系统辨识理论及matlab仿真
5.1 and 5.2 传递函数的时域辨识 [系统辨识理论及Matlab仿真]
![5.1 and 5.2 传递函数的时域辨识 [系统辨识理论及Matlab仿真]](https://img.taocdn.com/s3/m/f8cc57dd83d049649a665830.png)
yt y
同理,可得与被控对象相对应的阶跃相应无量纲形式为
y* (t) 1 T1 et/T1 T2 et/T2
T1 T2
T2 T1
图5 根据阶跃响应曲线上的两个点的数据确定 T1 和 T2
确根定据参上数式T可1和利T用2 ,响一应般曲取线上y*的(t) 两为个0.4数和据0点.8,[t1再y从*(t1曲)] 和线[上t2 定y*(
第5章 传递函数的时域和频域辨识
图1 系统辨识的时域与频域方法
5.1 传递函数辨识的时域法
传递函数辨识的时域方法包括阶跃响应法、脉 冲响应法和矩形脉冲响应法等,其中以阶跃响应 法最为常用。阶跃响应法利用阶跃响应曲线对系 统传递函数进行辨识,阶跃响应曲线即为输入量 作为阶跃变化时,系统输出的变化曲线。
t 2 ln ln
1 y* t1 1 y* t1
t1 ln 1 y* t 2 ln 1 y* t 2
如果选择 y*(t1) 0.39 和 y*(t2) 0.63 这两个固定值,则
2t1 t2
t
)]
2
t
1
出 t 2 和 ,然后可得:
T1 e t1 / T1 T2 et1 / T2 0.4
T1 T2
T1 T2
T1 e t2 / T1 T2 et2 / T2 0.8
T1 T2
T1 T2
将 y*(t)所取两点对应的 t1 响应如图2所示。
Step Response 1
0.9
0.8
0.7
0.6
y
0.5
0.4
0.3
0.2
系统辨识最小二乘Matlab仿真

系统辨识和最小二乘参数估计Matlab仿真一、系统辨识在控制系统的分析中,首先要建立系统的数学模型,控制系统的数学模型是定量描述系统或过程内部物理量(或变量)之间关系的数学表达式。
一般来说,建立控制系统数学模型有两种基本方法:(1)机理建模(白箱模型):即根据系统内在运行机制、物料和能量守恒等物理学、化学规律建立系统的数学模型,一般步骤如下:Step1:根据系统工作原理及其在控制系统中的作用,确定输入和输出;Step2:根据物料和能量守恒等关系列写基本方程式;Step3:消去中间量;Step4:获得系统模型;(2)实验法建模(黑箱模型):即对于机理尚不清楚或机理过于复杂的系统,可以人为的对其施加某种测试信号,并记录其输出响应,或者记录正常运行时的输入输出数据,然后利用这些输入输出数据确定系统模型结构和参数。
多年来,系统辨识已经发展为一门独立学科分支,通过系统辨识建立一个对象的数学模型,通常包括两方面的工作:一是模型结构的确定(模型的类型、阶次),二是模型参数估计。
根据时间是否连续,参数模型又可以分为连续时间系统模型和离散时间系统参数模型,这两类模型均可采用输入输出模型和状态空间模型描述,离散系统采用差分方程描述,以单输入单输出(SISO)离散系统参数模型为例。
1.确定性模型SISO系统确定性模型可表示为:u(k)和y(k)分别为输入和输出,d为纯延时。
2.随机性模型如果受到随机扰动,则式子可写为:为系统随机扰动,其结构如图:系统辨识的一般步骤如图:从图中可以看出,利用辨识的方法建立系统数学模型,从实验设计到模型获得,需要这些步骤。
