剩余类与完全剩余系
剩余类与剩余系

一、同餘,剩餘類與剩餘系(a ) 同餘的性質:(1) a ≡b (mod m ),c ≡d (mod m ),則 a ±c ≡b ±d (mod m ) 且ac ≡bd (mod m )。
(2) a ≡b (mod m ),c ∈N ,則 ac ≡bc (mod cm )。
(3) a ≡b (mod m ),n ∈N 且 m n ,則 a ≡b (mod n )。
(4) 若a ≡b (mod m ),則 (a ,m )=(b ,m )。
(5) 整數a ,b ,則 ab ≡1 (mod m ) iff (a ,m )=1。
(b ) 剩餘類:m 為正整數,將全體整數按照對模m 的餘數進行分類,餘數為r (10-≤≤m r ) 的所有整數歸為一類,記為K r (r =0,1,..,m -1),每一類K r 均稱為模m 的剩餘類 (同餘類)。
剩餘類K r 是數集K r ={mq +r m 是模,r 是餘數,q ∈Z }={a Z a ∈且)(mod m r a ≡}, 它是一個以m 為公差的(雙邊無窮)等差數集。
並具有如下的性質:(1) 1210-⋃⋃⋃⋃=m K K K K Z 且∅=⋂j i K K (j i ≠)。
(2) 對於任意的Z n ∈,有唯一的r 0使0r K n ∈。
(3) 對於任意的a 、b Z ∈,a 、b r K ∈ ⇔ )(mod m b a ≡(c ) 完全剩餘系:設K 0,K 1,…,K m-1是模m 的全部剩餘類,從每個K r 中取任取一個數a r ,這m 個數a 0,a 1,…,a m-1組成的一個數組稱為模m 的一個完全剩餘系。
(d ) 簡化剩餘系:如果一個模m 的剩餘類K r 中任一數都與m 互質,就稱K r 是一個與模m 互質的剩餘類。
在與模m 互質的每個剩餘類中,任取一個數 (共)(m ϕ個) 所組成的數組,稱為模m 的一個簡化剩餘系。
(二) 高觀點:同餘類環(ring)1.等價關係:給集合S中一個關係”~”。
剩余类与完全剩余系ppt课件

6
定理3 设m 1,a,b是整数,(a, m) = 1,{x1, x2, , xm} 是模m的一个完全剩余系,则
{ax1 b, ax2 b, , axm b}也是模m的完全剩余系。 证明 由定理2,只需证明:若xi xj,1 i, j m
从而
axi b
m
k j
m
j
m1 j
i 1
m
j 1
m j1 m
j1 m
m1 j
1 m(m 1) m 1 .
j1 m m
2
2
9
3、剩余系间的联系 定理4 设m1, m2N,AZ,(A, m1) = 1,
X { x1, x2 ,L , xm1 } ,Y { y1, y2,L , ym2 } 分别是模m1与模m2的完全剩余系, 则 R = { Ax m1y:xX,yY }是模m1m2的一个 完全剩余系。
Ax Ax (mod m1) x x (mod m1) x = x ,
由x = x ,Ax m1y Ax m1y (mod m1m2),
(2) 定理3也可以叙述为:设m 1,a,b是整数, (a, m) = 1,若x通过模m的一个完全剩余系, 则ax+b也通过模m的一个完全剩余系;
(3)特别地,若x通过模m的一个完全剩余系, (a, m) = 1,,则ax和x+b也分别通过模m的一 个完全剩余系。
8
例2 设A = {x1, x2, , xm}是模m的一个完全剩余系, 以{x}表示x的小数部分,证明:若(a, m) = 1,则
§3.2 剩余类与完全剩余系
一、剩余类 ——按余数的不同对整数分类
一个整数被正整数n除后,余数有n种情形:0,1,2, 3,…,n-1,它们彼此对模n不同余。这表明,每个 整数恰与这n个整数中某一个对模n同余。这样一来, 按模n是否同余对整数集进行分类,可以将整数集分 成n个两两不相交的子集。
剩余类与剩余系在数学竞赛中的应用

一
( ) 义 1 设 m 为 正 整 数 , 全 体 整 1定 把
数按模 m的余数分成 m类 , 相应 m个集合
{m +rqE z} r 0 1 … , 一 ) q l ( = , , m 1 称为模 m的一个剩余类 ( 亦称 同余类 )t , .o
=
,
K
K, K 一 1…, 为模 m的全部剩余类.
( 本讲 适合 高 中)
剩余是数论 中的重要概念, 剩余类与剩 余 系及 其性 质是 一种解 决 数论 问题 的重要 工 具. 特别 是在 研究 整 除 陛 、 在性 、 存 求值 、 数 整 数 列 的性质 等 问题 中 , 具有 重要 的使 用价 值. 本 文先 介绍 其概 念与性 质 , 再例 述其 应用.
一
或
一m +1 … , , , , , . , 一1 0 1 …
二 二
() 质 2性
( ) 个 整 数构 成 模 m 的一 im
个 完全 剩余 系 甘 两两对 模 m不 同余 ;
(i 若 ( , i ) 8 m)=1 则 与 龇 +b同时 遍 , 历模 m的完全剩余系; (i 设 m 、 两 个 互 质 的 正 整 数 , i) i m 是 而 Y分别 遍 历 模 mIm2 、 பைடு நூலகம்完 系 , m2 则 +ml Y 遍 历模 m 的完 系. m: 13 既约剩余 系 . () 1 定义 3 若 剩 余 类 中 的每 一个 数 都 与 m互 质 , K 称 为 与 m 互 质 的剩 余 类. 则 在与模 m互质 的全部剩余类 中, 从每一类 中 任取 一个数 所构 成 的数 组 , 为模 m 的 一个 称 既约( 简化 ) 剩余系( 如模 5的简系 12 34 ,, ,; 模1 2的简 系 15, ,1 . , 71)
剩余类与完全剩余系

n 1
3 x1 x
也是模3 =2H+1的绝对最小完全剩余系。(再由 模2H+1的绝对最小完全剩余系具有唯一性得到结论)
① 3n xn 3n 1 xn 1 xi 1, 0,1(i 0,1, 故3n xn 3n 1 xn 1
3x1 x0共有n 1项,当
2、完全剩余系的构造
定理2 整数集合A是模m的完全剩余系的充要条件是
① A中含有m个整数; ② A中任何两个整数对模m不同余。 注:由定理1及定义2易得证。 思考:1、既然完全剩余系是不唯一的,不同的剩余系 之间存在什么关系呢? 2、一个完全剩余系的所有元素通过线性变化 后,还是完全剩余系吗?
