经济管理统计分析—假设检验

合集下载

假设检验课件

假设检验课件

假设检验课件假设检验课件假设检验是统计学中一种常用的推断方法,用于验证关于总体参数的假设。

在实际应用中,假设检验被广泛用于医学、经济、社会科学等领域。

本文将对假设检验的基本概念、步骤和常见方法进行介绍,并探讨其在实际问题中的应用。

一、假设检验的基本概念1.1 假设在假设检验中,我们需要对总体参数提出一个假设,并通过收集样本数据来判断这个假设是否成立。

一般来说,我们会提出一个原假设(H0)和一个备择假设(H1)。

原假设是我们需要进行检验的假设,备择假设则是对原假设的否定。

1.2 检验统计量检验统计量是用来衡量样本数据与原假设之间的差异程度的统计量。

常见的检验统计量有t值、F值、卡方值等。

通过计算检验统计量,我们可以得到一个观察到的差异程度,并据此进行假设检验。

1.3 显著性水平显著性水平是在假设检验中设定的一个临界值,用于判断原假设是否成立。

一般来说,我们将显著性水平设定为0.05或0.01。

如果计算得到的p值小于显著性水平,则拒绝原假设,否则接受原假设。

二、假设检验的步骤2.1 确定假设在进行假设检验之前,我们需要明确原假设和备择假设。

原假设通常是我们希望进行检验的假设,备择假设则是对原假设的否定。

2.2 选择适当的检验统计量根据问题的具体情况,选择适当的检验统计量进行计算。

不同的问题可能需要使用不同的统计量,例如,对两个总体均值的比较可以使用t检验,对多个总体均值的比较可以使用方差分析等。

2.3 计算检验统计量的值根据样本数据计算出检验统计量的值。

这一步需要根据具体的统计方法进行计算,例如,对于t检验,需要计算出样本均值、标准差和样本容量等。

2.4 计算p值根据检验统计量的值,计算出p值。

p值表示在原假设成立的情况下,观察到与之相差程度或更极端程度的结果出现的概率。

p值越小,说明观察到的差异越显著。

2.5 判断是否拒绝原假设根据显著性水平和计算得到的p值,判断是否拒绝原假设。

如果p值小于显著性水平,我们可以拒绝原假设,认为观察到的差异是显著的;如果p值大于显著性水平,我们则接受原假设,认为观察到的差异不是显著的。

浅析统计分析在经济管理领域中的运用

浅析统计分析在经济管理领域中的运用

浅析统计分析在经济管理领域中的运用随着大数据时代的到来,统计分析在经济管理领域中的运用越来越广泛。

统计分析是指通过数理统计方法对数据进行分析、提炼、挖掘其潜在规律和特点,从而为决策者提供决策依据的过程。

在经济管理领域中,统计分析主要包括数据整理和预处理、描述统计分析、假设检验等方面的内容。

一、数据整理和预处理数据整理和预处理是对收集到的数据进行排序、预处理、分类、归纳、标准化等,以便于后续的统计分析和处理。

数据整理和预处理的过程主要包括数据清洗、数据转换、数据缺失值的处理等。

对于数据清洗,主要是对于数据的异常进行筛选和处理,这样可以避免在后续的分析过程中产生误差。

数据转换是指将原始数据转换为方便分析的数据,例如将文本数据转换为数字数据。

针对数据缺失,需要考虑使用插补法、均值法等方法进行补全。

二、描述统计分析描述统计分析是统计学中最基础和最简单的一种分析方法,主要是对数据进行统计描述和分析。

其中包括测量指标、频数表、直方图、箱线图等各种图表和指标。

对于测量指标,主要包括平均数、中位数、方差、标准差等指标。

频数表则是对于数据的分布情况的表格表示,常常搭配直方图来进行描述。

直方图是一种用柱状图的形式来展示数据分布的图表,可以比较清晰地看出数据的分布情况。

而箱线图则是用于展示数据的分布情况和异常值,具有较强的可读性和直观性。

三、假设检验假设检验是一种通过样本数据推断总体特征和差异性的方法。

在经济管理领域中,假设检验主要用于验证某种经济假设是否成立,例如检验市场中的价格差异是否显著等。