二、最小二乘参数估计1.批处理最小二乘考虑以下CAR模型:为白噪声,结构参数na、nb和d已知,参数估计的任务就是根据可测量的输入输出,确定如下参数:仿真实例:式中,为方差为1的白噪声,选用幅值为1的逆M序列作为输入,LS算法进行参数估计,仿真结果如图:仿真程序(Matlab):%批处理最小二乘参数估计(LS)clear all;a=[1 -1.5 0.7]'; b=[1 0.5]'; d=3; %对象参数na=length(a)-1; nb=length(b)-1; %na、nb为A、B阶次L=500; %数据长度uk=zeros(d+nb,1); %输入初值:uk(i)表示u(k-i)yk=zeros(na,1); %输出初值x1=1; x2=1; x3=1; x4=0; S=1; %移位寄存器初值、方波初值xi=randn(L,1); %白噪声序列theta=[a(2:na+1);b]; %对象参数真值for k=1:Lphi(k,:)=[-yk;uk(d:d+nb)]'; %此处phi(k,:)为行向量,便于组成phi矩阵y(k)=phi(k,:)*theta+xi(k); %采集输出数据IM=xor(S,x4); %产生逆M序列if IM==0u(k)=-1;elseu(k)=1;endS=not(S); M=xor(x3,x4); %产生M序列%更新数据x4=x3; x3=x2; x2=x1; x1=M;for i=d+nb:-1:2uk(i)=uk(i-1);enduk(1)=u(k);for i=na:-1:2yk(i)=yk(i-1);endyk(1)=y(k);endthetae=inv(phi'*phi)*phi'*y' %计算参数估计值thetae2.递推最小二乘在批处理最小二乘法时,由于每次处理的数据量较大,而且常常要求对象参数能够在线实时估计,解决的方法就是将其化成递推算法,其基本思想为:算法介绍:仿真实例:式中,为方差为0.1的白噪声,取初值,选择方差为1的白噪声作为输入信号u(k),采用RLS算法进行参数估计,仿真结果如图:仿真程序(Matlab):%递推最小二乘参数估计(RLS)clear all; close all;a=[1 -1.5 0.7]'; b=[1 0.5]'; d=3; %对象参数na=length(a)-1; nb=length(b)-1; %na、nb为A、B阶次L=400; %仿真长度uk=zeros(d+nb,1); %输入初值:uk(i)表示u(k-i)yk=zeros(na,1); %输出初值u=randn(L,1); %输入采用白噪声序列xi=sqrt(0.1)*randn(L,1); %白噪声序列theta=[a(2:na+1);b]; %对象参数真值thetae_1=zeros(na+nb+1,1); %thetae初值P=10^6*eye(na+nb+1);for k=1:Lphi=[-yk;uk(d:d+nb)]; %此处phi为列向量y(k)=phi'*theta+xi(k); %采集输出数据%递推最小二乘法K=P*phi/(1+phi'*P*phi);thetae(:,k)=thetae_1+K*(y(k)-phi'*thetae_1);P=(eye(na+nb+1)-K*phi')*P;%更新数据thetae_1=thetae(:,k);for i=d+nb:-1:2uk(i)=uk(i-1);enduk(1)=u(k);for i=na:-1:2yk(i)=yk(i-1);endyk(1)=y(k);endplot([1:L],thetae); %line([1,L],[theta,theta]); xlabel('k'); ylabel('参数估计a、b');legend('a_1','a_2','b_0','b_1'); axis([0 L -2 2]);。
系统辨识与自适应控制MATLAB仿真第5章模型参考自适应控制

[ky]
k
(t)
(t)
(5-13)
10
由式(5-13)和上式有
(t) k(t) (t)
(5-14)
式中,k(t) k(t) k。 于是可以看到,当 k(t) k 时, (t) 0
现给出规范化的性能指标函数:
J
(k)
1 2
2 (t)
m2
式中,m 1 2(t) 为规范化信号。
按优化理论,k变化使 J (k) 极小的方向应按负梯度确定:
梯度设计法来叙述。
例5.1.3 设有被控对象式(5-1),仍采用参考模型式(5-2)
和控制器结构式(5-6)。设aˆp (t) 是未知对象参数 ap的估计值,式
(5-6)中的 k(t) 由下式计算:
