串扰详解
射频电路中,串扰的基本原理

射频电路中,串扰的基本原理1.引言1.1 概述射频电路中,串扰是一个常见且重要的问题,尤其在高频信号传输中更为突出。
串扰指的是在射频电路中,不同信号之间相互干扰、相互影响的现象。
在射频电路中,存在着多个信号线路,每条线路上都传输着特定频率的信号。
由于线路之间的物理接近或电磁场的交叠,信号之间会相互耦合,形成串扰。
这种耦合作用导致了信号之间的互相干扰,从而影响了射频电路的性能和可靠性。
串扰可以分为两种情况:带宽内串扰和带宽外串扰。
带宽内串扰指的是信号间频率相近,介于同一频段内的串扰;而带宽外串扰则是指信号间频率相差较大,介于不同频段内的串扰。
不同类型的串扰对射频电路的影响也有所不同。
带宽内串扰会导致信号变形、信噪比下降等问题,严重时甚至会导致通信不可靠。
而带宽外串扰则会引起频谱污染,干扰其他频段的正常通信。
为了抑制和减小串扰对射频电路的影响,人们提出了多种方法和技术。
例如,设计合理的电路布局和线路走向可以有效降低串扰的产生;合理选择线路材料和导线屏蔽等手段也能起到抑制串扰的作用。
此外,通过滤波器和隔离器等电路元件的使用,还可以对串扰信号进行滤除和分离,从而保证射频电路的正常工作。
本文将从串扰的定义和分类入手,深入探讨串扰的产生原理,并分析串扰对射频电路性能的影响。
同时,还将介绍一些串扰抑制的有效方法和技术,旨在帮助读者更好地理解和应对射频电路中的串扰问题。
文章结构的设计旨在清晰地呈现射频电路中串扰的基本原理。
本文将按照以下结构展开内容:1. 引言1.1 概述引言部分将简要介绍射频电路和串扰的概念,引起读者的兴趣,并说明射频电路中串扰问题的重要性和现实意义。
1.2 文章结构在本节,我们将详细介绍文章的结构,以帮助读者更好地理解和跟随文章的内容。
1.3 目的目的部分将明确本文的目标,即解释射频电路中串扰的基本原理,并提供一些串扰抑制方法的实用建议。
2. 正文2.1 串扰的定义和分类正文的第一部分将全面介绍串扰的概念,包括定义、分类和常见的串扰类型。
近端串扰与远端串扰分析

近端串扰与远端串扰分析1、串扰的产生串扰是指信号在传输通道上传输时,因电磁耦合对相邻传输线产生的影响。
串扰分为容性耦合串扰和感性耦合串扰。
如图所示,线AB 有信号,此传输线称为动态线,与动态线AB 相邻的传输线CD 称为静态线,此线产生耦合信号。
其中,由耦合电容产生的串扰信号在受害网络上可以分为前向串扰和反向串扰Sc,这两个信号极性相同;由耦合电感产生的串扰信号也分成前向串扰串扰和反向串扰Sl,这两个信号极性相反。
2、串扰的仿真仿真模型如下所示:PCB 叠层结构为六层,传输线采用微带线,位于顶层,第二层为参考平面,驱动器采用3.3V CMOS 的MOD 模型,由于只分析串扰,为了避免反射,两线均采用端接技术。
2.1 线间距对串扰的影响线宽为6mil,线长为3in,信号上升时间为1ns,线到参考平面的距离为10mil。
设置传输线间距分别为10mil,20mil,得到静态线的近端串扰和远端串扰如下:线间距为10mil 时的近远端串扰仿真结果线间距为20mil 时的近远端串扰仿真结果线间距对串扰的影响从仿真结果可以看出:近端串扰和远端串扰随着间距的减小而增大。
这是因为两线间的互容Cm 和互感Lm 随着间距的减小而增大,导致总串扰增大,则在实际设计中可以通过增大线间距来抑制串扰。
2.2 耦合长度对串扰的影响保持其他参数不变,线宽为6mil,线间距为10mil,信号上升时间为1ns,线到参考平面距离为10mil。
设置两条传输线的耦合长度分别为1in 和3in,仿真结果如下:从上图可以看出,随着耦合距离的增大,串扰随之增大。
所以易受干扰的网络应该尽量避免与干扰强的网络长距离并行。