检验:设{x1, x2, , xm}是模m的一个完全剩余系, 那么,{b+x1, b+x2, , b+ xm}和 {ax1, ax2, ,a xm} 是模m的一个完全剩余系吗?
m m m 1 axi b j j j 从而 { } {k } { } { } m m j 1 m i 1 j 1 j 1 m m 1 1 m ( m 1) m 1 j . m 2 2 j 1 m m
3、剩余系间的联系 定理4 设m1, m2N,AZ,(A, m1) = 1,
Aixi Aixi (mod mi)〔证明方法同定理4〕。
再利用条件2推得 xi xi (mod mi), 因此xi = xi.
3n 1 1 例2、()证明 1 H , , 1, 0,1, , H H 3 1 中每一个整数有而且只有一种方法表示成 3n xn 3n 1 xn 1 3x1 x0 的形状,其中xi 1, 0或1. (2)说明应用n+1个特制的砝码,在天平上可以量出 1到H中的任何一个斤数.
完系、简系、剩余类(讲稿)

完系、简系、剩余类定义1.剩余类:把关于模m同余的数归于一类,每类称为一个模m的剩余类. 即由关于模m同余的数组成的集合,每一个集合叫做关于模m的一个剩余类(又叫同余类).共有m个剩余类.设K r是余数为r的剩余类, 则K r={qm+r| m是模, r是余数, q∈Z}={a |a∈Z且a≡r(mod m)}.剩余类的性质:⑴Z=K0∪K1∪K2∪…∪K m−1,当i≠j时,K i∩K j=Ø;⑵对于∨−n∈Z,有唯一的r∈{0, 1, 2, …, m−1},使得n∈K r;⑶对∨−a, b∈Z,a, b∈K r ⇔a≡b (mod m)定义2.完系:设K0,K1,…,K m−1是模m的m个剩余类,从K r中各取一数a r 作为代表,则这样的m个数a0,a1,…,a m−1称为模m的一个完全剩余系,简称m的完系. 例如:1, 2, 3, …, m.若一组数y1, y2, …, y s满足:对任意整数a有且仅有一个y j,使得a≡y j (mod m),则y1, y2, …, y s是模m的完全剩余系.模m的完全剩余系有无穷多个,但最常用的是下面两个:①最小非负剩余系:0, 1, 2, 3, …, m−1;②最小绝对值剩余系:(随m的奇偶性略有区别) 当m=2k+1时,为−k, −k+1, …, −1, 0, 1, 2, …, k−1, k;当m=2k时,为−k+1, −k+2, …, −1, 0, 1, 2, …, k或−k, −k+1, …, −1, 0, 1, 2, …, k−2, k−1.例如,集合{0, 6, 7, 13, 24}是模5的一个完全剩余系,集合{0, 1, 2, 3, 4}是模5的最小非负完全剩余系.性质:(i) m个整数构成模m的一完全剩余系⇔两两对模m不同余;(ii) 若(a, m)=1,则x与ax+b同时跑遍模m的完全剩余系.完全剩余系的判断方法:定理1:a1, a2,…, a m是模m的一个完全剩余系⇔a i≡/a j (mod m), i≠j;定理2:设(a, m)=1, b∈Z, 若x1, x2, , x m是模m的一个完全剩余系,则ax1+b, ax2+b, …, ax m+b也是模m的一个完全剩余系;特别地,m个连续的整数构成模m的一个完系.设K r是模的一个剩余类, 若a, b∈K r,则a≡b(mod m), 于是(a, m)=(b, m).因此,若(a, m)=1,则K r中的任一数均与m互质, 这样,又可给出如下定义:定义3.简系:如果r与m互质,那么K r中每一个数均与m互质,称K r为与模m互质的剩余类.这样的剩余类共有φ(m)个,从中各取一个代表(共取φ(m)个),它们称为模m的简化剩余系,简称简系.当m为质数p时,简系由p−1个数组成.又如:m=6,在模6的六个剩余类中:K1={…, −11, −5, 1, 7, 13,…} K5={…, −7, −1, 5, 11, 17,…}是与模6互质的剩余类,数组1, 5;7, −7;1, −1;等等都是模6的简系.性质:①K r与模m互质⇔K r中有一个数与m互质;②与模m互质的剩余类的个数等于φ(m);③若(a, m)=1, 则x与ax同时跑遍模m的简化剩余系.简化剩余系的判断方法:定理3:a1,a2,…,aφ(m)是模m的简化剩余系⇔(a i, m)=1, 且a i≡/a j(mod m) (i≠j, i, j=1, 2, …, φ(m)).定理4:在模m的一个完全剩余系中,取出所有与m互质的数组成的数组,就是一个模m的简化剩余系.定理5:设(k, m)=1, 若a1, a2, …, aφ(m)是模m的简系, 则ka1, ka2, …, kaφ(m)也是模m的简系.这三个定理中,定理3与定理5是简化剩余系的判别方法,定理4是它的构造方法. 显然,模m的简化剩余系有无穷多个,但常用的是“最小简化剩余系”,即由1,2,…,m -1中与m 互质的那些数组成的数组.说明:由于任何整数都属于模m 的某一剩余类,所以,在研究某些整数性质时,选取适当的(模)m ,然后在模m 的每个剩余类中取一个“代表数”(即组成一个完全剩余系),当弄清了这些代表数的性质后,就可弄清对应的剩余类中所有数的性质,进而弄清全体整数的性质,这就是引入剩余类和完全剩余系的目的.例1、设n 为偶数,a 1, a 2,…, a n 与b 1, b 2,…, b n 均为模n 的完全剩余系,试证:a 1+b 1, a 2+b 2,…, a n +b n 不是模的完全剩余系.证明:假设a 1+b 1, a 2+b 2,…, a n +b n 是模的完全剩余系. ∴1(1)()1+2++(mod )22n i i i n n n a b n n =++≡≡≡∑ ∵a 1, a 2,…, a n 也是模的完全剩余系. ∴11(1)(mod )22n n i i i n n n a i n ==+≡=≡∑∑,同理有:1(mod )2n i i n b n =≡∑ 1()0(mod )n i i i a b n n =∴+≡≡∑,∴n |n2, 矛盾!