二阶系统的阶跃响应结论

合集下载

二阶系统的阶跃响应(PPT课件)

二阶系统的阶跃响应(PPT课件)

三、二阶系统的其他输入响应

即,输入变为原来的积分时,输出也变为原来的积分。
结论
一、单位脉冲信号是单位阶跃信号的一阶导数,所以系 统的单位脉冲响应也为单位阶跃响应的一阶导数。 二、单位斜坡信号和单位加速度信号是单位阶跃信号的 一重二重积分,所以系统的单位斜坡响应好单位加速 度响应也为单位阶跃响应的一重积分和二重积分。
一、二阶系统的阶跃响应

当 1系统有两个正实根 单位阶跃响应为
e
( 2 1 )n t
h(t ) 1
2 2 1( 2 1)

e
( 2 1 )n t
2 2 1( 2 1)
式中看出,指数因子具有正幂指数,因此系统的动 态过程为发散的形式
解之得 td 似描述
1 0.6 0.2 2
n
欠阻尼下用 t d
1 0.7
n

二、二阶系统的动态过程分析
2、上升时间tr的计算 1 t c ( t ) 1 e sin( d t ) 中,令 c(t d ) 1 在 2
n
1
,得
1 1 2
2 n 1 1 n 1 C ( s) R( s)G ( s) 2 2 s ( s n ) s ( s n ) s n
c(t ) 1 e
n t
(1 nt )
相应的阶跃响应 非周期地 趋向于稳态输出,此时系统为 临界阻尼情况。
一、二阶系统的阶跃响应
二、二阶系统的动态过程分析
要求:能熟记以上动态性能指标在欠阻尼下的求取公式, 及求取方法(便于非欠阻尼下的计算) 例:设系统结构图如下,若要求系统具有性能指标 t p 1s ,试确定系统参数K和τ,并计算单 % 20% , 位阶跃响应的特征量, t , 和 t。 t d s r

二阶系统的阶跃响应

二阶系统的阶跃响应

瞬态分量为阻尼正弦振荡项,其振荡频
率的为衰减速d,度称取为决阻于尼指振数荡函频数率的,幂瞬,态称分量为
衰减系数。
二阶系统的阶跃响应
经过实验知, 过阻尼和临界阻尼响应曲线中,临界阻尼响应速度最
快; 欠阻尼响应曲线中,阻尼比越小,超调量越大,上升
时间越小,通常取阻尼比在0.4-0.8之间,此时超调量 合适,调节时间短; 若系统有相同的阻尼比,而振荡频率不同,则振荡特 性相同,但响应速度不同,振荡频率大的,响应速度 快.
一、二阶系统的阶跃响应 0 1
当 R(s) 1/ s 时,由传递函数性质有
C(s) R(s)G(s)
n2
1
s2 2ns n2 s
1 s
s 2 n
2 2 s
s n
2 n

1 s

(s
s )2 d2

(s
一、二阶系统的阶跃响应
当 1系统有两个正实根
单位阶跃响应为
h(t) 1
e( 2 1)nt
e( 2 1)nt
2 2 1( 2 1) 2 2 1( 2 1)
式中看出,指数因子具有正幂指数,因此系统的动 态过程为发散的形式
c(t) 1
et /T1
et /T2
T2 / T1 1 T1 / T2 1
对应于s平面两个不相等的实极点,相应的阶跃响应非周
期地趋于稳定状态,但响应速度要比临界阻尼慢。此
时系统为 过阻尼 情况。
一、二阶系统的阶跃响应
上式中
T1

n (
1

2
1)
由此可见
1

二阶系统的阶跃响应实验报告

二阶系统的阶跃响应实验报告

二阶系统的阶跃响应实验报告实验报告:二阶系统的阶跃响应实验目的:本次实验的目的是研究二阶系统的阶跃响应,并对实验结果进行分析与讨论,以理解二阶系统在控制工程领域中的应用。

实验原理:二阶系统是指具有二阶特性的系统,即在系统受到激励信号后,系统的响应随时间的变化呈现出一定的规律。

在此实验中,我们将研究二阶系统的阶跃响应,其中阶跃信号指输入信号由零值跳变到一个恒定的值(或者说幅度无限大),通常用单位阶跃函数u(t)表示,即u(t)=1(t≥0),而二阶系统响应的公式可表示为:y(t) = K(1- e^(-ξωnt)cos(ωdt+φ))其中,K为系统的增益,ξ为阻尼比,ωn为自然频率,ωd为阻尼振荡频率,φ为相位角。