假设检验主要分为参数检验和非参数检验两种。

对于参数检验,主要是对数据的特定参数进行检验,例如对于平均数或方差进行检验。

而非参数检验则是基于数据的分布情况进行检验,常常采用t检验、卡方检验等常见检验方法。

总之,在经济管理领域中,统计分析对于决策者提供了更多的数据支持和科学依据。

在使用统计分析时,需要注意数据的可靠性和合法性,避免在分析过程中产生偏差。

第6章 参数假设检验

第6章 参数假设检验

第2类错误(“存伪”错误):接受了错误的假设H0 。
关于小概率事件原理的说明
例如,有一个厂商声称,他的产品的合格品率很高, 可以达到99%,那么从一批产品(譬如100件)中随 机抽取一件,这一件恰恰好是次品的概率就非常小, 只有1%。如果厂商的宣传是真的,随机抽取一件是 次品的情况就几乎是不可能发生的。但如果这种情 况确实发生了,就有理由怀疑原来的假设,即产品 中只有1%的次品的假设是否成立,这时就有理由推 翻原来的假设,可以做出厂商的宣传是假的这样一 个推断。
依据小概率原理推断可能会犯错误! 假设上例中100件产品中确实只有1件是次品, 但恰好在一次抽取中被抽到了,按前面的方 式将得到一个错误的判断,但犯错误的概率 很小,本例是1%,也就是说我们在冒1%的风 险做出厂商宣传是假的这样一个推断。
相关的问题: 抽到多少件次品, 可判断厂商的宣传是 假的?
假设检验的步骤
第2类错误与样本容量
回顾引例,利用前面介绍的假设检验方法,我们拒绝 了总体均值为100mm的原假设。但是也可能有疑问: 是不是由于样本数量太少,导致的这一结果?自然地, 我们希望知道,多大的样本容量是合适的?
直观地考虑,不难想到:希望犯错误的风险越低, 样本容量就应该越大。
引例 某厂要在生产线上加工一种直径为100mm的轴,加工 出来一批后,检验人员从生产出来的轴中随机抽取了一个 由16根轴(?)构成的一个样本,测量出平均直径为 110mm,样本方差为100。问生产线是否出了问题。

设立假设
设立原假设(null hypothesis)H0和一个与之矛盾 的备择假设(alternative hypothesis) H1。


构造与计算检验统计量
根据事先给定的小概率值——显著性水 平进行检验

管理统计学-第4章 假设检验

管理统计学-第4章  假设检验

• 在本例中,
_
x 32 35
3.184
s / n 5.96 / 40
⑤作出统计决策
• 根据样本信息计算出统计量z的具体值,Z 将它与临界值 相比较,就可以作出接受 原假设或拒绝原假设的统计决策。
• 在本例中,由于z=3.184>1.96,落在拒绝 域内,所以拒绝原假设H0。可以得出结论:
在0.05的显著性水平下,抽样结果的平
– p<α,拒绝零假设 – p>α,不应拒绝零假设
举例1
• 某健身俱乐部主管经理估计会员的平均年 龄是35岁,研究人员从2005年入会的新 会员中随机抽取40人,调查得到他们的年 龄数据如下。
33 28 32 26 37 35 27 29 33 30 35 29 39 34 27 37 34 36 31 29 29 26 19 21 36 38 42 39 36 38 27 22 29 34 36 20 39 37 22 39
素有:总体方差已知还是未知,用于进行检验的
样本是大样本还是小样本,等等。
• 在本例中,由于n=40>30是大样本,所以 近似
服从正态分布,以样本标准差代替总体标准差, 所用的统计量是:
_
x
3.184
s/ n
③选取显著性水平,确定接受域和拒绝域
• 显著性水平(Significant Level):事先给定的形 成拒绝域的小概率,用表示。
(3)右单侧检验
两侧,左单侧检验的拒绝域位于统计量分布曲线的左侧,
右单侧检验的拒绝域位于统计量分布曲线的右侧。
④计算检验统计量的值
• 在提出原假设H0和备选假设H1,确定了检验统计 量,给定了显著性水平以后,接下来就要根据