2.3 信号上升时间对串扰的影响保持其他参数不变,线宽为6mil,线间距为10mil,线长为3in,线到参考平面距离为10mil。
设置驱动信号上升时间分别为1ns 和3ns,仿真结果如下:从仿真结果可以看出,随着上升时间的减小,串扰越来越严重。
码间串扰及码间串扰的产生解析

接收波
限幅门限
判决 门限
限幅整形
抽样
恢复
1011
a0
a1
a2 a3
码 间 串 扰 示 前导 意
图
0
Ts 后尾
误判为0
码间串扰严重时,会造成错误判决
Thank you
Logo
谢谢观赏
WPS Office
Make Presentation much more fun
@WPS官方微博 @kingsoftwps
通信原理讨论课
码间串扰及码间串扰的产生
Logo
目录
1 码间串扰的概念 2 码间串扰的数学分析 3 码间串扰产生的影响
Logo
码间串扰的概念
码间串扰:
数字基带信号通过基带传输系统时,由于系统(主
要是信道)传输特性不理想,或者由于信道中加性噪声
的影响,使收端脉冲展宽,延伸到邻近码元中去,从而
造成对邻近码元的干扰,我们将这种现象称为码间串扰
二、基带信号的传输过程
设输入信号为d(t),为分析问题方便,设该信号为时间间
隔为Ts的一系列冲激δ(t)所组成,如
d (t) an (t nTs ) n
式中:an 为nTs时刻的码元符号 , Ts码元宽度(码元间隔)
单极性时 an
1 {
0
双极性时 an
1 {
1
若令基带传输系统的冲激响应为h(t),则
。
1011
码间串扰的数学分析
一、数学模型
G)
GR(ω) 收滤波器 r(t) 抽样判决 {a’n}
cp(t)
发送滤波器: 基带形成滤波器也叫信道信号形成器,用来产生适合 于信道产生的基带信号。 信道传输受到的影响:发送滤波器输出的基带信号送入信道,基 识 (接 ( (带((因别1收12信12此)) )) )电滤号,受被限抑均路波在在到加幅制衡:器传接信性、带、作:输收道噪整外调用作过端特声形噪整有用程需性叠声信两有中设的加, 号个两受 置影 ,波,个到 一响 使形,两 个, 信,个 接使 号减因收信 产小素滤号 生信的波产 随号影器生 机畸响。畸 畸变。变 变,; 。提高系统的可靠性。 (2) 抽样判决,要在最佳时刻、用最佳门限判决。
高速数字系统设计——串扰

crosstalk)),定义远端串扰(far-end crosstalk)为在被感应传输线远离驱动器的一端看到的
串扰(有时又称为前向串扰(forward crosstalk))。互容在被感应传输线上产生的电流,分别
流向被感应传输线的两端。互感在被感应传输线上产生的电流,从被感应传输线的远端流向
近端,这是因为互感会产生反方向的电流。这样,流向近端和远端的串扰电流可以分解为若
信号发送到传输线起始端
驱动信号的边沿
V
近端串扰脉冲
近端
V
远端串扰脉冲
信号传播到传输线中间 (1/2)TD时刻
远端
近端
V
信号传播到传输线末端 TD时刻
远端
近端
远端串扰脉冲在 TD时刻到达
远端
图 3-3 串扰噪声示意图
串扰噪声的幅度和波形在很大程度上依赖于耦合程度和端接负载。图 3-4 中的公式和图
例描绘了被感应传输线的不同端接方案中,串扰在干净传输线上感应出的最大电压值 [DeFalc o,1970]。驱动线终 端匹配, 以消除由多 次反射引起 的麻烦。 这些公式主 要用于估 计串扰噪声的幅值,并有助于了解特定端接方案的影响。对于比图 3-4 复杂的拓扑结构,则 需要使用类似于 SPICE 的仿真器来求解。
C11 C12 电容矩阵=
C21 C22
(3-5)
其中,传输线 1 自身的电容 C11 为传输线 1 的接地电容(C1g)加上传输线 1 到传输线 2 的互