实验步骤:1. 确定实验装置的参数,并将之记录下来,包括:二阶系统的增益K、阻尼比ξ、自然频率ωn,以及阶跃信号的幅值u0等。

2. 将二阶系统的输入信号设置为阶跃信号u(t),并将输出信号y(t)记录下来,同时进行数据采集和记录。

3. 根据数据得出实验结果,并利用软件对实验数据进行处理和分析,包括波形比较、响应曲线分析和幅值与相位移测量等。

实验结果:在此次实验中,我们得到了如下的实验参数:增益K = 1.5V阻尼比ξ = 0.1自然频率ωn = 2π x 10Hz阶跃信号幅值u0 = 2V根据实验数据,我们得到了如下的响应曲线:图1 二阶系统的阶跃响应曲线通过对响应曲线的分析和处理,我们发现:1. 二阶系统的阶跃响应具有一定的超调和振荡特性,表明系统的稳定性较差,需要进行进一步的优化和调整。

2. 阻尼比ξ的大小与系统的响应有着密切的关系,通常应根据系统的具体情况进行合理的选择和调整,以达到最佳的控制效果。

3. 自然频率ωn的大小与系统的响应速度有关,通常应根据实际控制要求进行选择和调整,以达到最佳的控制效果。

结论:本次实验研究了二阶系统的阶跃响应,并对实验结果进行分析和讨论。

通过对实验数据的处理和比较,我们发现阻尼比ξ和自然频率ωn是影响系统响应特性的关键因素,应根据实际控制要求进行合理的选择和调整。

自动控制原理实验二阶系统的阶跃响应

自动控制原理实验二阶系统的阶跃响应

自动控制原理实验二阶系统的阶跃响应一、实验目的通过实验观察和分析阶跃响应曲线,了解二阶系统的动态特性,掌握用MATLAB仿真二阶系统阶跃响应曲线的绘制方法,提高对二阶系统动态性能指标的计算与分析能力。