故假设不成立,从而原命题成立.例2、设m >1, (a , m )=1,b ∈Z , 求和:∑-=+⋅10}{m i mb i a , 其中{x }为x 的小数部分. 解:∵i 取遍模m 的完系,令x i =a ·i +b ,则也取遍模m 的完系.故11110000111{}{}{}(1)22m m m m i i i k k x a i b k k m m m m m m m m ----====⋅+-====⨯-=∑∑∑∑总结:若a 1, a 2,…, a m 是模m 的一个完系,则①a 1+a 2+…+a m ≡1+2+…+m (mod m );②a 1·a 2·……·a m ≡1·2·…·m (mod m ); ③(a 1)n +(a 2)n +…+(a m )n ≡1n +2n +…+m n (mod m ).例3、已知m , n 为正整数, 且m 为奇数, (m , 2n -1)=1. 证明:m |∑=m k n k1.证明:∵1, 2, …, m 构成模m 的完系, (m , 2)=1,∴2, 4, …, 2m 也构成模m 的完系.∴)(mod )2(11m k k m k n m k n ∑∑==≡,即)(mod 0)12(1m k m k n n ≡-∑=. ∵(m , 2n -1)=1,∴∑=m k n k m 1|得证. 例4、求八个整数n 1, n 2,…, n 8满足:对每个整数k (-2014<k <2014),有八个整数a 1, a 2,…, a n ∈{−1, 0, 1},使得k =a 1n 1+a 2n 2+…+a 8n 8解:令G ={k | k =a 1+a 2·2+a 3·32+…+a n +1·3n ,a i ∈{−1, 0, 1},i =1,2,…,n +1}.显然max G =1+3+32+…+3n =3n +1-12(记为H ),min G =-1-3-32+…-3n =-H . 且G 中的元素个数有3n +1=2H +1个, 又∵G 中任意两数之差的绝对值不超过2H ,∴G 中的数对模2H +1不同余,∴G 的元素恰好是模2H +1的一个绝对值最小的完系,于是凡满足-H ≢k ≢H 的任意整数都属于G ,且可唯一地表示为a 1+a 2·2+a 3·32+…+a n +1·3n 形式,当n =7时,H =3208>2014,而n =6时,H =1043<2014,故n 1=1,n 2=3,…,n 8=37为所求.例5、已知p 为大于3的质数,且112+122+132+…+1(p -1)2=a b,a ,b ∈N *. (a , b )=1,证明:p a . 证明:对于不超过p −1的自然数k ,由于(k , p )=1,所以存在唯一的不超过p −1的自然数x ,满足1(mod )kx p ≡而且,当k =1或p −1有x =1或p −1,当22k p ≤≤-时,有22,x p x k ≤≤-≠,故当k 取遍1,2,……,p −1时,x 也取遍1,2,……,p −1,因为(,(1)!)1,1(mod )p p kx p -=≡由可得到(1)!(1)!(1)!(mod )(1)!(mod ),p p kx p p p x p k--≡--≡或所以 2211222211((1)!)((1)!)(1)(21)((1)!)((1)!)(mod )6p p k x p a p p p p p x p p b k --==----=≡-≡-∑∑ 因为p 是大于3的素数,所以p −1不小于4,所以(p −1)!含有因数6, 从而2(1)(21)((1)!)0(mod )6p p p p p ---≡,即2((1)!)0(mod )p a p b -≡, 因为(,(1)!)1p p -=,所以2(,((1)!))1p p -=,从而0(mod )0(mod )a p a p b≡⇒≡ 例6、(2003克罗地亚奥林匹克) 对于所有奇质数p 和正整数n (n ≣p ),试证:p n C ≡[n p] (mod p)例7、(第26届IMO) 设n 为正整数,整数k 与n 互质,且0<k <n . 令M ={1, 2, …, n −1}(n ≣3), 给M 中每个数染上黑白两种染色中的一种,染法如下:⑴对M 中的每个i ,i 与n −i 同色,⑵对M 中每个i ,i ≠k ,i 与|k −i |同色,试证:M 中所有的数必为同色.证明:∵(k , n )=1且0,1,2,…,n −1是一个模n 的最小非负完系,∴0·k ,1·k ,2·k ,…,(n −1)·k 也是一个模n 的完全剩余系.若设r j ≡j ·k (mod n )(其中1≢r j ≢n -1,j =1,2,…,n -1) ,则M ={1,2,…,n −1}={121,,,-n r r r } 下面只要证明r j 与r j +1(j =1,2,…,n −2)同色即可. 因为若如此,当r 1颜色确定后,M 中所有的数都r 1与同色. 由于(j +1)k ≡r j +1(mod n ),则r j +k ≡r j +1(mod n ),因此若r j +k <n ,则r j +1=r j +k ,由条件⑵知r j +1与| r j +1-k |=r j 同色;若r j +k >n ,由r j +1=r j +k -n ,由条件⑴知k -r j +1=n —r j 与n -(n —r j )=r j 同色,即k -r j +1与r j 同色, 由条件⑵知k -r j +1与|k -(k -r j +1)|=r j +1同色,因此r j +1与r j 同色.综上:此r j +1与r j 同色. 