 图1 瓦斯压力钻孔布置图(四)钻孔施工要求:①测压钻孔应选择在无断层、裂隙等地质构造处,应避开含水层、溶洞,并保证钻孔与其距离不小于50m,钻孔周围煤层应处于原始状态,应避开采动、瓦斯抽采及其他人为卸压影响范围,并保证钻孔与其距离不小于50m;②同一地点应设置两个测压钻孔,其终孔见煤点或测压气室应在相互影响范围外,其距离除石门测压外应不小于20m;③选择合适的测压地点后,以8°的仰角从向煤层打钻,钻孔采用φ75mm钻头,钻孔深度保证穿过整个煤层,终孔点为煤层顶板。
钻孔施工应保证钻孔平直、孔形完整,如钻孔报废应离开报废钻孔至少20m重新进行施工;钻孔施工过程中应准确记录钻孔方位、倾角、长度、钻孔在煤层中长度、钻孔开钻时间、见煤顶板距离及时间及钻孔完成时间。
钻孔施工参数示意图见图2。
(五)封孔由于煤层瓦斯是粘性很小的气体,其粘度系数μ=1.08×10-6Pa·s,在高压作用下,可以说是无孔不入。
钻孔孔壁内存在细微孔道,在高压瓦斯的作用下很可能连通起来,形成瓦斯泄漏的立体交叉通道。
在具有煤与瓦斯突出危险的煤层中,一般地应力高,煤层透气系数小;因此测压时微量的漏气,就能导致所测压力值的很大降低。
在松软的煤层中测压时,钻孔周围往往具有卸压圈和裂隙网,发生漏气是显而易见的。
页岩、砂质页岩中也往往裂隙发育,所以在页岩、砂质页岩和煤层中测定瓦斯压力要取得可靠的结果较为困难。
而煤系地层大多为页岩和砂质页岩,这就是测压结果误差较大的主要原因。
实践表明,封堵孔壁裂隙用固体物显然是不行的,只能用粘性液体(或流体),为了抵抗高压瓦斯的排斥,粘性液体压力应始终高于瓦斯压力,这是准确测压的关键。
本次压力测定决定采用水泥浆封堵测压钻孔。
测压管均选用Φ16×1.5mm无缝钢管(普通4分管),为便于安装,取每根钢管长1.5m或2.0m,根据现场实际情况用接箍联接成需要的长度;测压管根据需要一端位于测压室内(需加工成花管),其露出钻孔一端接压力表。
比例:1:10图2 钻孔施工参数示意图钻孔打好以后,应在24h内进行封孔。
封孔时将连接好的瓦斯测压管送入测压钻孔内,并送入钻孔内见煤点测压气室。
在钻孔内测压管距孔口满足封孔深度要求处安设一个挡盘(缠绕棉纱)用于阻止封孔材料堵塞测压气室;根据预留封孔体积计算出所需封孔材料,利用棉纱塞住孔口,并快速注入水泥;封孔完成后,将引出孔外的测压管接上瓦斯压力表。
封孔完成24h后关闭压力表阀门即开始进行瓦斯压力测定,每3d 记录一次瓦斯压力,连续观察20d后如瓦斯压力连续3d内变化小于0.015MPa,则可认为这个稳定的压力就是煤层原始瓦斯压力;测压结束后,可以回收压力表。
四、煤层瓦斯含量直接测定瓦斯含量直接测定分为现场煤芯取样解析、实验室解析两部分。
根据现场瓦斯自然解吸量与实验室数据处理后得到的瓦斯解吸量,进行计算得出瓦斯含量。
1、采样前准备煤样罐在使用前必须进行气密性检测;气密性检测可通过向煤样罐内注空气至表压1.5MPa以上,关闭后搁置12h,压力不降方可使用。
禁止在丝扣及胶垫上涂润滑油。
解吸仪在使用之前,将量管内灌满水,关闭底塞并倒置过来,放置10min,量管内水面不动为合格。
2、煤芯采集采样方式:在石门或岩石巷道可打穿层钻孔采取煤样,在新暴露煤巷中应首选煤芯采取器(简称煤芯管)或其他定点取样装置定点采集煤样。
采样深度应按以下两种情况确定:测定煤层原始瓦斯含量时,采样深度应超过钻孔施工地点巷道的影响范围,并满足以下要求:①在采掘工作面取样时,采样深度应根据采掘工作面的暴露时间来确定,但不应小于12m;②在石门或岩石巷道采样时,距煤层的垂直距离应视岩性而定,但不得小于5m。
采样时间:采样时间是指用于瓦斯含量测定的煤样从暴露到被装入煤样罐密封所用的实际时间不应超过5min。
3、井下自然解吸瓦斯量测定井下自然解吸瓦斯量采用解吸仪测定。
自然解析装置见图3。
煤样罐通过排气管5与解吸仪连接后,打开弹簧夹3,随即有从煤样泄出的瓦斯进入量管,用排水集气法将瓦斯收集在量管内。
如果量管体积不足以容纳60 min 内从煤样泄出的全部瓦斯,可以中途用弹簧夹3夹住排气管与解吸仪断开,重新迅速给解吸仪补足清水,然后打开弹簧夹3连通解吸仪继续观测。
如果在解吸仪观测中没有瓦斯泄出,应当检查排气管及煤样罐上部排气孔是否堵塞。
如果没有堵塞,则是瓦斯含量过小所至,此时,即可终止观测,送实验室测定。
图3 解吸装置示意图煤样罐密封运到井上后,要进行试漏,将煤样罐沉入清水中,仔细观察5min,检查有无气泡冒出。
如果发现有气泡渗出,则要更换煤样罐或胶垫重新取样。
如不漏气,可以送实验室继续进行实验。