二、实验原理1.二阶系统的传递函数形式为:G(s)=K/[(s+a)(s+b)]其中,K为系统增益,a、b为系统的两个特征根。

特征根的实部决定了系统的稳定性,实部小于零时系统稳定。

2.阶跃响应的拉氏变换表达式为:Y(s)=G(s)/s3.阶跃响应的逆拉氏变换表达式为:y(t)=L^-1{Y(s)}其中,L^-1表示拉氏逆变换。

三、实验内容1.搭建二阶系统,调整增益和特征根,使系统稳定,并记录实际的参数数值。

2.使用MATLAB绘制二阶系统的阶跃响应曲线,并与实际曲线进行对比分析。

四、实验步骤1.搭建二阶系统,调整增益和特征根,使系统稳定。

根据实验要求,选择适当的数字电路元件组合,如电容、电感、电阻等,在实际电路中搭建二阶系统。

2.连接模拟输入信号。

在搭建的二阶系统的输入端接入一个阶跃信号发生器。

3.连接模拟输出信号。

在搭建的二阶系统的输出端接入一个示波器,用于实时观察系统的输出信号。

4.调整增益和特征根。

通过适当调整二阶系统的增益和特征根,使系统达到稳定状态。

记录实际调整参数的数值。

5.使用MATLAB进行仿真绘制。

根据实际搭建的二阶系统参数,利用MATLAB软件进行仿真,绘制出二阶系统的阶跃响应曲线。

6.对比分析实际曲线与仿真曲线。

通过对比分析实际曲线与仿真曲线的差异,分析二阶系统的动态特性。

五、实验结果与分析1.实际曲线的绘制结果。

根据实际参数的输入,记录实际曲线的绘制结果,并描述其特点。

2.仿真曲线的绘制结果。

利用MATLAB软件进行仿真,绘制出仿真曲线,并与实际曲线进行对比分析。

3.实际曲线与仿真曲线的对比分析。

通过对比实际曲线与仿真曲线的差异,分析二阶系统的动态特性,并讨论影响因素。

六、实验讨论与结论1.实验过程中遇到的问题。

自动控制原理第三章二阶系统的数学模型及单位阶跃响应.ppt

自动控制原理第三章二阶系统的数学模型及单位阶跃响应.ppt
二、二阶系统的数学模型及单位阶跃响应
定义: 由二阶微分方程描述的系统称为二阶 系统。
➢二阶系统数学模型
二阶系统的微分方程一般式为:
dd 2c t(2t)2 ndc d (tt)n 2c(t)n 2r(t)
(n 0)
阻尼比 n 无阻尼振荡频率
二阶系统的反馈结构图
R(s)
22 nn
ss((ss 22nn))
形式,而闭环零点的微分作用,将在保证响应特性 平稳的情况下,显著地提高系统的快速性。
2.输出量的速度反馈控制
将输出量的速度信号c(t)采用负反馈形式,反馈到输 入端并与误差信号e(t)比较,构成一个内回路,称为 速度反馈控制。如下图示。
闭环传函为:
(s)C R ( (s s) )s2(2 n n K 2tn 2)s n 2
等效阻尼比:
t
1 2
Ktn
等效阻尼比增大了,振荡倾向和超调量减小,改 善了系统的平稳性。
3.比例-微分控制和速度反馈控制比较
➢从实现角度看,比例-微分控制的线路结构比较简 单,成本低;而速度反馈控制部件则较昂贵。
➢从抗干扰来看,前者抗干扰能力较后者差。
➢从控制性能看,两者均能改善系统的平稳性,在相 同的阻尼比和自然频率下,采用速度反馈不足之处是 其会使系统的开环增益下降,但又能使内回路中被包 围部件的非线性特性、参数漂移等不利影响大大削弱。
3.发展 (1)原因: ①甲午战争以后列强激烈争夺在华铁路的 修。筑权 ②修路成为中国人 救的亡强图烈存愿望。 (2)成果:1909年 京建张成铁通路车;民国以后,各条商路修筑 权收归国有。 4.制约因素 政潮迭起,军阀混战,社会经济凋敝,铁路建设始终未入 正轨。
由此知道:
c(t)c1(t)c2(t)

《自动控制》一二阶典型环节阶跃响应实验分析报告

《自动控制》一二阶典型环节阶跃响应实验分析报告

自动控制原理实验分析报告姓名:学号:班级:一、典型一阶系统的模拟实验:1.比例环节(P) 阶跃相应曲线。

传递函数:G(S)=-R2/R1=K说明:K为比例系数(1)R1=100KΩ,R2=100KΩ;特征参数实际值:K=-1.(2)(2)R1=100KΩ,R2=200KΩ;即K=-2.〖分析〗:经软件仿真,比例环节中的输出为常数比例增益K;比例环节的特性参数也为K,表征比例环节的输出量能够无失真、无滞后地按比例复现输入量。

2、惯性环节(T) 阶跃相应曲线及其分析。

传递函数:G(S)=-K/(TS+l) K=R2/R1 , T=R2C说明:特征参数为比例增益K和惯性时间常数T。

(1)、R2=R1=100KΩ , C=1µF;特征参数实际值:K=-1,T=0.1。

(2)、R2=R1=100KΩ , C=0.1µF;特征参数实际值:K=-1,T=0.01。

〖分析〗:惯性环节的阶跃相应是非周期的指数函数,当t=T时,输出量为0.632K,当t=3~4T时,输出量才接近稳态值。

比例增益K表征环节输出的放大能力,惯性时间常数T表征环节惯性的大小,T越大表示惯性越大,延迟的时间越长,反之亦然。

传递函数:G(S)= -l/TS ,T=RC说明:特征参数为积分时间常数T。

(1)、R=100KΩ , C=1µF;特征参数实际值:T=0.1。

(2)R=100KΩ , C=0.1µF;特征参数实际值:T=0.01。

〖分析〗:只要有一个恒定输入量作用于积分环节,其输出量就与时间成正比地无限增加,当t=T时,输出量等于输入信号的幅值大小。

积分时间常数T表征环节积累速率的快慢,T越大表示积分能力越强,反之亦然。

4、比例积分环节(PI) 阶跃相应曲线及其分析。

传递函数:G(S)=K( l+l/TS) K=-R2/R1, T=R2C说明:特征参数为比例增益K和积分时间常数T。

(1)、R2=R1=100KΩ , C=1µF;特征参数实际值:K=-1,T=0.1。

《自动控制》一二阶典型环节阶跃响应实验分析报告

《自动控制》一二阶典型环节阶跃响应实验分析报告

《自动控制》一二阶典型环节阶跃响应实验分析报告一、实验目的本实验旨在通过实际的一二阶典型环节阶跃响应实验,掌握自动控制理论中的基本概念和方法,并能够分析系统的动态响应特性。

二、实验原理1.一阶惯性环节:一阶惯性环节是工程实际中常见的系统模型,其传递函数为G(s)=K/(Ts+1),其中K为传递函数的增益,T为时间常数。

2.二阶惯性环节:二阶惯性环节是另一类常见的系统模型,其传递函数为G(s)=K/((Ts+1)(αTs+1)),其中K为传递函数的增益,T为时间常数,α为阻尼系数。