容(C12):
C11=C1g+C12
(3-6)
C12
C1g
C2g
地平面
图 3-1 用于说明寄生矩阵的简单的双导线系统
另外,图 3-1 所示系统的电感矩阵为:
串扰相关知识

串扰分析当今飞速发展的电子设计领域,高速化和小型化已经成为一种趋势。
如何在缩小电子系统体积的同时,保持并提高系统的速度与性能成为摆在设计者面前的一个重要课题。
信号频率变高,边沿变陡,印刷电路板尺寸变小,布线密度加大等都使得串扰越来越成为一个值得关注的问题。
而随着电子工程师不断把设计推向技术与工艺的极限,串扰分析就变得越来越重要。
本节讨论的串扰问题是高速、高密度电路设计中需要重点考虑的问题,下面的仿真结果均是使用Mentor Graphics公司的Interconnect Synthesis(IS)软件完成的。
串扰的基本概念串扰是指当信号在传输线上传播时,因电磁耦合对相邻的传输线产生的不期望的电压噪声干扰。
过大的串扰可能引起电路的误触发,导致系统无法正常工作。
串扰是由电磁耦合形成的,耦合分为容性耦合和感性耦合两种。
容性耦合是由于干扰源(Aggressor)上的电压变化在被干扰对象(Victim)上引起感应电流从而导致的电磁干扰,而感性耦合则是由于干扰源上的电流变化产生的磁场在被干扰对象上引起感应电压从而导致的电磁干扰。
因此,信号在通过一导体时会在相邻的导体上引起两类不同的噪声信号:容性耦合信号与感性耦合信号。
几种典型情况的串扰分析我们以图13为例,先来介绍一下串扰的有关术语。
图中如果位于A点的驱动源称为干扰源(Aggressor),则位于D点的接收器称为被干扰对象(Victim),A、B之间的线网称为干扰源网络,C、D之间的线网称为被干扰对象网络;反之,如果位于C点的驱动源称为干扰源(Aggressor),则位于B点的接收器称为被干扰对象(Victim),C、D之间的线网称为干扰源网络,A、B之间的线网称为被干扰对象网络。
当干扰源状态变化时,会在被干扰对象上产生一串扰脉冲,在高速系统中,这种现象很普遍。
为方便下面的仿真,我们组成构造如下的仿真条件:电路布局布线严格按照图13中两线系统的结构,设两线的线宽均为W,两线的线间距为P,而两线的平行长度为L,如不特殊说明,W、P 和L的取值分别为W=5mils,P=5mils,L=1.3inches,两线均为顶层微带传输线。
串扰的耦合途径

串扰的耦合途径
串扰,也称为串扰噪声,是由于电磁场的耦合而在信号传输过程中产生的不期望的噪声电压信号。
这种噪声是由于能量从一条传输线耦合到另一条传输线上所引起的。
串扰的耦合途径主要有三种:电容耦合、电感耦合和辐射耦合。
1. 电容耦合:当两个导体之间存在电容时,一个导体上的电压
变化会导致另一个导体上产生感应电流。
这种感应电流会直接耦合到受扰线路上,从而产生串扰。
电容耦合不仅发生在信号线与信号线之间,还发生在信号线与回流平面之间。
电容的大小与导体之间的距离成反比,距离越近,电容越大,耦合程度也就越高。
2. 电感耦合:电感耦合是由于两个电流回路之间存在互感而产
生的。
当一个回路的电流发生变化时,会在另一个回路上产生感应电压噪声。
这种感应电压噪声会导致信号失真和串扰。
电感耦合的程度与两个回路之间的互感成正比,互感越大,耦合程度越高。
3. 辐射耦合:辐射耦合是由于电磁场辐射而产生的串扰。
当信
号在传输线上传播时,会在周围空间产生电磁场。
如果其他导体处于这个电磁场中,就会受到其影响并产生感应电流或感应电压,从而产生串扰。
辐射耦合属于电磁干扰(EMI)的范畴,需要在电路设计中
进行特殊考虑。
为了减小串扰,可以采取一些措施来降低电容和电感耦合的程度。