故M 中所有的数必为同色.例8、(2001第42届IMO)设n 为奇数且大于1,k 1, k 2,…, k n 为给定的整数,对于1, 2, …, n 的n !个排列中的每一个排列a =(a 1, a 2,…, a n ),记S (a )=∑=n i i ia k 1,试证:有两个排列b 和c ,使得n !| S (b )-S (c ).证明:假设对任意两个不同的b 和c ,均有S (b )≡/S (c )(mod n !),则当a 取遍所有1,2,…,n 的n !个排列时, S (a )也取遍模n !的一个完全剩余系,且每个剩余系恰好经过一次,所以()aS a ∑≡1+2+3+…+n !(mod n !)≡12(n !+1)n !≡n !2×n !+n !2≡n !2(mod n !) (n >1)其中()a S a ∑表示对取遍个排列求和(下同),下面用另一种方法计算1()()ni i a a i S a k a ==∑∑∑:对于k 1,i ∈{1,2,…,n },a i =1时,剩n -1个数,有(n -1)!个排列,a i =2时,有(n -1)!个排列,…∴k 1的系数为(n -1)!·(1+2+…+n )=12(n +1)!. ∴()a S a ∑=(1)!2n +1n i i k =∑ 但()a S a ∑=(1)!2n +1n i i k =∑≡0(mod n !) (∵n 为奇数),∴n !2≡0(mod n !), 矛盾. ∴n !| S (b )-S (c ).例9、设m 是给定的整数. 求证:存在整数a ,b 和k . 其中a ,b 均为奇数,k ≣0,使得2m =a 19+b 99+k ·21999.另解:设x ,y 为奇数,若x ≡/y (mod 21999),则x 19-y 19=(x -y )(x 18+x 17y +…+xy 17+y 18),∵x 18+x 17y +…+xy 17+y 18为奇数,∴x 18+x 17y +…+xy 17+y 18与21999互质,∴x 19≡/y 19(mod 21999)故当a 取遍模21999的简化剩余系时,a 19也取遍模21999的简化剩余系,∴一定存在a ,使得a 19≡2m -1(mod 21999),并且有无穷多个这样的a ,故2m -1-a 19=k ·21999令b =1,则2m =a 19+b 99+k ·21999. 当a 足够小时,不难知k ≣0.。
2.2剩余类与完全剩余系word版下载

2.2 剩余类与完全剩余系一、剩余类与完全剩余系本讲约定m 是正整数.由上一讲同余的基本性质可知:对于给定的模m ,整数的同余关系是一个等价关系.因此可将全体整数按“对模m 是否同余”分为若干个两两不相交的集合,使得同一个集合中任意两个数对模m 一定同余,而不在同一个集合中的任意两个数对模m 一定不同余.这些集合就是模m 的剩余类.定义 1 对模m 与已知整数a 同余的所有整数构成的集合,称为模m 的剩余类(或模m 的同余类),记为[]m a由定义1立即得到: 定理1 (1) []{}{}|(mod )|m ax x a m a km k =∈Z ≡=+∈Z ;(2) [][]m m ab =的充要条件()mod a b m ≡;(3) 对任意,a b ∈Z ,或者[][]m m ab =或者[][]m m a b =∅ ;可见,模m 的剩余类与选取其中哪个数作为代表元并无关系.同一剩余类中任意两个整数对模m 同余,属于不同剩余类的任意两个整数对模m 不同余. 定理2 对于给定的模m ,有且仅有m 个不同的剩余类,即[][][][]0,1,2,1m m m m m - .证明 由于0,1,2,3,…,m-1这m 个数对模m 两两不同余,所以[][][]0,1,2,m m m []1m m -是m 个两两不同的模m 的剩余类,如果还有一个模m 的剩余类[]m t,则由带余除法定理,可得,,,0,t mq r q r r m =+∈Z ≤<故()mod t r m ≡,而r 为0,1,2,,1m - 中的某一个数,所以[][]m m t r =.例1 当6m =时,模6的剩余类共有6个,它们是[]{}{}[]{}{}[]{}{}6666660,12,6,0,6,12,[1],11,5,1,7,13,2,10,4,2,8,14,[3],9,3,3,9,15,4,8,2,4,10,16,[5],7,1,5,11,17,=--=--=--=--=--=--而且整数集[]560k k =Z = .定理3 (1)在任意取定的1m +个整数中,必有两个数对模m 同余; (2)存在m 个数对模m 两两不同余.证明 (1)由定理2知,有且仅有m 个不同的模m 的剩余类,即[][][][]0,1,2,1,m m m m m - 所以1m +个数中必有两个数属于同一个模m 的剩余类,即这两个数对模m 同余.(2)在每个剩余类[]()0,1,2,m rr m = 中取定一个数r x ,作代表,这样就得到m 个两两对模m 不同余的数01,1,,m x x x - .这就证明了(2).由此引出完全剩余系的概念:定义2 从模m 的每一个剩余类中各取一个数,得到一个由m 个数组成的集合,称为模m 的一个完全剩余系.下面是几个常用的完全剩余系:(1)把{}0,1,,1m - 称为模m 的最小非负完全剩余系; (2)把{}1,2,,m 称为模m 的最小正完全剩余系;(3)把()(){}1,2,,1,0m m ----- 称为模m 的最大非正完全剩余系; (4)把(){},1,,2,1m m ----- 称为模m 的最大负完全剩余系; (5)当m 是奇数时,把11,1,0,1,,22m m --⎧⎫--⎨⎬⎩⎭ 称为模m 的绝对最小完全剩余系;当m 是偶数时,把1,1,0,1,,22mm ⎧⎫-+-⎨⎬⎩⎭ 或,1,0,1,,122m m ⎧⎫---⎨⎬⎩⎭ 称为模m的绝对最小完全剩余系;显然,模m 的完全剩余系有无数多个.