3.阶跃响应:阶跃响应是指给定一个单位阶跃输入,观察系统的输出过程。

根据系统的阶数不同,其响应形式也不同。

实验仪器:电动力控制实验台,控制箱,计算机等。

三、实验步骤1.将实验台上的一阶惯性环节模型接入控制箱和计算机,并调整增益和时间常数的初始值。

2.发送一个单位阶跃信号给控制器,观察实验台上的输出响应,并记录时间和输出值。

3.根据记录的数据,绘制一阶惯性环节的阶跃响应图像。

4.类似地,将实验台上的二阶惯性环节模型接入控制箱和计算机,并调整增益、时间常数和阻尼系数的初始值。

5.发送一个单位阶跃信号给控制器,观察实验台上的输出响应,并记录时间和输出值。

6.根据记录的数据,绘制二阶惯性环节的阶跃响应图像。

四、实验结果与分析1.一阶惯性环节的阶跃响应图像如下:(在此插入阶跃响应图像)根据图像可以看出,随着时间的增加,输出逐渐趋于稳定。

根据实验数据,可以计算出一阶惯性环节的增益K和时间常数T的估计值。

2.二阶惯性环节的阶跃响应图像如下:(在此插入阶跃响应图像)根据图像可以看出,相较于一阶惯性环节,二阶惯性环节的响应特性更加复杂。

根据实验数据,可以计算出二阶惯性环节的增益K、时间常数T和阻尼系数α的估计值。

五、实验结论通过本实验,我们成功地进行了一二阶典型环节阶跃响应实验,并获得了实际的响应数据。

通过对实验数据的分析,我们得到了一阶惯性环节和二阶惯性环节的估计参数值。

二阶系统的阶跃响应

二阶系统的阶跃响应

一、二阶系统的阶跃响应

当 1系统有两个正实根 单位阶跃响应为
e
( 2 1 )n t
h(t ) 1
2 2 1( 2 1)

e
( 2 1 )n t
2 2 1( 2 1)
式中看出,指数因子具有正幂指数,因此系统的动 态过程为发散的形式
二阶系统的阶跃响应

经过实验知,
过阻尼和临界阻尼响应曲线中,临界阻尼响应速度最 快;
欠阻尼响应曲线中,阻尼比越小,超调量越大,上升 时间越小,通常取阻尼比在0.4-0.8之间,此时超调量 合适,调节时间短; 若系统有相同的阻尼比,而振荡频率不同,则振荡特 性相同,但响应速度不同,振荡频率大的,响应速度 快.


二、二阶系统的动态过程分析
控制工程中,一般选取适度的阻尼比,较快的响应速 度和较短的调节时间。 1、延迟时间td的计算 1 c ( t ) 1 e sin( t ) 中,令 c(t ) 0.5 ,得 在 d 1

n t 2 d
n t d
1

ln
2 sin( 1 2 nt d arcsin ) 1 2
一、二阶系统的阶跃响应
上式中
T1 T2
1
n ( 2 1)
1
n ( 2 1)
由此可见 阻尼比的值决定了系统的阻尼程度。
一、二阶系统的阶跃响应

具体讨论 欠阻尼情况下的阶跃响应 当 0 1 系统有一对具有负实部的共轭复数根
s1, 2 n jn 1
一、二阶系统的阶跃响应


系统有一对纯虚根 0 s1, 2 jn
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4章 自动控制系统的时域分析
1. 分析方法
时域、频域
2. 时域分析的目的
设法从微分方程判断出系统运动的主要特征 而不必准确地把微分方程解出来,从工程角度 分析系统运动规律。
4.1 自动控制系统的时域指标
1.对控制性能的要求
(1)系统应是稳定的; (2)系统达到稳定时,应满足给定的稳态 误差的要求; (3)系统在暂态过程中应满足暂态品质的 要求。
(1)过阻尼 1
系统的特征根为
p1 n n 2 1 p2 n n 2 1
4.3 二阶系统的阶跃响应
输出量的拉氏变换:
2 2 n n A0 A1 A2 X c ( s) 2 2 s s p1 s p2 s(s 2 n s n ) s(s p1 )(s p2 )
系统的时间常数T 越小,调节时间ts越小, 响应过程的快速性也越好。
4.2 一阶系统的阶跃响应
例3-1 一阶系统的结构如下图所示。试求 该系统单位阶跃响应的调节时间 ts ;如果 要求 ts(5%) 0.1( 秒 ) ,试问系统的反馈系 数应取何值?
4.2 一阶系统的阶跃响应
解: (1)首先由系统结构图写出闭环传递函数
自动控制原理
第4章 自动控制系统的时域分析
主讲教师:朱高伟
第4章 自动控制系统的时域分析
主要内容


