纳米二氧化钛的制备综述

合集下载

TiO2的制备方法综述

TiO2的制备方法综述

纳米TiO2的制备方法综述纳米二氧化钛是一种新型的无机材料,粒径在10nm~50nm,具有粒径小、比表面积大、磁性强、光催化、吸收性能好,吸收紫外线能力强 ,表面活性大、热导性好、分散性好、所制悬浮液稳定、对人体无毒、价格低廉等优点,故其在诸多半导体光催化剂中脱颖而出,应用领域至今已遍及有机废水的降解、重金属离子的还原、空气净化、杀菌、防雾等众多方面。

由于其独特的性能和广泛的用途 , 纳米二氧化钛受到了国内外科学界的高度重视。

目前,纳米二氧化钛的制备根据反应物的相态,可以分为固相法、气相法和液相法,其中液相法是比较常用的一种制备方法固相法合成纳米二氧化钛是利用热分解或固相—固相的变化来进行的。

基础的固相法是钛或钛的氧化物按一定的比例充分混合 ,研磨后进行煅烧 ,通过发生固相反应直接制得纳米TiO2粉体 ,或者是再次粉碎得到TiO2纳米粉体。

固相法主要包括热分解法,固相反应法,火花放电法等。

固相法的主要优点是:经济,工艺过程和设备简单,但是耗能较大;由于固相反应反应不充分,因此产物的纯度不能得到很好的保证;此外由于固相法一般需要高温煅烧,得到的产物一般粒度大且分布不均匀。

因此,固相法只适用于对产品纯度和粒度要求不高的情况。

气相法指直接利用气体或者通过各种手段将物质变为气体 ,使之在气体状态下发生物理或化学反应 , 最后在冷却过程中凝聚长大形成纳米TiO2的方法。

用气相法制备的二氧化钛纳米粒子具有粒度细、化学活性高、粒子呈球形、单分散性好、凝聚粒子少、可见光透过性好、吸收紫外线的能力强等特点,易于工业放大,实现连续生产。

目前常见的方法有气相合成法和气相沉积法。

气相合成法是一种传统的方法。

其生产原理如下:Ti+2Cl2=TiCl4TiCl4+2H2+O2=TiO2+4HCl↑与其他方法相比,气相氢氧焰水解法[1]有以下优点:原料TiCl4获得容易,产品无需粉碎,生成的例子凝聚少,纯度高,粒度小,且粒度分布均匀。

纳米二氧化钛的制备实验综述

纳米二氧化钛的制备实验综述

纳米二氧化钛的制备实验综述摘要:纳米二氧化钛,亦称纳米钛白粉。

其外观为白色疏松粉末。

具有抗紫外线、抗菌、自洁净、抗老化功效,可用于化妆品、功能纤维、塑料、油墨、涂料、油漆、精细陶瓷等领域。

关键词:纳米二氧化钛、溶胶凝胶法、应用、发展前景溶胶凝胶法:溶胶-凝胶法就是用含高化学活性组分的化合物作前驱体,在液相下将这些原料均匀混合,并进行水解、缩合化学反应,在溶液中形成稳定的透明溶胶体系,溶胶经陈化胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂,形成凝胶。

凝胶经过干燥、烧结固化制备出分子乃至纳米亚结构的材料。

一、二氧化钛的性质:白色无定形粉末。

溶于氢氟酸和热浓硫酸,不溶于水、盐酸、硝酸和稀硫酸。

与硫酸氢钾或与氢氧化碱或碳酸碱共同熔融成钛酸碱后可溶于水。

相对密度约4.0。

熔点1855℃。

二、纳米二氧化钛的应用1、杀菌:用TiO2光催化氧化深度处理自来水,可大大减少水中的细菌数,饮用后无致突变作用,达到安全饮用水的标准。

在涂料中添加纳米TiO2可以制造出杀菌、防污、除臭、自洁的抗菌防污涂料,可应用于医院病房、手术室及家庭卫生间等细菌密集、易繁殖的场所,可有效杀死大肠杆菌、黄色葡萄糖菌等有害细菌,防止感染。

因此,纳米TiO2能净化空气,具有除臭功能。

2、防紫外线:纳米二氧化钛的强抗紫外线能力是由于其具有高折光性和高光活性。

其抗紫外线能力及其机理与其粒径有关:当粒径较大时,对紫外线的阻隔是以反射、散射为主,且对中波区和长波区紫外线均有效。

防晒机理是简单的遮盖,属一般的物理防晒,防晒能力较弱;随着粒径的减小,光线能透过纳米二氧化钛的粒子面,对长波区紫外线的反射、散射性不明显,而对中波区紫外线的吸收性明显增强。