k(t) aˆp (t) am
(5-16)
为了产生参数估计aˆp (t) ,选择一个稳定的滤波器
系统辨识与自适应控制 MATLAB仿真
第5章模型参考自适应控制
1
模型参考自适应控制是一种不同于自校正控制的另一类自适应 控制形式。根据被控对象结构和控制要求,设计参考模型,使其输 出表达对输入指令的期望响应,然后通过模型输出与被控对象输出 之差来调整控制器参数,使差值趋向于零,也就是使对象输出向模 型输出靠近,最终达到完全一致。根据控制器参数更新方法的不 同,模型参考自适应控制可分为直接自适应控制和间接自适应控制 两种。推演参数自适应规律的方法有两种:梯度法和稳定理论法。 5.1简单自适应控制系统
本节目的:1)给出直接自适应控制和间接自适应控制的概 念;2)自适应控制系统的两种基本设计方法:李亚普诺夫法和2梯
度法。
5.1.1直接自适应控制
直接自适应控制是指控制器参数直接从一个自适应规律中获取
6.3 基于RBF神经网络的辨识 [系统辨识理论及Matlab仿真]
![6.3 基于RBF神经网络的辨识 [系统辨识理论及Matlab仿真]](https://img.taocdn.com/s3/m/41e3af4aa216147916112830.png)
RBF网络特点
(1) RBF网络的作用函数为高斯函数,是局部 的,BP网络的作用函数为S函数,是全局的;
(2) 如何确定RBF网络隐层节点的中心及基宽 度参数是一个困难的问题;
(3) 已证明RBF网络具有唯一最佳逼近的特性, 且无局部极小[1]。
RBF网络结构 RBF网络是一种三层前向网络,由于输入
到输出的映射是非线性的,而隐含层空间到 输出空间的映射是线性的,从而可以大大加 快学习速度并避免局部极小问题。
RBF网络结构图1所示。
图1 RBF网络结构
2、RBF网络的逼近
采用RBF网络逼近一对象的结构如图2所 示。
图2 RBF神经网络逼近
在RBF网络结构中,X x1,x2,....xnT 为网络的输入
m
wjhj
j 1
c1 j x1 b2j
其中取 x1 u(k) 。
3、RBF网络逼近仿真实例
使用RBF网络逼近下列对象:
y(k)
u(k
)3
1
y(k 1) y(k 1)2
• RBF网络逼近程序见chap6_4.m
参考文献
[1] J.Park, I.W.Sandberg, Universal approximation
6.3 基于RBF神经网络的辨识
1、RBF神经网络 径向基函数(RBF-Radial Basis Function)神经 网络是由J.Moody和C.Darken在80年代末提出的 一种神经网络,它是具有单隐层的三层前馈网络 。由于它模拟了人脑中局部调整、相互覆盖接收 域(或称感受野-Receptive Field)的神经网络结 构,因此,RBF网络是一种局部逼近网络,已证 明它能任意精度逼近任意连续函数[1]。
5.2 传递函数的频域辨识 [系统辨识理论及Matlab仿真]
![5.2 传递函数的频域辨识 [系统辨识理论及Matlab仿真]](https://img.taocdn.com/s3/m/1964bc6ff111f18582d05a30.png)
• 仿真实例之二:假设在频率范围w上测出系统频率响应数值 为H,得到频率范围w及频率响应数值H如下:
• w= logspace(-1,1)
• H = [ 0.9892 - 0.1073i 0.9870 - 0.1176i 0.9843 - 0.1289i 0.9812 - 0.1412i 0.9773 - 0.1545i 0.9728 - 0.1691i 0.9673 - 0.1848i 0.9608 - 0.2017i 0.9530 - 0.2200i 0.9437 - 0.2396i 0.9328 - 0.2605i 0.9198 - 0.2826i 0.9047 - 0.3058i 0.8869 - 0.3301i 0.8662 - 0.3551i 0.8424 - 0.3805i 0.8150 - 