例如,在两根相邻信号线之间走一根地线,可以将互容串扰耦合到地线上,从而降低串扰的影响。
此外,增加传输线之间的距离、使用屏
蔽线或增加接地等措施也可以有效地减小串扰。
串扰机理详解

串扰机理详解串扰是指当信号在传输线上传播时,因电磁耦合对相邻的传输线产生的不期望的电压噪声干扰。
这种干扰是由于两条信号线间的耦合,即信号线之间互感和互容耦合引起的。
容性耦合(当干扰源产生的干扰是以电压形式出现时,干扰源与信号电路之间就存在容性(电场)耦合,这时干扰电压线电容耦合到信号电路,形成干扰源)引发耦合电流,而感性耦合(当干扰源是以电流形式出现的,此电流所产生的磁场通过互感耦合对邻近信号形成干扰)则产生耦合电压。
由于自身的逻辑电平发生变化,对其他信号产生影响的信号线称为“攻击线”(Aggressor),即干扰线。
受到影响而导致自身逻辑电平发生异常的信号连线我们称为“牺牲线”(Victim),即被干扰线。
串扰噪声从干扰对象上通过交叉耦合到被干扰对象上,表现为在一根信号线上有信号通过时,在PCB板上与之相邻的信号线上就会感应出相关的信号。
图5-1中如果位于A点的驱动源称为干扰源(Aggressor),则位于D点的接收器称为被干扰对象(Victim),A、B之间的线网称为干扰源网络,C、D之间的线网称为被干扰对象网络;反之,如果位于C点的驱动源称为干扰源,则位于B点的接收器称为被干扰对象,C、D之间的线网称为干扰源网络,A、B之间的线网称为被干扰对象网络。
图5-1 串扰中的干扰源与被干扰对象当干扰源状态变化时,会在被干扰对象上产生一串扰脉冲,在高速系统中,这种现象很普遍。
例如,当干扰源的信号有上升沿跳变(从0到1),而被干扰源保持为0电平,通过两者之间的交叉耦合电容,在被干扰源上就会产生一个短时的脉冲干扰,如图5-2.a所示。
类似的,在干扰源上有一个上升沿跳变(从0到1),而在被干扰源上有一个下降沿跳变(从1到0),由于交叉耦合的影响,在被干扰源上就会产生时延,如图5-2.b所示。
图5-2 a)短时脉冲干扰 b)时延通常,依赖于干扰源和被干扰源上信号的跳变,被干扰线上产生四种类型的影响:正的短时脉冲,负的短时脉冲,上升时延,下降时延,如图5-3所示。
信号完整性之串扰(四)

信号完整性之串扰(四)一、串扰的概念串扰是两条信号线之间的耦合、信号之间的互感和互容引起的。
当信号在传输线上传播时,相邻信号线之间由于电磁场的相互耦合会产生不期望的噪声电压信号,即能量由一条线耦合到另一条线上。
根据耦合的机理不同,可分为电感应(容性)耦合和磁感应(感性)耦合。
产生串扰(crosstalk)的信号被称为干扰源(Aggressor)或动态线(active line),而收到干扰的信号被称为被干扰对象(Victim)或静态线(passive line)。
通常,一个网络既是干扰源又是被干扰对象。
串扰是发生在一个网络的信号路径及返回路径和另一个网络的信号路径及返回路径之间的一种效应。
耦合机制:动态线上的电压变化可在周围产生电场,而电场对于处于其中的导体上的电荷流动有一定的影响,因此与静态线相互作用后就会出现容性(电感应)耦合。
动态线上的电流变化将会在导体周围产生磁场,而这个磁场会对处于其中的电荷移动产生影响,从而使静态线上出现感性(磁感应)耦合。
耦合并不是时时刻刻发生的,本人经过咨询和查找资料,了解如下:当信号沿着动态线传播时,仅在信号边沿附近的特殊区域,即存在dV/dt或dI/dt的区域,才有耦合电流流到静态线上。
导线上除此之外的任何地方,电流和电压都为常数,所以不会出现耦合噪声电流。
这个地方还希望各路大神指教二、近端串扰和远端串扰对于长线的耦合串扰,在静态线上两端测得噪声电压明显不同,为了区分这两端,把距离干扰源端最近的一端称为近端干扰(信号传输方向的后方),距离干扰源端最远的一端称为远端干扰(信号传输的前方)。