统计学中的假设检验

统计学中的假设检验

统计学中的假设检验(Hypothesis Testing in Statistics)统计学中的假设检验是一种统计推断方法,用于验证对总体参数或某个结论提出的假设是否是合理的。

它可以用来评估样本数据是否可以支持或反驳特定的假设,从而对研究问题进行分析和决策。

在假设检验中,我们通常提出一个零假设(null hypothesis)和一个备择假设(alternative hypothesis)。

零假设是一种无效假设,即我们认为没有关联或没有差异存在。

备择假设是一种我们希望证明的假设,即存在某种关联或差异。

在进行假设检验时,我们首先收集样本数据。

然后,我们基于这些数据计算一个统计量,该统计量可以用于判断是否可以拒绝零假设。

统计学家们使用最常见的统计量是p值(P-value)。

p值是在给定零假设成立的条件下,观察到结果或更极端结果的概率。

如果p值小于预先设定的显著性水平α(通常为0.05),我们可以拒绝零假设,并接受备择假设。

举例来说,假设我们想要研究某药物对某种疾病的治疗效果。

零假设可以是该药物对治疗效果没有明显影响,备择假设可以是该药物对治疗效果有显著影响。

我们收集了一组患有该疾病的患者,并将其随机分为两组,对其中一组使用药物进行治疗,另一组使用安慰剂进行治疗。

然后,我们比较两组的治疗效果。

通过对比两组的数据,我们可以计算出一个p值。

如果p值小于我们设定的显著性水平α,我们可以拒绝零假设,即药物对治疗效果具有显著影响。

反之,如果p值大于α,我们无法拒绝零假设,即药物对治疗效果没有明显影响。

在假设检验中,还有两种错误可能性:第一类错误和第二类错误。

第一类错误是当真实情况下零假设正确时,我们错误地拒绝了它。

第二类错误是当真实情况下备择假设正确时,我们错误地接受了零假设。

通常,我们在设计假设检验时将第一类错误的概率控制在一个较小的水平上(如0.05),而第二类错误的概率则可能较大。

在实际应用中,假设检验是一种重要的工具,被广泛用于各种领域和学科,如医学研究、社会科学、工程等。

统计学原理——假设检验与方差分析

统计学原理——假设检验与方差分析
双侧检验是指检验统计量的取值位于其抽样分 布的任何一侧范围内时拒绝原假设,也就是说 抽样分布的左右两侧共同构成了拒绝域。
二、假设检验中的两类错误**
第Ⅰ类错误/弃真错误 (type Ⅰ error)
当原假设为真时拒绝原假设。犯第Ⅰ类错误的概率
通常记为 。
第Ⅱ类错误/取伪错误(type Ⅱ error)
n1 P 40010.2 320 f 5
所以为大样本分布,检验统计量 Z 近似服从 正态分布。样本数据显示:
p 100 0.25 400
Z p P0 0.25 0.20 0.05 2.5
P 1 P 0.21 0.2 0.02
n
400
在显著性水平 0.05 情况下,查表可知,
比RMB 245.95小或者比RMB 274.05大。所以,在双侧 检验(见下图8-1)中有两个拒绝域。
拒绝域
接受域
拒绝域
245.95
260.00
274.05
图8-1 双边检验的拒绝域与接受域
[例8-2] 在例8-1的假设检验中,如果样本的均值
为 X 240.00 ,当显著性水平为0.05时,原假设是否被 拒绝。
重点是三种不同情况下的假设检验方法,总体方差已 知时正态总体均值和总体比例的假设检验。
难点是总体方差未知时正态总体均值的假设检验和方 差分析。
第一节 假设检验
一、假设检验的概念
一、假设检验的概念
假设(hypothesis),又称统计假设,是对总体参数 的具体数值所作的陈述。
假设检验(hypothesis test) 是先对总体参数提出 某种假设,然后利用样本信息判断假设是否成立的过程。
(3) H0:μ = μ0 H1:μ<μ