其防晒机理是吸收紫外线,主要吸收中波区紫外线。

3、纳米二氧化钛可作为锂电池、太阳能电池原料(1)纳米二氧化钛具有极好的高倍率性能和循环稳定性,快速充放电性能和较高的容量,脱嵌锂可逆性好等特点,在锂电池领域具有很好的应用前景。

纳米二氧化钛综述

纳米二氧化钛综述

纳米二氧化钛的制备综述摘要综述了纳米二氧化钛的多种制备方法和原理,比较和评述了不同方法的优缺点。

关键词纳米二氧化钛;制备方法;原理纳米材料以其特殊的性能和广阔的发展前景引起众多科学家们的广泛关注。

纳米材料是指微粒几何尺寸在1nm~l00nm范围内的固体材料。

纳米粒子是处于微观粒子和宏观粒子之间的介观系统。

纳米材料以其独特的表面效应、小尺寸效应、量子尺寸效应和宏观量子效应等性质,而呈现出许多奇异的物理、化学性质,使其在众多领域具有特别重要的应用价值和广阔的发展前景。

纳米二氧化钛TiO2是当前应用前景最为广阔的一种纳米材料,它是当前众多纳米材料中的“明星”。

我国对纳米二氧化钛的研究已经进入产业化开发与生产阶段,其制备手段可分为物理和化学两大类。

本文就采用化学方法制备纳米二氧化钛的一些方法进行总结,并对不同方法的优缺点进行比较和评述。

一气相法1.气相合成法气相合成法是一种传统方法。

1941年德国Degussa公司率先采用气相四氯化硅氧焰水解制备自炭黑(纳米级的二氧化硅)。

在20世纪80年代中后期,气相氢氧焰水解法(Aerosil法)制备纳米级TiO2开始被应用于工业生产中。

其生产过程是将精制过的氢气、空气和氯化物(TIC14 )蒸汽以一定的配比进入水解炉高温水解,温度控制在18000C以上,生成TiO2的气溶胶,经过聚集冷却器停留一段时间即形成絮状大颗粒的TiO2,再经过脱酸炉脱酸(吸附在TiO2表面的HC1)后,从而得到产品,其生产原理如下:Ti+2CI4 = TiC14TiC14 +2H2+ O2 = TiO2 + 4HCIAerosil法的优点是:原料TiC14获得容易,可挥发,易水解,易提纯,产品无需粉碎,物质的浓度小,生成粒子的凝聚少,气相产物TiO2的表面整洁、纯度高,易控制粒径颗粒分布集中,可得到不同比表面或不同晶型的系列产品。