0.4060i 0.7840 - 0.4310i 0.7491 - 0.4549i 0.7103 - 0.4771i 0.6677 - 0.4968i 0.6216 - 0.5133i 0.5725 - 0.5258i 0.5210 - 0.5335i 0.4680 - 0.5361i 0.4144 - 0.5331i 0.3613 - 0.5242i 0.3099 - 0.5098i 0.2613 - 0.4900i 0.2164 - 0.4654i 0.1762 - 0.4370i 0.1413 - 0.4057i 0.1121 - 0.3728i 0.0886 - 0.3393i 0.0706 - 0.3064i 0.0577 - 0.2753i 0.0489 - 0.2466i 0.0436 - 0.2210i 0.0406 - 0.1987i 0.0391 - 0.1796i 0.0383 - 0.1635i 0.0377 - 0.1499i 0.0369 - 0.1385i 0.0356 - 0.1287i 0.0339 - 0.1201i 0.0318 - 0.1123i 0.0293 - 0.1051i 0.0266 - 0.0983i 0.0239 - 0.0919i 0.0212 - 0.0857i];
基于Matlab系统辨识的参数辨识与仿真

基于Matlab系统辨识的参数辨识与仿真【摘要】论述了系统辨识的基本理论,分别用最小二乘法参数辨识和辅助变量法参数辨识。
根据Matlab系统辨识工具箱中的一些基本函数,结合实例来熟悉基于系统辨识工具箱的建模方法。
【关键词】Matlab;参数辨识;最小二乘法;辅助变量法1.系统辨识的基本理论系统辨识是根据系统的输入输出的时间函数来确定描述系统行为的数学模型,是现代控制理论中的一个分支。
对系统进行分析的主要问题是根据输入时间函数和系统的特性来确定输出信号。
它包括确定系统数学模型结构和估计其参数的方法。
系统辨识的流程如图1所示。
图1 系统辨识过程流程图2.模型参数辨识的方法系统辨识包括模型阶次辨识和参数辨识。
经典参数辨识的方法主要有他包括脉冲响应法、阶跃响应法、频率响应法、最小二乘法、相关分析法、谱分析法和极大似然法等,其中最小二乘法是最基本和最经典的,也是其他方法基本的思想的来源。
比如辅助变量法。
2.1 最小二乘法辨识考虑如下CAR模型:(1)参数估计的任务是根据可测量的输入和输出,确定如下个参数:对象(1)可以写成如下最小二乘形式:(2)现有L组输入输出观测数据:利用最小二乘法得到系统参数的估计值为:(3)2.2 辅助变量法辨识当为有色噪声时,利用最小二乘法进行参数辨识时往往得不到无偏一致的参数估计量。
在这个时候可以引入变量,然后利用最小二乘法进行辨识就可得到无偏一致的参数估计量。
因此,对于线性或本质线性系统,其过程的模型都可以化成最小二乘形式,考虑如下所示的模型方程:(4)将上式写成最小二乘格式,则得:假定存在一个辅助变量矩阵,维数与H相同,它满足以下极限特性:式中Q是非奇异矩阵。
如果辅助变量满足上述条件,则有:(5)图2 系统仿真图3.建模实例3.1 非参数模型辨识某被控对象的数学模型可以表示为:,式中:;为白噪声,编制MATLAB程序,分别对上述对象进行ARX建模和辅助变量法建模,并比较两种方法得到的脉冲响应。
系统辨识理论及matlab仿真

系统辨识理论及matlab仿真现今,随着电子技术的发展,在计算机上实现系统辨识问题变得日益重要。
因此,本文将介绍系统辨识理论及matlab仿真。
要完成这一任务,首先必须掌握辨识过程中涉及到的有关知识,然后才能对系统进行辨识,找出系统的主要特征,从而判断系统属于何种类型。
为了使读者易于接受并容易理解这些知识,在这里给出了一个简化的系统辨识方法。
对该方法的应用还需读者结合系统的具体情况和现有的设备仪器等来分析。
这里仅举例说明辨识过程。
1。
为了提高系统辨识的效率,一般采用的是分层次的方法,即:( 1)层1:列出所要辨识的所有系统元件。