大家看到的两种串扰的峰值不一样是因为近端串扰是连续值,远端串扰是叠加值。
近端串扰和线间距有关,远端串扰和线间距还有走线的并行长度有关。
(互容和间距有关,互感和并行长度有关,)近端噪声与容性耦合电流和感性耦合电流的总和有关。
远端噪声与容性耦合电流和感性耦合电流的差有关。
三、影响串扰的因素线间距:串扰随着间距的增大而降低,粗略估算间距从一倍间距拉远到两倍间距串扰降一半,拉远到三倍串扰再降一半。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
串扰详解1 串扰问题产生的机理串扰是信号在传输线上传播时,由于电磁耦合而在相邻的传输线上产生不期望的电压或电流噪声干扰,信号线的边缘场效应是导致串扰产生的根本原因。
为了便于分析,下面介绍几个有关的概念。
如图1所示,假设位于A点的驱动器是干扰源,而位于D点的接受器为被干扰对象,那么驱动器A所在的传输线被称之为干扰源网络或侵害网络(Agreessor),相应的接收器D所在的传输线网络被称之为静态网络或受害网络。
静态网络靠近干扰源一端的串扰称为近端串扰(也称后向串扰),而远离干扰源一端的串扰称为远端串扰(或称前向串扰)。
由于产生的原因不同将串扰可分为容性耦合串扰和感性耦合串扰两类。
1.1 容性耦合机制当干扰线上有信号传输时,由于信号边沿电压的变化,在信号边沿附近的区域,干扰线上的分布电容会感应出时变的电场,而受害线处于这个电场里面,所以变化的电场会在受害线上产生感应电流。
可以把信号的边沿看成是沿干扰线移动的电流源,在它移动的过程中,通过电容耦合不断地在受害线上产生电流噪声。
由于在受害线上每个方向的阻抗都是相同的,所以50%的容性耦合电流流向近端而另50%则传向远端。
此外,容性耦合电流的流向都是从信号路径到返回路径的,所以向近端和远端传播的耦合电流都是正向的。
对于近端容性耦合串扰,随着驱动器输出信号出现上升沿脉冲,流向近端的电流将从零开始迅速增加,当边沿输入了一个饱和长度以后,近端电流将达到一个固定值。
另外,流向近端的耦合电流将以恒定的速度源源不断地流向近端,当上升沿到达干扰线的接收端,此上升沿会被接受吸收,不再产生耦合电流信号,但是受害线上还有后向电流流向受害线的近端,所以近端的耦合电流将持续两倍的传输延迟。
对于远端容性耦合串扰,由于信号的边沿可看成是移动的电流源,它将在边沿的附近区域产生经互容流进受害线的耦合电流,而产生的耦合电流将有50%与干扰线上的信号同向而且速度相同地流人远端,因此随着干扰线上信号的传输,在受害线上将不断地产生的前向耦合电流而且和已经存在的前向耦合电流不断地叠加,并一同传向远端。
由于串扰只在信号的边沿附近区域产生,流向远端的耦合电流的持续时间等于信号的跃变时间。
具体的容性耦合如图2所示。
互容Cm会对被干扰网络产生一个感应电流,该电流正比于干扰网络上电压的变化速率,由互容Cm产生的噪声计算公式为:1.2 感性耦合机制当信号在于扰线上传播时,由于信号电流的变化,在信号跃变的附近区域,通过分布电感的作用将产生时变的磁场,变化的磁场在受害线上将感应出噪声电压,进而形成感性的耦合电流,并分别向近端和远端传播。
与容性耦合电流不一样的是,感性耦合电流的方向与干扰线上信号传播的方向是反向的,向近端传输时,电流回路是从信号路径到返回路径,而向远端传输时,电流回路则是从返回路径到信号路径。
对于近端感性耦合串扰,其特征与近端容性耦合串扰非常相似,也是从零开始迅速增加,当传输长度大于等于饱和长度以后,将稳定在一个固定值,持续时间是两倍的传输延迟。
因为流向近端的感性耦合电流与容性耦合电流同向,所以两者将叠加在一起。