2.气相沉积法化学气相沉积法可沉积金属、碳化物、氧化物、氮化物、硼化物等,能在几何形状复杂的物件表面涂敷,涂层与基底结合牢固,此方法发展非常迅速。

纳米二氧化钛的制备及其应用研究进展

纳米二氧化钛的制备及其应用研究进展

纳米二氧化钛的制备及其应用研究进展摘要:纳米二氧化钛作为一种重要的功能性材料,在光催化、电池、光电器件等领域具有广泛的应用潜力。

本文对纳米二氧化钛的制备方法进行了综述,并探讨了其在不同应用领域的研究进展。

主要包括溶胶-凝胶法、水热法、气相法等一系列制备方法及其优缺点,以及纳米二氧化钛在光催化、电池和光电器件等领域的应用前景。

最后,总结了现有研究中存在的问题,并展望了未来纳米二氧化钛在各个领域的发展趋势。

1. 引言纳米二氧化钛作为一种重要的半导体材料,因其独特的物理、化学性质而受到广泛关注。

其具有高比表面积、优异的光电催化性能、良好的化学稳定性、可控的光吸收能力等特点,使其在光催化、电池、光电器件等领域有着广泛的应用潜力。

在实际应用中,纳米二氧化钛的功能和性能往往与其结构和制备方法密切相关。

因此,研究纳米二氧化钛的制备方法及其应用是目前材料科学和化学领域的热点之一。

2. 纳米二氧化钛的制备方法2.1 溶胶-凝胶法溶胶-凝胶法是一种常用的纳米二氧化钛制备方法。

该方法通过将金属前驱物溶解在有机或无机溶剂中,生成溶胶,然后通过控制溶胶的凝胶过程,形成纳米二氧化钛颗粒。

由于溶胶-凝胶法制备过程相对简单、可控性强,使得纳米二氧化钛的晶粒尺寸和形貌可以通过控制溶胶的成分、浓度、PH值等条件来调节。

然而,溶胶-凝胶法制备纳米二氧化钛的缺点是制备周期长,需要较高温度和长时间的热处理。

2.2 水热法水热法是一种采用高温高压水作为反应介质,将金属前体转化为纳米二氧化钛的制备方法。

水热法可以在相对较低的温度下制备出高度结晶的纳米二氧化钛颗粒,其晶形和晶面可通过调节反应温度和时间来控制。

由于水热法制备过程相对简单,且无需添加昂贵的添加剂,因此被广泛应用于纳米二氧化钛的制备。

2.3 气相法气相法是指将气体或气态前体转化为纳米二氧化钛的制备方法。

传统的气相法将有机金属化合物蒸汽通过热分解或水解,控制反应条件,形成纳米二氧化钛颗粒。

纳米二氧化钛的制备

纳米二氧化钛的制备

纳米二氧化钛的制备方法综述纳米二氧化钛的制备方法综述【摘要】纳米二氧化钛(Ti02)具有粒径小、比表面积大、磁性强、光催化、吸收性能好,吸收紫外线能力强,表面活性大、热导性好、分散性好、所制悬浮液稳定等优点倍受关注,制备和开发纳米二氧化钛成为国内外科技界研究的热点之一。

本文主要对纳米二氧化钛的各种制备方法作了简单介绍。

【关键词】纳米二氧化钛、制备【正文】二氧化钛的制备方法可分为气相法和液相法两大类。

一、气相制备法低压气体蒸发法此种制备方法是在低压的氩、氮气等惰性气体中加热普通的Ti02,然后骤冷生成纳米二氧化钛粉体,其加热源有以下几种:(1)电阻加热法;(2)等离子喷射法; (3)高频感应法; (4)电子束法; (5)激光法,这些方法可制备lOOnm以下的二氧化钛粒子。

活性氢—熔融金属反应法含有氢气的等离子体与金属钛之间产生电弧,使金属熔融,电离的N2,Ar等气体和H2溶入熔融金属,然后释放出来,在气体中形成了金属的超微粒子,用离心收集器或过滤式收集器使微粒与气体分离而获得纳米二氧化钛微粒。

溅射法此方法是用两块金属板分别作为阳极和阴极,阴极为蒸发用的材料,在两电极间充入Ar气,两电极间施加的电压范围为0.3—1.5kV。

由于两电极间的辉光放电使Ar离子形成。

在电场的作用下Ar离子冲击阴极靶材表面,靶上的Ti02就由其表面蒸发出来,被惰性气体冷却而凝结成纳米TiO2粉末,粒度在50nm以下,粒径分布较窄。

流动液面上真空蒸发法用电子束在高真空下加热蒸发TiO2,蒸发物落到旋转的圆盘下表面油膜上,通过圆盘旋转的离心力在下表面上形成流动的油膜,含有超微粒子的油被甩进了真空室的壁面,然后在真空下进行蒸馏获得TiO2超微粒子钛醇盐气相水解法该工艺可以用来开发单分散的纳米TiO2,其反应式如下: nTi(0R)4,+2nH2O(g)————>nTiO2(s)+4nROH优点是操作温度较低、能耗小,对材质要求不是很高,并且可以连续化TiCl4,高温气相水解法该法与气相法生产白炭黑的原理相似,是将TiCl4气体导入高温的氢氧火焰中进行气相水解,其化学反应式为: TiCl4(g)+2H2(g)+O2(g)→TiO2(s)+4HCl(g)优点工艺制备的纳米粉体产品纯度高、粒径小、表面活性大、分散性好、团聚程度较小。