如果{}12,,,m y y y 是模m 的一个完全剩余系,那么对任意整数a ,这m 个数中有且仅有一个i y 与a 对模m 同余.综上,模m 的一个完全剩余系就是m 个两两不同余的整数. 例2 证明:{}11,4,18,20,32--是模5的一个完全剩余系.定理4 设1|m m .那么,对任意的r ,有[][]1m m r r ⊆,等号当且1m m =成立.更精确地说,若12,,,d l l l 是模1md m =的一组完全剩余系,则有[]11j m m j d r r l m ≤≤⎡⎤=+⎣⎦ ,右边并式中的d 个模m 的剩余类两两不同.特别地有:[][]10m m j dr r jm ≤<=+.证明 我们把剩余类[]1m r 中的数按模m 来分类.对[]1m r 中任意两个数11,r k m +21r k m +,()1121mod r k m r k m m +≡+成立的充要条件是()12mod k k d ≡. ■ 由此推出右边和式中的d 个模m 的剩余类是两两不同的,且[]1m r 中的任一数1,r km +必属于其中的一个剩余类.另一方面,对任意的j 必有[]1111,j j m m m r l m r l m r ⎡⎤⎡⎤+⊆+=⎣⎦⎣⎦这就证明了所要的结论.例3 奇数按照模6可以分成哪几类,偶数按照模6可以分成哪几类? 解 {全体奇数}=[][][][]26661135= ; {全体偶数}=[][][][]26660024= .二、完全剩余系的性质定理5 设a 是整数,(),1a m =,b 是任意整数,若x 遍历模m 的完全剩余系,则ax b +所取的值也遍历模m 的完全剩余系. 证明 设{}12,,,m x x x 是模m 的一个完全剩余系,则当x 依次取值12,,,mx x x 时,ax b +所取的m 个值为12,,m ax b ax b ax b +++ .如果()mod i j ax b ax b m +≡+,则()mod i j ax ax m ≡,由于(),1a m =.则()mod i j x x m ≡,于是i j =.因而{}12,,m ax b ax b ax b +++ 也是模m 的完全剩余系.■例4 证明:{}7,12,17,22,27,32是模6的一个完全剩余系. 证明 7507,12517,17527=⨯+=⨯+=⨯+22537,27547,32557=⨯+=⨯+=⨯+ .因为()5,61=,所以由定理5知,当x 遍历模6的最小非负完全剩余系{}0,1,2,3,4,5时,57x +所取的值,即{}7,12,17,22,27,32也是模6的完全剩余系.定理 6 设,a b 是两个整数,且(),1a b =,若x 遍历模b 的完全剩余系,y 遍历模a 的完全剩余系,c 是任意整数,则ax by c ++所取的值组成模ab 的完全剩余系. 例5 利用模10和模199的完全剩余系表示模1990的完全剩余系. 解:()199,101,199101990.=⨯=设{}12,10,,x x x 是模m 的一个完全剩余系,{}12,199,,y y y 是模199的一个完全剩余系,那么{}19910,1,2,10,1,2,,199i j x y i j +== 组成模1990的一个完全剩余系.习题2.21.验证下列各组整数是否为模8的完全剩余系:{}{}{}{}1,3,5,7,9,11,13,152,4,6,8,10,17,21,237,9,12,17,22,27,322,2,3,3,5,6,7,8---------(1);(2);(3);(4).2.验证下列各组整数是否为模7的简化剩余系:{}{}{}{}8,16,24,32,40,482,4,6,2,4,61,3,5,9,11,12,132,22,42,62,82---(1);(2);(3);(4).3.(1)求模9 的一个完全剩余系,使其中每个数都是奇数; (2)求模9 的一个完全剩余系,使其中每个数都是偶数; (3)对于模10来说,能实现(1)和(2)的要求吗?(4)请找出规律,并证明。
第三章 (5) 同余、剩余类、完全剩余系

若 a b (mod m), d m , d 0,则 a b (mod d ). 若 a b (mod m), 则( a, m) (b, m) ,因 而 若 d 能 整 除 m 及 a, b 二 数 之 一 , 则 d 必 能 整 除 a, b 中 另 一 个 .
14
性 质 同 余 式 ca cb (mod m) (7) 等 价 于 a b (mod m / (c, m)). 特 别 地 , 当 (c, m) 1时 , 同 余 式 ( 7 ) 等 价 于 a b (mod m), 即 同 余 式 两 边 可 约 去 c. 证 同 余 式 ( 7 ) 即 m c (a b), 这 等 价 于 m c (a b). ( c , m ) ( c, m ) 由 定 理 及 ( m / (c, m), c / (c, m) ) = 1 知 , m 这等价于 (a b). ( c, m)
i 0 n
当 且 仅 当 7(或11或13)整 除 ( 1)i ai .
i 0
20
n
例 1 若 a 5874192, 则
a
i 0
n
i
5 8 7 4 1 9 2 36能 被 3,9整 除 . 故 由
A, a 能 被 3,9整 除 . 例 2 若 a 435693,则
13
若 a b (mod mi ), i 1,2,
, k ,则 , mk ]). , k,再 由 第 一 章
a b (mod [ m1 , m2 ,
证 由 定 理 1, mi a b , i 1,2, §3 定 理 , 即 得 [ m1 , m2 ,
, mk ] a b ,故 由 定 理1 即 证 得 .