( 2)层2:给出每个系统元件的状态变量值,其含义就是它的各个可能状态;( 3)层3:指出系统元件某一状态变量值与其他状态变量值之间的关系式。
如果在层2和层3之间加入一个自学习控制过程,则被辨识系统可以简化为两部分:前面提到的第1和第2部分。
2。
列出全部系统元件的状态变量,这里不难看出每一层次的系统元件都有它们各自的可能状态。
同时也可列出最坏情况下所有元件的状态变量,即:。
由状态变量与可能状态,可以很方便地推导出系统的属性值,进而确定该系统属于何种类型。
下面将分别作以介绍。
3。
系统根据可能状态组成的三角形可以看成三种可能的系统结构:( 1)原型:简单系统结构,有3个独立元件,一个是原点,另两个是控制点,相当于节点,且在原点处可以设置任意一个输入,也可以设置任意一个输出。
( 2)星型结构:星型结构可以看成四个独立元件,有一个或多个中心节点,每个节点都可以被设置成输入或输出,且可以沿连线选择任意两个元件做连接,若这样选择,则系统可以看成环状结构。
4。
基于系统结构的辨识方法5。
基于系统状态变量的辨识方法7。
基于状态变量的辨识方法。
把系统的状态空间描述为状态向量空间,把描述系统的状态转移矩阵与其描述的状态向量组成一个多项式,利用矩阵的运算来辨识系统,在大多数情况下都可以得到比较满意的辨识结果。
Matlab_系统辨识_仿真_CH2,CH5,CH7程序注释与剖析

第二部分程序注释及运行结果读者须知:为了便于读者理解,现将光盘上第一部分可直接在MATLAB6.I 下运行的MATLAB程序的编号和书本上的内容对应如下,每个程序题目括号内的file.m是对应书本上的内容在光盘上第一部分的程序编号。
第二章的随机序列产生程序例2.1 用乘同余法产生随机数(见光盘FLch2sjxleg1.m)①编程如下:A=6; N=100; %初始化;x0=1; M=255;for k=1:N %乘同余法递推100次;x2=A*x0; %x2和x0分别表示x i和x i-1;x1=mod (x2,M); %将x2存储器的数除以M,取余数放x1(x i)中;v1=x1/256; %将x1存储器的数除以256得到小于1的随机数放v1中;)存放在矩阵存储器v的第k列中,v(:,k) v(:,k)=v1; % 将v1中的数(i%表示行不变、列随递推循环次数变化;x0=x1; %x i-1= x i;v0=v1;end %递推100次结束;v2=v %该语句末无‘;’,实现矩阵存储器v中随机数放在v2中,%且可直接显示在MA TLAB的window中;k1=k;%grapher %以下是绘图程序;k=1:k1;plot(k,v,k,v,'r');xlabel('k'), ylabel('v');tktle('(0-1)均匀分布的随机序列')②程序运行结果如图2.5所示。
图2.5 采用MA TLAB产生的(0,1)均匀分布的随机序列图③产生的(0-1)均匀分布的随机序列在程序运行结束后,产生的(0,1)均匀分布的随机序列,直接从MATLAB的window 界面中copy出来如下(v2中每行存6个随机数):v2 =0.0234 0.1406 0.8438 0.0820 0.4922 0.96090.7852 0.7266 0.3750 0.2578 0.5508 0.31640.9023 0.4336 0.6094 0.6680 0.0234 0.14060.8438 0.0820 0.4922 0.9609 0.7852 0.72660.3750 0.2578 0.5508 0.3164 0.9023 0.43360.6094 0.6680 0.0234 0.1406 0.8438 0.08200.4922 0.9609 0.7852 0.7266 0.3750 0.25780.5508 0.3164 0.9023 0.4336 0.6094 0.66800.0234 0.1406 0.8438 0.0820 0.4922 0.96090.7852 0.7266 0.3750 0.2578 