自动控制系统的时域指标 一阶系统的阶跃响应 二阶系统的阶跃响应 高阶系统的阶跃响应 自动控制系统的代数稳定判据 稳态误差 小结
第4章 自动控制系统的时域分析
学习重点




100 X c (s) 10 s WB ( s) X r (s) 1 100 0.1 0.1s 1 s
得 T=0.1(s)
因此得调节时间
ts=3T=0.3(s),(取5%误差带)
4.2 一阶系统的阶跃响应
(2)求满足ts (5%) 0.1(s)的反馈系数值。
假设反馈系数Kt(Kt>0),那么同样可由结构图写出闭 环传递函数
(2)斜坡函数
0,t 0 xr (t ) At,t 0
A=1时称为单位斜坡函数
X r ( s)
1 s2
4.1 自动控制系统的时域指标
(3)抛物函数
0,t 0 xr (t ) 2 At ,t 0
当A=1/2时,称为单位抛物线函数
1 X r (s) 3 s
4.1 自动控制系统的时域指标
2.自动控制系统的典型输入信号
(1)阶跃函数
0,t 0 xr (t ) A,t 0
A=1时称为单位阶跃函数,
xr (t ) 1(t ),或 xr (t ) u(t )
1 X r ( s ) L[1(t )] s
4.1 自动控制系统的时域指标
1 1 1 1 1 1 xc (t ) L L 1 Ts 1 s s s T
xc (t ) 1 e
1 t T
,
(t 0)
4.2 一阶系统的阶跃响应
Hale Waihona Puke ts=3T(s), (对应5%误差带) ts=4T(s), (对应2%误差带)
100 1/ Kt s WB ( s) 100 0.01 1 Kt s 1 s Kt
由闭环传递函数可得 T = 0.01/Kt 根据题意要求 ts (5%) 0.1(s) 则 ts = 3T = 0.03/Kt 0.1(s) 所以 Kt 0.3
4.3 二阶系统的阶跃响应
4.1 自动控制系统的时域指标
(5)正弦函数
用正弦函数作输入信号,可以求得系 统对不同频率的正弦输入函数的稳态响 应,由此可以间接判断系统的性能。
4.1 自动控制系统的时域指标
本章主要以单位阶跃函数作为系统的 输入量来分析系统的暂态响应。
在工程上,许多高阶系统常常具有近 似一、二阶系统的时间响应。因此,深入 研究一、二阶系统的性能指标,有着广泛 的实际意义。
1.典型二阶系统的暂态特性
2 n WB ( s) 2 2 s 2n s n
假设初始条件为零,当输入量为单位阶跃函数时,输出 量的拉氏变换为 2 n X c ( s) 2 s(s 2 2 n s n )
4.3 二阶系统的阶跃响应
2 0 系统的特征方程为 s 2 2 n s n
A0 [ X c (s)s]s0 1
A1 [ X c (s)(s p1 )]s p1 A2 [ X c (s)(s p2 )]s p2 1 2 2 1( 2 1) 1 2 2 1( 2 1)
4.1 自动控制系统的时域指标
(4)脉冲函数
A 0 t ( 0) , xr (t ) t 0,t ( 0) 0,
当A=1时,称为单位脉冲函数(t)



(t )dt 1
(t )
X r ( s) 1
d 1 t dt
了解典型信号和自动控制系统时域指标的定义; 掌握一阶和二阶系统分析与暂态性能指标计算方法; 建立系统参数与系统暂态响应之间的对应关系; 了解系统参数对系统暂态性能指标的影响,能够定 性分析高阶系统的暂态响应过程; 理解和掌握线性控制系统稳定的充要条件,会用劳 斯判据判断系统的稳定性; 理解稳态误差的概念,了解系统参数对系统误差的 影响,熟练掌握误差传递函数和稳态误差的计算方 法。
4.2 一阶系统的阶跃响应
1.一阶系统的数学模型
K X ( s) K 1 1 WB ( s) c s X r ( s) 1 K s K 1 s 1 Ts 1 s K
4.2 一阶系统的阶跃响应
2.一阶系统的单位阶跃响应
1 X r (s) s
X c ( s ) WB ( s ) X r ( s) 1 1 Ts 1 s
相关文档
最新文档