高中数学竞赛——数论

高中数学竞赛 数论剩余类与剩余系1.剩余类的定义与性质(1)定义1 设m 为正整数,把全体整数按对模m 的余数分成m 类,相应m 个集合记为:K 0,K 1,…,K m-1,其中K r ={qm+r|q ∈Z,0≤余数r ≤m-1}称为模m 的一个剩余类((2)2.(1)a r ,得m 个数特别地,完全为偶数时,,2-m (2)证明:即证a 0,a 1,…,a m-1与aa 0+b, aa 1+b,…,aa m-1+b 同为模m 的完全剩余系,因a 0,a 1,…,a m-1为模m 的完系时,若aa i +b ≡aa j +b(modm),则a i ≡a j (modm),矛盾!反之,当aa 0+b, aa 1+b,…,aa m-1+b 为模m 的完系时,若a i ≡a j (modm),则有aa i +b ≡aa j +b(modm),也矛盾!(ⅲ)设m 1,m 2是两个互质的正整数,而x,y 分别遍历模m 1,m 2的完系,则m2x+m1y历遍模m1m2的完系.证明:因x,y分别历遍m1,m2个整数,所以,m2x+m1y历遍m1m2个整数.假定m2x/+m1y/≡m2x//+m1y//(modm1m2),其中x/,x//是x经历的完系中的数,而y/,y//是y经历的完系中的数.因(m1,m2)=1,所以,m2x/≡m2x//(modm1),m1y/≡m1y// (modm2),从而x/≡x//(modm1),y/≡y//(modm2),矛盾!3.(1).在与模m的一个(2)(ϕm)x1≡x2,则a1,a2,…,aφ(m)是模m的一个既约剩余系.证明:因a1,a2,…,aφ(m)是)m(ϕ个与m互质的整数,并且两两对模m不同余,所以,a1,a2,…,aφ(m)属于)m(ϕ个剩余类,且每个剩余类都与m互质,故a1,a2,…,aφ(m)是模m的一个既约剩余系.(ⅴ)设m1,m2是两个互质的正整数,而x,y分别历遍模m1,m2的既约剩余系,则m 2x+m 1y 历遍模m 1m 2的既约剩余系.证明:显然,既约剩余系是完系中所有与模互质的整数做成的.因x,y 分别历遍模m 1,m 2的完系时,m 2x+m 1y 历遍模m 1m 2的完系.由(m 1,x )=(m 2,y )=1,(m 1,m 2)=1得(m 2x,m 1)=(m 1y,m 2)=1,所以,(m 2x+m 1y,m 1)=1,(m 2x+m 1y,m 2)=1,故 (m 2x+m 1y, m 1m 2)=1.反之若(m 2x+m 1y, m 1m 2)=1,则(m 2x+m 1y,m 1)=(m 2x+m 1y,m 2) =1,1m 2的既)(2m ϕ)., 1,α(4.欧拉欧拉(Euler)定理 设m 是大于1的整数,(a ,m)=1,则)(m od 1)(m a m ≡ϕ. 证明:设r 1,r 2,…,r )(m ϕ是模m 的既约剩余系,则由性质3知a r 1,a r 2,…,a r )(m ϕ也是模m 的既约剩余系,所以, a r 1a r 2…a r )(m ϕ≡r 1r 2…r )(m ϕ(modm),即≡)(21)(m m r r r a ϕϕ)(21m r r r ϕ ,因()(21m r r r ϕ ,m)=1,所以,)(m od 1)(m a m ≡ϕ.推论(Fermat 定理) 设p 为素数,则对任意整数a 都有)(m od p a a p ≡.证明:若(a , p )=1,由1)(-=p p ϕ及Euler 定理得)(m od 11p a p ≡-即)(m od p a a p ≡;若(a , p )≠1,则p |a ,显然有)(m od p a a p ≡.例1设m>0,证明必有一个仅由0或1构成的自然数a 是m 的倍数.证明:考虑数字全为1的数:因1,11,111,1111,…中必有两个在modm 的同一剩余类中,它们的差即为所求的a .例(m 整除,.例m,使得2011|f n f 3因所以,例,是整数序列负整数假设对每个正整数:在数列123,,,a a a 中,每个整数都刚好出现一次.证明:数列各项同时减去一个整数不改变本题的条件和结论,故不妨设a 1=0.此时对每个正整数k 必有∣a k ∣<k:若∣a k ∣≥k,则取n=∣a k ∣,则a 1≡a k ≡0(mod n),矛盾.现在对k 归纳证明a 1,a 2,…,a k 适当重排后是绝对值小于k 的k 个相邻整数.k=1显然.设a 1,a 2,…,a k 适当重排后为-(k -1-i),…,0,…,i (0≤i ≤k -1),由于a 1,a 2,…,a k ,a k+1是(mod k+1)的一个完全剩余系,故必a k+1≡i+1(mod k+1), 但∣a k+1∣<k+1,因此a k+1只能是i+1或-(k -i),从而a 1,a 2,…,a k ,a k+1适当重排后是绝对值小于k+1的k+1个相邻整数.由此得到:1).任一整数在数列中最多出现一次;2).若整数u 和v (u<v) 都出现在数列中,则u 与v 之间的所有整数也出现在数列中.得到:例,(i,j)也历mod2n 的和≡例可被,且是周期数列,所以, 数列{a n }中存在无穷多项可被2011整除.例7证明:存在无穷多个正整数n,使得n 2+1∤n!.证明:引理1对素数p >2,⇔≡)4(mod 1p 存在x(1≤x ≤p -1)使)(m od 12p x -≡. 证:充分性:因对1≤x ≤p -1,( p ,x)=1,所以,)(mod 1)(2121p x x p p ≡=--,≡-212)(p x)(mod 1)1(21p p ≡--,所以,21-p 为偶数,即).4(mod 1≡p 必要性:因1≤x ≤p -1时,x,2x,…,(p -1)x 构成modp 的既约剩余系,所以,存在1≤a ≤p -1,使得a x ≡-1(mod p ),若不存在a (1≤a ≤p -1), a =x,使a x ≡-1(mod p ),则这样的a ,x 共配成21-p 对,则有)(mod 1)!1()1(21p p p -≡-≡--,即21-p 为奇数,与 p 2证a =4(p 1p 设2p 1 p 2…12x -≡,相应的x 例(1)(2)n n+1n (n=1,2, …),且每个a n 都是f(x)的周期.