纳米TiO2的制备综述

纳米TiO2的制备综述

纳米TiO2的制备综述应091-2纳米二氧化钛的制备摘要:纳米二氧化钛,亦称纳米钛白粉。

从尺寸大小来说,通常产生物理化学性质显著变化的细小微粒的尺寸在100纳米以下,其外观为白色疏松粉末。

具有抗紫外线、抗菌、自洁净、抗老化功效,可用于化妆品、功能纤维、塑料、油墨、涂料、油漆、精细陶瓷等领域。

纳米二氧化钛在生活和生产中有着不可替代的作用:纳米TiO2还具有很高的化学稳定性、热稳定性、无毒性、超亲水性、非迁移性,且完全可以与食品接触,所以被广泛应用于抗紫外材料、纺织、光催化触媒、自洁玻璃、防晒霜、涂料、油墨、食品包装材料、造纸工业、航天工业中、锂电池中。

目前,制备纳米TiO2的方法很多,基本上可归纳为物理法和化学法。

物理法又称为机械粉碎法,对粉碎设备要求很高;化学法又可分为气相法、液相法和固相法。

关键词:纳米二氧化钛制备方法生产生活应用二氧化钛目前主要有以下几种制备方法:一:液相法1.1.溶胶-凝胶法【1】溶胶凝胶法是液相合成制备纳米TiO2的典型方法。

以化学纯的有机钛酸丁脂[Ti(OC4H9)4]为前驱体,将其溶于无水乙醇中,缓慢加水使[Ti(OC4H9)4]水解,得到稳定的TiO 凝胶。

生产中原料物质的量比n[Ti(OC4H9)4]:n[EtOH]:n[H2O]=3:4:3,制得的TiO2凝胶在100~C干燥5h后,放入马弗炉在500"C保温(灼烧)l0h,取出后自然冷却至室温,研磨后即得纳米TiO2粉体。

1.2.水解沉淀法【2】水解沉淀法制备TiO2粉体的工艺流程为:首先在自然冷却下,将TiCl4缓慢滴加到去离子水、浓盐酸水溶液、浓盐酸+硫酸铵水溶液和其他沉淀剂的水溶液中;其后在一定温度下,搅拌、回流、保温一段时间,制备出沉淀物,经冲洗、过滤、干燥;然后在不同温度条件下煅烧一段时间,获得TiO2粉体。

二:气相法:2.1.四氯化钛气相氧化法【3】此法多是以四氯化钛为原料,以氮气为载气,以氧气为氧源,在高温条件下四氯化钛和氧气发生反应生成纳米二氧化钛。

纳米TiO2的制备方法综述

纳米TiO2的制备方法综述

纳米TiO2的制备方法综述1.引言纳米微粒是指颗粒尺寸在1 nm -100 nm的超细微粒。

由于纳米微粒具有量子尺寸效应、小尺寸效应、表面效应和量子隧道效应,因而展现出许多特有的性质,在催化、滤光、光吸收、医药、磁介质及新材料等方面具有广阔的应用前景。

其中纳米二氧化钛作为一类无机功能材料备受关注。

氧化钛(TiO2)俗称钛白粉,具有无味、无毒、无刺激性和热稳定性好等特点,且来源广泛,极易获得,从晶形角度而言,TiO2分为锐钛矿、板钛矿和金红石三种,其中锐钛矿型和金红石型应用较为广泛。

纳米二氧化钛因其具有粒径小、比表面积大、磁性强、光催化、吸收性能好,吸收紫外线能力强,表面活性大、热导性好、分散性好、所制悬浮液稳定等优点,倍受关注。

制备和开发纳米二氧化钛成为国内外科技界研究的热点。

纳米二氧化钛在水处理、催化剂载体、紫外线吸收剂、光敏性催化剂、防晒护肤化妆品、涂料填料、光电子器件等领域具有广泛的用途。

纳米二氧化钛用于涂料是涂料发展的一个重大研究方向,它的开发与应用为涂料的发展注入了新的活力,可利用其各种特殊效应来提高涂料的多方面性能。

目前纳米二氧化钛的制备方法主要分为液相法和气相法,本文将对其制备方法进行分类介绍。

2.气相法气相法通常是采用某些特定的方法使反应前体物质气化,以使其在气相状态下发生化学或者物理变化,继而通过冷却使其成核、生长最终形成颗粒二氧化钛。

气相法主要分为物理气相沉积法(PVD)与化学气相沉积法(CVD),其中PVD是将前提物质通过挥发或者蒸发为气体,然后冷凝成核,从而得到粉体的方法,通常包括热蒸发法、溅射法等。