0.5508 0.31640.9023 0.4336 0.6094 0.6680 0.0234 0.14060.8438 0.0820 0.4922 0.9609 0.7852 0.72660.3750 0.2578 0.5508 0.3164 0.9023 0.43360.6094 0.6680 0.0234 0.1406 0.8438 0.08200.4922 0.9609 0.7852 0.7266 0.3750 0.25780.5508 0.3164 0.9023 0.4336 0.6094 0.66800.0234 0.1406 0.8438 0.0820第二章的白噪声产生程序例2.2 用乘同余法产生(见光盘FLch2bzsheg2.m)①编程如下:A=6; x0=1; M=255; f=2; N=100;%初始化;x0=1; M=255;for k=1: N %乘同余法递推100次;x2=A*x0; %分别用x2和x0表示x i+1和x i-1;x1=mod (x2,M); %取x2存储器的数除以M的余数放x1(x i)中;v1=x1/256; %将x1存储器中的数除以256得到小于1的随机数放v1中;)减去0.5再乘以存储器f中的系数,存放v(:,k)=(v1-0.5 )*f; %将v1中的数(i在矩阵存储器v的第k列中,v(:,k)表示行不变、列随递推循环次数变化;x0=x1; % x i-1= x i;v0=v1;end %递推100次结束;v2=v %该语句后无‘;’,实现矩阵存储器v中随机数放在v2中,且可直接显示在MA TLAB的window中;k1=k;%grapher %以下是绘图程序;k=1:k1;plot(k,v,k,v,'r');xlabel('k'), ylabel('v');tktle(' (-1,+1)均匀分布的白噪声')②程序运行结果如图2.6所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
系统辨识理论及matlab仿真
系统辨识是一门评估和改进系统性能的研究领域,它利用外部观测数据对系统进行建模,使用这种模型来识别系统行为以及建议改进措施。
它结合了计算机科学、工程学、统计学和应用数学等多种学科的方法。
系统辨识的方法可以用于分析机器人系统、有限元素模型、分散系统和非线性系统等。
系统辨识理论是现代工程中最重要的技术,它能够有效地分析和模拟系统,以解决重大工程挑战。
系统辨识理论的基础可以回溯到20世纪40年代,当时大量研究的重点在于控制系统的设计与形成。
随着进步,它拓展到多种应用,其中包括一般系统建模和优化,以及系统健康监测,智能控制系统,复杂过程建模等等。
Matlab是一种基于矩阵的编程语言,它可以提供强大的工具来支持系统辨识理论的应用。
利用Matlab,可以非常方便地实现模型建模、数据处理、数值求解以及可视化等功能。
此外,它还提供了大量预定义函数,可以极大地简化系统辨识理论中所需要实现的功能,如参数估计、优化、数据验证等。
系统辨识理论和Matlab仿真在工程实践中应用十分广泛,其中最值得一提的有:
(1)机器人控制:利用系统辨识理论和Matlab仿真,可以对机器人运动特性进行模型建模,并实现复杂的运动控制;
(2)流体动力学:利用系统辨识理论和Matlab仿真,可以对流体动力学进行建模和模拟,以便改善和优化系统性能;
(3)模糊控制:利用系统辨识理论和Matlab仿真,可以实现模糊控制系统的建模和仿真,用于实现智能控制等。
系统辨识理论和Matlab仿真的研究成果不仅可以改善系统性能,还可以用于展示系统原理及其实现。
以上是我关于系统辨识理论及Matlab仿真的研究结果及其应用。
经过以上介绍,可以看出系统辨识理论及Matlab仿真在工程应
用中有重要的作用,它们为解决复杂工程问题提供了可行的解决方案。
然而,在实际应用过程中,系统辨识理论及Matlab仿真也存在一定
的不足,比如误差控制方面的困难,这就要求我们不断改进和完善理论和技术,以提高系统的有效性和可靠性。