证明:(1)设T=nm (正整数m,n 互质,且n ≥2),因(m,n)=1,所以,m,2m,…,nm 构成 modn 的完系,故存在k ∈N *使得km ≡1(modn),即存在t ∈N *使得km=nt+1,因f(x)=f(x+kT)=f(x+n km )=f(x+t+n 1)=f(x+n 1),所以n1是周期. 设n=kp ,其中k ∈N *, p 为素数,则n k p 11⋅=是周期.故存在素数p,使p 1是周期. (2)当T 为无理数时,取a 1=T,则T 为无理数, 0<T<1.设k≤n 时存在无理数a k ,使得0<a k <a k-1<1,且a k 是周期.对k+1,总存在存在u,v ∈N *,使得0<u a k -v<a k <1,取例解:,对任意}包含了modn+1零剩余,≤k ≤n, a 1+a 2+取例. 例11求所有的奇质数p ,使得∑=-11|k p k p .例12求所有质数p ,使得2122213)()()(|-+++p p p p C C C p .例13设n 为大于1的奇数,k 1,k 2,…,k n 是n 个给定的整数,对1,2,…,n 的每一个排列a=(a 1,a 2,…,a n ),记S(a)=∑=ni i i a k 1.证明:存在两个1,2,…,n 的排列b 和c(b ≠c),使得n!|S(b)-S(c).证明:如果对1,2,…,n 的任意两个不同排列b 和c(b ≠c),都有n!∤S(b)-S(c),那么当a 取遍所有排列时(共n!个),S(a)遍历模n!的一个完系, 因此,有∑a a S )(≡1+2+…+n!≡2!2)1!(!n n n ≡+(modn!) ①, 另一方面,我们有 ∑a a S )(=)!(mod 0)1(!])!1[(n k n n j n k a k a k n i n n in i i n i i ≡+=-==∑∑∑∑∑∑∑ ②. 由①∑a .例modm 因(m,2n 例x 例在A同余方程与同余方程组1.同余方程(组)及其解的概念定义1 给定正整数m 及n 次整系数多项式0111)(a x a x a x a x f n n n n ++++=--,则同余式f(x)≡0(modm)①叫做模m 的同余方程,若a n 0(modm),则n 叫做方程①的次数.若x=a是使f(a)≡0(modm)成立的一个整数,则x≡a(modm)叫做方程①的一个解,即把剩余类a(modm)叫做①的一个解.若a1(modm),a2(modm)均为方程①的解,且a1,a2对模m不同余,就称它们是方程①的不同解.由此可见,只需在模m的任一组完系中解方程①即可.例12解:例2解:.2.设a x解,例3解:tx即)8-≡x.3,1-(mod≡t),1,08(mod1=4+例4解方程12x≡6(mod9).因(12,9)=3,且-1是一个特解,所以,方程12x≡6(mod9)的解为:(modx即)8t5,2,1,≡t≡-x.(mod),2,1,083+1=-3.同余方程组定义3给定正整数m 1,m 2,…,m k 和整系数多项式f 1(x),f 2(x),…,f k (x),则同余式组 ⎪⎪⎩⎪⎪⎨⎧≡≡≡)(mod 0)()(mod 0)()(mod 0)(2211k k m x f m x f m x f ②,叫做同余方程组.若x=a 是使f j (a )≡0(modm j )(1≤j ≤k)成立的一个整数,则x ≡a (modm)叫做方程组②的一个解,即把剩余类a (modm)叫做②的一个解.例5解:⎩⎨⎧-≡≡13x x .M=m 1m ⎪⎪⎩⎪⎪⎨⎧≡≡≡21k a x a x a x 其中M j ).(2)j j j j 则x ≡y (modm j ),即m j |x -y ,因m 1,m 2,…,m k 两两互质,所以M| x-y 即x ≡y (modM). 注:(1)存在无穷多个整数x 满足同余方程组③,这些x 属于同一模m 的剩余类;(2)同余方程组③仅有一个解x ≡a 1M 1M 1-1+a 2M 2M 2-1+…+a k M k M k -1(modM).(3)当(a ,m i )=1(=1,2,…,n)时,同余方程组⎪⎪⎩⎪⎪⎨⎧≡≡≡⇔⎪⎪⎩⎪⎪⎨⎧≡≡≡---)(mod )(mod )(mod )(mod )(mod )(mod 12211112211k k k k m a a x m a a x m a a x m a ax m a ax m a ax仍然具有定理结论. 这在数论解题中具有重要应用.例6“今有物不知其数,三三数之余二,五五数之余三,七七数之余二,问物几何”.解,352115≡x 例.解:210×210-1≡210-1≡1(mod11)⇔210-1≡1(mod11),所以,同余方程组的解为: )2310(mod 2111637121010330438553462≡=⨯+⨯+⨯+⨯≡x ,即x=2310k+2111(k ∈N).例8证明:对任意n 个两两互质的正整数:m 1,m 2,…,m n ,总存在n 个连续的自然数k+1,k+2,…,k+n 使得m i |k+i(i=1,2,…,n).证明:由剩余定理知,总存在整数k 使得⎪⎪⎩⎪⎪⎨⎧-≡-≡-≡)(mod )(mod 2)(mod 121n m n k m k m k,即存在连续的自然数k+1,k+2,…,k+n 使得m i |k+i(i=1,2,…,n).例9证明:对任意n ∈N *,存在n 个连续正整数它们中每一个数都不是素数的幂(当 数⎪⎪⎩⎪⎪⎨⎧-≡-≡-≡21n m m m例,且A 例 {k +a n }⎩⎨⎧-≡≡)(mod 102p x x 123⎪⎩-≡)(mod 232p x 2的最小正整数a 2=38.假定a 1,a 2,…,a n 都已确定,则取a n+1适合⎪⎪⎩⎪⎪⎨⎧-≡-≡≡+)(mod )(mod 1)(mod 0121n p n x p x p x 且大于a n 的最小正整数,由剩余定理知满足条件的a n+1存在.则上述递推关系定义的数列{a n }满足题意:因对任意k ∈N *,当n ≥k+1时,都有k+a n ≡0(mod p k+1),由{a n }递增可知{k +a n }从第k+2项起每一项都是p k+1的倍数,且都大于p k+1,所以,数列{k +a n }中至多有k+1项为素数.例12是否存在一个由正整数组成的数列,使得每个正整数都恰在该数列中出现一次,且对任意正整数k ,该数列的前k 项之和是k 的倍数?解:,S=a 1+a 2⎩⎨⎧++≡+t r S r S {a n }例的质因数.例例。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