应用统计学 经管类 第7章 假设检验

应用统计学 经管类 第7章 假设检验
5-5
• • • • • •
二、假设检验的步骤 (一)提出原假设与备择假设 (二)构造检验统计量 (三)确定拒绝域 (四)计算检验统计量的样本观测值 (五)做出结论
1、提出原假设与备择假设
• 消费者协会实际要进行的是一项统计检验 H0 工作。检验总体平均 =250是否成立。这 就是一个原假设(null hypothesis),通常用 表示,即: H0 : =250
第三节 自由分布检验
一、自由分布检验概述 自由分布检验与限定分布检验不同, 它是指在假设检验时不对总体分布的形状和参数加 以限制的检验。与参数检验相对应,自由分布检验又称为非参数检验,但这里的非参数只是 指未对检验统计量服从的分布及其参数做出限制, 并不意味着在检验中 “不涉及参数” “不 或 对参数进行检验” 。
• 解:通过统计软件进行计算。
(二)配对样本的均值检验 设配对观察值为(x,y),其差值是 d = x-y。设 d 为差值的总体均值,要检验的是:
H 0 : d 0 , H1 : d 0
记d
d ,则其方差是: n
2
2 d d / n Sd n(n 1) n
t
X 1000 S/ n
第三步:确定显著性水平,确定拒绝域。 α=0.05,查 t-分布表(自由度为 8),得临界值是 t / 2, n 1 t0.025,8 =2.306, 拒绝域是(-,-2.306]∪[2.306,+)。在 Excel 中,可以使用函数 TINV(0.05,8) 得到临界值 t0.025,8 。 第四步:计算检验统计量的样本观测值。 将 X 986 ,n=9,S=24,代入 t 统计量得:
H1 • 与原假设对立的是备选假设(alternative hypothesis) ,备选假设是在原假设被否 定时另一种可能成立的结论。备选假设比 原假设还重要,这要由实际问题来确定, 一般把期望出现的结论作为备选假设。

统计学单个总体的假设检验

统计学单个总体的假设检验

求得新钢丝的平均抗拉强度为 10631.4(kg/cm2)。
是否就可以作出新钢丝的平均抗拉强度高于原钢丝,即新工艺有效的结论?
某台加工缸套外径的机床,正常状态下所加工缸套外径的标准差应不超过 0.02 mm。
检验人员从加工的缸套中随机抽取 9 个,测得外径的样本标准差为 S = 0.03 mm。
问:该机床的加工精度是否符合要求?
单个总体的假设检验小结
*
本例中,要检验的是总体均值 ,
当 H0 为真时,
~t (n-1)
估计,
故应使用
来构造检验 的统计量。
统计量
1.提出一个希望推翻的假设,称为原假设,
记为 H0
4.给定一个小概率 ,
称为显著性水平
显著性水平 是当 H0 为真时,
拒绝 H0 的概率
(即犯“弃真”错误的概率)。
也即当检验结果拒绝 H0 时,
10512, 10623, 10668, 10554, 10776
10707, 10557, 10581, 10666, 10670
问在显著性水平 = 0.05下,新钢丝的平均抗拉强度比原钢丝是否有显著提高?
3
2
1
4
案例 1 解答:
*
说明新工艺对提高钢丝绳的抗拉强度是有显著效果的。
统计量
与前面分析完全类似地,可得如下检验方法:
P≠P0
P > P0
P < P0
7.4 大样本单个总体比例的检验
解:由题意,H0:P = P0 = 25%,H1:P > 25%, 样本比例 p = 112/400 = 0.28
【案例5】某一系列电视剧是否获得成功 如果能够证明某一系列电视剧在播出的头13周其观众的收视率超过了25%,则可以断定它获得了成功。假定由400个家庭组成的样本中,有112个家庭在头13周看过了某系列电视剧。在 = 0.01 的显著性水平下,检验这部。 系列电视剧是否获得了成功。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档