线路A到B上传输的信号的磁场在线路C到D上感应出电压,磁耦合的作用类似一个变压器,由于这是个分布式的传输线,所以互感也变成一连串的变压器分布在两个相邻的并行传输线上。
当一个电压阶跃信号从A移动到B,每个分布在干扰线上的变压器会依序感应一个干扰尖脉冲出现在被干扰网络上。
互感在被干扰网络上叠加的这个电压噪声,其大小跟干扰网络上驱动电流的变化成正比。
由互感产生的噪声计算公式为往C方向的前向干扰能量,是和入射电压及每个互感分量Lm成正比,因为所有前向干扰能量几乎同时抵达C点,所以前向干扰能量与两传输线的互感总量成正比,传输线平行的长度越长,所产生的互感总量就越大,前向干扰能量也随即增加;然而往D点的后向干扰能量与往C点的前向干扰能量不同的是,虽然两者耦合的总区域是一样的,但每个互感变压器所感应的干扰分量是依序到达D,后向干扰能量的有效时间长达2Tp(Tp为传播延时),随着线路平行长度的延长 (即互感增加),后向串扰的幅度大小是不会变化的,而持续时间会增加。
具体的感性耦合如图3所示。
分布式耦合电容的耦合机制和分布式电感耦合相类似,区别在于耦合的极性。
如图3所示,互容耦合的前向和后向干扰能量的极性都是正的。
l.3 互感和互容的混合效应由于电流流向与远端容性耦合电流是反向的,所以到达受害线远端接收器的耦合电流是两者之差。
一般地,在完整的地平面上,容性和感性的耦合产生的串扰电压大小相等,因此远端串扰的总噪声由于容性和感性耦合的极性不一样而相互抵消。
在带状线电路更能够显示两者之间很好的平衡,其远端耦合系数极小,但是对于微带线路,由于与串扰相关的电场大部分穿过的是空气,而不是其他的绝缘材料,因此容性串扰比感性串扰小,导致其远端串扰系数是一个小的负数。
2 串扰导致的几种影响在高速、高密度PCB设计中一般提供一个完整的接地平面,从而使每条信号线基本上只和它最近的信号线相互影响,来自其它较远信号线的交叉耦合是可以忽略的。
尽管如此,在模拟系统中,大功率信号穿过低电平输入信号或当信号电压较高的元件(如TTL)与信号电压较低的元件(如ECL)接近时,都需要非常高的抗串扰能力。
在PCB设计中,如果不正确处理,串扰对高速PCB的信号完整性主要有以下两种典型的影响。
2.1串扰引起的误触发信号串扰是高速设计所面临的信号完整性问题中一个重要内容,由串扰引起的数字电路功能错误是最常见的一种。
图 4是一种典型的由串扰脉冲引起的相邻网络错误逻辑的传输。
干扰源网络上传输的信号通过耦合电容,在被干扰网络和接收端引起一个噪声脉冲,结果导致一个不希望的脉冲发送到接受端。
如果这个脉冲强度超过了接收端的触发值,就会产生无法控制的触发脉冲,引起下一级网络的逻辑功能混乱。
2.2串扰引起的时序延时在数字设计中,时序问题是一个重要考虑的问题。
图5显示了由串扰噪声引起的时序问题。
图下半部分是干扰源网络产生的两种噪声脉冲(Helpful图5串扰噪声导致的延时glitch 和Unhelpful glitch),当噪声脉冲(helpful glitch)叠加到被干扰网络,就引起被干扰网络信号传输延时减少;同样,当噪声脉冲(Unhelpful glitch)叠加到被干扰网络时,就增加了被干扰网络正常传输信号的延时。
尽管这种减少网络传输延时的串扰噪声对改善PCB时序是有帮助的,但在实际 PCB设计中,由于干扰源网络的不确定性,这种延时是无法控制的,因而对这种串扰引起的延时必须要加以抑制。
3.各个参数对串扰的影响3.1 耦合长度对串扰的影响改变两线的耦合长度,分别将耦合长度设置为3 in,6 in,10 in,其他设置不变。