PVD法是制备纳米材料采用的最早方法,多用于制备二氧化钛薄膜。

在利用物理气相沉积法制备二氧化钛的过程中并不发生化学反应,所得的二氧化钛粒径小、纯度高、分散性较好,但是成本高、回收率低。

[3]2.1 扩散火焰法以钛醇盐或四氯化钛、燃料气体和氧气等作为原料,首先将前提气体物质通入火焰反应器中,然后将燃料气体经烧嘴打入空气中,利用扩散作用使其相互混合而达到燃烧的目的,在此过程中气相会发生水解和氧化等作用,随之经过结晶成核、成长、转化晶型等过程最终制得二氧化钛。

纳米二氧化钛的可控制备及其光催化和光电性能的研究

纳米二氧化钛的可控制备及其光催化和光电性能的研究

纳米二氧化钛的可控制备及其光催化和光电性能的研究纳米二氧化钛是一种具有广泛应用前景的材料,在催化、光电、电子等领域有着重要的作用。

本文将介绍纳米二氧化钛的制备方法及其在光催化和光电性能方面的研究进展。

1.可控制备方法纳米二氧化钛的制备方法有很多种,如水热法、凝胶法、溶胶凝胶法等。

其中,水热法具有制备纳米二氧化钛粒子尺寸小、结晶度高等优点,因此被广泛应用。

水热法的基本步骤为:将钛酸四丁酯等钛源和氨水等碱性氧化剂加入水中,控制反应温度和时间,即可得到纳米二氧化钛。

在水热法中,可通过控制反应条件如反应温度、反应时间、pH值等来调节制备的纳米二氧化钛的结构和形貌。

此外,还可以通过掺杂、复合等方法来改变纳米二氧化钛的性质和应用。

2.光催化性能纳米二氧化钛具有优异的光催化性能,能够将阳光中的紫外线转化成具有氧化剂能力的电子和空穴,从而促进有机物的氧化降解。

纳米二氧化钛的光催化性能与其晶体结构、晶粒大小、比表面积等因素有关。

较小的晶粒和高的比表面积有助于提高纳米二氧化钛的光催化效率。

此外,在纳米二氧化钛的光催化研究中,还出现了可见光响应的纳米二氧化钛。

这些材料具有比纯二氧化钛更广泛的应用前景。

纳米二氧化钛也具有较好的光电性能,可以作为光电器件的材料。

在光电性能研究中,主要着眼于太阳能电池、传感器、发光二极管等方面的应用。

在太阳能电池方面,纳米二氧化钛的电子传输速度较快,有助于提高太阳能电池的转化效率。

而在传感器和发光二极管方面,纳米二氧化钛的高比表面积和光致发光性质成为重要的研究方向。

总的来说,纳米二氧化钛具有广泛的应用前景,在理论和实践研究中被广泛探讨。

随着制备技术的不断发展,我们相信纳米二氧化钛的应用领域将会越来越广泛。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

纳米二氧化钛的制备综述
纳米二氧化钛(TiO2)是一种具有广泛应用潜力的材料,用于催化、光电子学、传感器、环境污染治理等领域。

制备纳米二氧化钛的方法有很多种,包括溶胶-凝胶法、水热合成法、溶剂热法、气相沉积法等。

下面是纳米二氧化钛制备的一些综述:
1. 溶胶-凝胶法:这是一种常见的制备纳米二氧化钛的方法。

通过将钛源和溶剂混合形成溶胶,然后通过凝胶化反应得到凝胶,最后通过热处理过程形成纳米二氧化钛。

该方法制备的纳米二氧化钛具有较高的纯度和较小的粒径。

2. 水热合成法:这是一种利用高温高压水环境合成纳米二氧化钛的方法。

通过在水溶液中加入适量的钛源和控制反应条件,可以得到形貌和粒径可调的纳米二氧化钛。

水热合成法制备的纳米二氧化钛具有较高的比表面积和晶体质量。

3. 溶剂热法:这是一种利用有机溶剂作为反应介质合成纳米二氧化钛的方法。

通过在有机溶剂中加热处理钛源溶液,可以形成纳米二氧化钛。

溶剂热法制备的纳米二氧化钛可以调控晶体形貌和粒径。

4. 气相沉积法:这是一种利用气相反应合成纳米二氧化钛的方法。

通过在适当的气氛条件下,钛源蒸汽和氧气反应生成纳米二氧化钛。

气相沉积法制备的纳米二氧化钛具有较高的纯度和较小的粒径。

相关文档
最新文档