灵台工作站 张玉凤
前言
• 本课件是以初等数论同余式内容的PPT课 件为切入口,介绍了初等数论课程教学中, 不断运用多媒体课件进行教学内容,体现 了课件建设的好处以及其对数学思想的研 究思维的拓展与教学的关系。
(一)课程的作用与任务
• “初等数论”课程是中央广播电视大学数学与应 用数学专业的一门限选课。数学与应用数学专业 的学生学习一些初等数论的基础知识可以加深对 数的性质的了解与认识,便于理解和学习与其相 关的一些课程。
•
解:∵288-214=74=37×2。
•
∴288≡214(mod37)。
•
∵74-20=54,而3754,
•
∴7420(mod37)。
• 例2 求乘积418×814×1616除以13所得的余数。
• 分析 若先求乘积,再求余数,计算量太大.利用同余的性质可以使 “大数化小”,减少计算量。
•
解:∵418≡2(mod13),
• (2)教学基本要求
•
1、理解整数同余的概念及同余的基本性质,熟练掌握整数具有素因子的条件,会
利用同余简单验证整数乘积运算的结果。
•
2、理解剩余系、完全剩余系的概念,熟练掌握判断剩余系的方法,理解欧拉函数
的定义定理,掌握循环小数的判定方法。
•
4、理解同余式的定义,掌握一次同余式有解的条件,熟练掌握求解一次同余式。
•
由例以上3例我们得到启发,a可被m整除,可用同余式表示为:a≡0(modm)。
•
例如,表示a是一个偶数,可以写
•
a≡0(mod 2)
•
表示b是一个奇数,可以写
•
b≡1(mod 2)
•
补充定义:若m(a-b),就说a、b对模m不同余,用式子表示是:
•
ab(modm)
•
我们书写同余式的方式,使我们想起等式,而事实上,同余式与等式在其性质上相似.同余式有
•
性质4:若a≡b(mod m),c≡d(mod m),那么a±c≡b±d(mod m),(可加
减性)。
•
性质5:若a≡b(mod m),c≡d(mod m),那么ac≡bd(mod m)(可乘性)。
•
性质6:若a≡b(mod m),那么an≡bn(mod m),(其中n为自然数)。
•
性质7:若ac≡bc(mod m),(c,m)=1,那么a≡b(mod m),(记号(c,m)
(2)重点及难点
• 重点:剩余系的判定,欧拉函数的定义及性质,中国剩余定理,求解三次以下的同余式。 • 难点:剩余系的判定,中国剩余定理,模整数同余式与模素数同余式的关系。
2.1.1同余式定义
• 同余定义:若两个整数a、b被自然数m除有相同的余数,那么称a、b对于模m同余,用式子表示为:
•
a≡b(modm). (*)
如下一些性质(其中a、b、c、d是整数,而m是自然数)。
2.1.2同余式性质
• 性质1:a≡a(mod m),(反身性)
•
这个性质很显然.因为a-a=0=m·0。
•
性质2:若a≡b(mod m),那么b≡a(mod m),(对称性)。
•
性质3:若a≡b(mod m),b≡c(mod m),那么a≡c(mod m),(传递性)。
• 初等数论同余是研究整数性质的一门学科的重要部分,历 史上遗留下来没有解决的大多数数论难题其问题本身容易 搞懂,容易引起人的兴趣,但是解决它们却非常困难。本 课程的目的是简单介绍在初等数论同余研究中经常用到的 若干基础知识、基本概念、方法和技巧。
(三)教学要求
• (1)教学总要求
有关定义、定理、性质等概念的内容按“知道、了解和理解”三个层次要求;有关计 算、解法、公式和法则等方法的内容按“会、掌握、熟练掌握”三个层次要求。
•
上式可读作:
•
a同余于b,模m。
•
同余式(*)意味着(我们假设a≥b):
•
a-b=mk,k是整数,即m|(a-b).
•
例如:①15≡365(mod7),因为365-15=350=7×50。
•
②56≡20(mod9),因为56-20=36=9×4。
•
③90≡0(mod10),因为90-0=90=10×9。
• 通过这门课的学习,使学生获得关于同余式的相 关基本知识与性质,掌握数论中的最基本的理论 和常用的方法,加强他们的理解和解决数学问题 的能力,为今后的学习奠定必要的基础。
(二)课程的目的
• 通过本课程的学习,使学生加深对整数的性质的了解,更 深入地理解初等数论与其它邻近学科的关系。
• 通过本课程的学习,使学生较为系统的获得利用数学工具 建立数学模型的基本知识、基本技能与常用技巧,培养学 生的抽象概括问题的能力,用数学方法和思想进行综合应 用与分析问题的能力,并着力导引实践—理论—实践的认 识过程,培养学生辩证唯物主义的世界观。
表示c与m的最大公约数)。
•
注意同余式性质7的条件(c,m)=1,否则像普通等式一样,两边约去,就是错
的。
•
例如6≡10(mod 4),而35(mod 4),因为(2,4)≠1。
•
请你自己举些例子验证上面的性质。
•
同余是研究自然数的性质的基本概念,是可除性的符号语言。
例题解析(1)
• 例1 判定288和214对于模37是否同余,74与20呢?
•
5、理解中国剩余定理,掌握中国剩余定理的简单应用,掌握求解简单同余式方程
组的方法。
•
6、了解高次同余式解的个数的判断方法,知道解高次同余式的方法,了解模整数
同余式与模素数同余式的关系,掌握求简单的(3、4次)同余式解的方法。
•
7、了解素数模同余式的次数化简、Wilson定理,了解同余式的次数与解的个数的
关系,知道n次同余式有n个解的条件。
(四)教学内容、重点及难点:
• (1)教学内容:
• 2.1.1同余的定义和基本性质 • 2.1.2同余式性质 • 2.2.1剩余类与剩余系 • 2.2.2剩余类性质 • 2.2.3剩余系及性质 • 2.3.1欧拉定理 • 2.3.2费马定理 • 3.1一次同余方程 • 3.2一次同余方程组
•
814≡8(mod13),1616≡4(mod13),
•
∴ 根据同余的性质5可得:
•
418×814×1616≡2×8×4≡64≡12(mod13)。
•
答:乘积418×814×1616除以13余数是12。
例题解析(2)
• 例3 求14389除以7的余数。