图6(a)是耦合长度为3 in的串扰波形,其中近端串扰峰值为126.34 mV,远端为43.01 mV;图6(b)是耦合长度为6 in的串扰波形,其近端串扰峰值为153.23 mV,远端为99.46 mV;图6(c)是耦合长度为10 in的串扰波形,其近端串扰峰值为153.23 mV,远端为163.98 mV。
由此可见,对于远端串扰峰值与耦合长度成正比,耦合长度越长,串扰越大;而对于近端串扰,当耦合长度小于饱和长度时,串扰将随着耦合长度的增加而增加,但是当耦合长度大于饱和长度时,近端串扰值将为一个稳定值。
3.2 线间距对串扰的影响以下是保持其他设置不变,考察线间距的改变对串扰的影响。
分别设置线距为5 mil,15 mil,仿真波形如图7所示。
由图7可知,当线间距为5 mil时,近段串扰峰值为153.23 mV,远端为99.46 mV;而线间距为15 mil时,近端串扰峰值为33.40 mV,远端为40.49 mV。
可见随着线间距的增大,无论是近端还是远端串扰都将减小,当线间距大于等于线宽的3倍时,串扰已经很小。
3.3 上升时间对串扰的影响下面考察上升沿时间的变化对串扰的影响,其他设置保持不变。
分别设置驱动器为CMOS 3.3 V MEDI—UM;CMOS 3.3 V FAST;CMOS 3.3 V ULTRA—FAST,仿真波形如图8所示。
图8(a)中的近端串扰峰值为153.9 mV,远端串扰为46.3 mV;图8(b)中近端串扰峰值为153.2 mV,远端串扰为99.5 mV;图8(c)中近段串扰峰值为153.2 mV,远端串扰为349.9mV。
可见,当上升沿时间缩短时,远端串扰噪声越来越大。
对于近端串扰来说,如果与传输线的时延相比,上升时间较短,则近端串扰与上升时间无关;而如果与传输线时迟相比,上升时间较长,则近端串扰噪声与上升时间有关(随着上升沿时间的减小,近端串扰变大)。
3.4 介质层厚度对串扰的影响在PCB的叠层编辑器中将介质层厚度分别设置为3 mil和6 mil,其他设置不变,仿真波形如图9所示。
考察以上的仿真波形可知,当介质层厚度为3 mil时,近端串扰峰值为153.2 mV,远端串扰为99.5 mV;当介质层厚度为6 mil时,近端串扰峰值为277.3 mV,远端串扰为163.9 mV。
可见,随着介质层厚度的减小,串扰也将变小。
4.串扰最小化串扰在高速高密度的PCB设计中普遍存在,串扰对系统的影响一般都是负面的。
为减少串扰,最基本的就是让干扰源网络与被干扰网络之间的耦合越小越好。
在高密度复杂PCB设计中完全避免串扰是不可能的,但在系统设计中设计者应该在考虑不影响系统其它性能的情况下,选择适当的方法来力求串扰的最小化。
结合上面的分析,解决串扰问题主要从以下几个方面考虑:通过以上的分析与仿真,了解了串扰的特性,总结出以下减少串扰的方法:(1)在情况允许的情况下,尽量增大走线之间的距离,减小平行走线的长度,必要时可采用固定最大平行长度推挤的布线方式(也称jog式走线),即对于平行长度很长的两根信号线,在布线时可以间断式地将间距拉开,这样既可以节省紧张的布线资源,又可以有效地抑制串扰,走线示意图如下图所示。
(2)在确保信号时序的情况下,尽可能地选择上升沿和下降沿速度更慢的器件,使电场和磁场变化的速度变慢,从而降低串扰。
(3)在设计走线时,应该尽量使导体靠近地平面或电源平面。
这样可以使信号路径与地平面紧密的耦合,减少对相邻信号线的干扰。
在设计层叠时,在满足特征阻抗的条件下,应使布线层与参考平面(电源或地平面)间的介质层尽可能薄,因而加大了传输线与参考平面间的耦合度,减少相邻传输线的耦合。
(4)在布线空间允许的条件下,在串扰较严重的两条信号线之间插入一条地线,可以减小两条信号线间的耦合,进而减小串扰。
(5)相邻两层的信号层(无平面层隔离)走线方向应该垂直,尽量避免平行走线以减少层间的串扰。