2016年北京市高考数学文科试题含答案(Word版)
(北京题)2016年高考数学文科试题含答案

1 2i = 2i
(B) {x|x <4或x > 5}
(C) {x|2<x <3}
(D) {x|x <2或x > 5}
ቤተ መጻሕፍቲ ባይዱ
(A)i(B)1+i(C) i (D) 1 i (3)执行如图所示的程序框图,输出的 s 值为 (A)8 (B)9 (C)27 (D)36
一、选择题(共 8 小题,每小题 5 分,共 40 分) (1)C (2)A (3)B (4)D (5)C (6)B 二、填空题(共 6 小题,每小题 5 分,共 30 分) ( 9)
(17) (本小题 13 分) 某市民用水拟实行阶梯水价,每人用水量中不超过 w 立方米的部分按 4 元/立方米收费,超出 w 立方米 的部分按 10 元/立方米收费,从该市随机调查了 10000 位居民,获得了他们某月的用水量数据,整理得到如 下频率分布直方图:
(I)如果 w 为整数,那么根据此次调查,为使 80%以上居民在该月的用水价格为 4 元/立方米,w 至少定为 多少? (II)假设同组中的每个数据用该组区间的右端点值代替,当 w=3 时,估计该市居民该月的人均水费.
由.
(19) (本小题 14 分)
x2 y2 已知椭圆 C: 2 2 1 过点 A(2,0) ,B(0,1)两点. a b
(I)求椭圆 C 的方程及离心率; (II)设 P 为第三象限内一点且在椭圆 C 上,直线 PA 与 y 轴交于点 M,直线 PB 与 x 轴交于点 N,求证: 四边形 ABNM 的面积为定值.
2016年高考文数真题试卷(北京卷)及解析

…外…………○…………装…………○学校:___________姓名:___________班…内…………○…………装…………○2016年高考文数真题试卷(北京卷)学校:___________姓名:___________班级:___________考号:___________注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题x <4},B={x|x <3或x >5},则A∩B=( ) A.{x|2<x <5}B.{x|x <4或x >5}C.{x|2<x <3}D.{x|x <2或x >5} 2.复数1+2i2−i = ( )A.iB.1+iC.﹣iD.1﹣i3.执行如图所示的程序框图,输出s 的值为( )A.8B.9C.27D.364.下列函数中,在区间(﹣1,1)上为减函数的是( ) A.y =11−xB.y=cosx答案第2页,总12页C.y=ln (x+1)D.y=2﹣x5.圆(x+1)2+y 2=2的圆心到直线y=x+3的距离为( ) A.1 B.2 C.√2D.2 √26.从甲、乙等5名学生中随机选出2人,则甲被选中的概率为( ) A.15 B.25 C.825 D.9257.已知A (2,5),B (4,1).若点P (x ,y )在线段AB 上,则2x ﹣y 的最大值为( ) A.﹣1 B.3 C.7 D.88.某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段,表中为10的有6人,则( )A.2号学生进入30秒跳绳决赛B.5号学生进入30秒跳绳决赛C.8号学生进入30秒跳绳决赛D.9号学生进入30秒跳绳决赛第II 卷(非选择题)二、填空题(题型注释)9.已知向量 a →=(1, √3 ), b →=( √3 ,1),则 a →与 b →夹角的大小为 . 10.函数f (x )= xx−1 (x≥2)的最大值为 .…………○…………装……………线…………○…学校:___________姓名:____…………○…………装……………线…………○…11.某四棱柱的三视图如图所示,则该四棱柱的体积为 .12.已知双曲线 x 2a 2−y 2b 2 =1(a >0,b >0)的一条渐近线为2x+y=0,一个焦点为( √5 ,0),则a= , b= .13.在△ABC 中,∠A= 2π3 ,a= √3 c ,则 bc = .14.某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种,则该网店①第一天售出但第二天未售出的商品有 种; ②这三天售出的商品最少有 种.三、解答题(题型注释)0)的最小正周期为π. (1)求ω的值;(2)求f (x )的单调递增区间.16.如图,在四棱锥P ﹣ABCD 中,PC⊥平面ABCD ,AB∥DC,DC⊥AC.(1)求证:DC⊥平面PAC ;(2)求证:平面PAB⊥平面PAC ;(3)设点E 为AB 的中点,在棱PB 上是否存在点F ,使得PA∥平面CEF ?说明理由. 17.已知椭圆C : x 2a 2+y 2b2 =1过点A (2,0),B (0,1)两点.(1)求椭圆C 的方程及离心率;(2)设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值. 18.设函数f (x )=x 3+ax 2+bx+c .(1)求曲线y=f (x )在点(0,f (0))处的切线方程;答案第4页,总12页(2)设a=b=4,若函数f (x )有三个不同零点,求c 的取值范围; (3)求证:a 2﹣3b >0是f (x )有三个不同零点的必要而不充分条件.…………外…………………订……………………线……级:___________考号:_________…………内…………………订……………………线……参数答案1.C【解析】1.解:∵集合A={x|2<x <4},B={x|x <3或x >5}, ∴A∩B={x|2<x <3}. 故选:C .【考点精析】本题主要考查了集合的交集运算的相关知识点,需要掌握交集的性质:(1)A∩B A ,A∩BB ,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,则AB ,反之也成立才能正确解答此题. 2.A【解析】2.解:===i ,故选:A【考点精析】本题主要考查了复数的乘法与除法的相关知识点,需要掌握设则;才能正确解答此题. 3.B【解析】3.解:当k=0时,满足进行循环的条件,故S=0,k=1, 当k=1时,满足进行循环的条件,故S=1,k=2, 当k=2时,满足进行循环的条件,故S=9,k=3, 当k=3时,不满足进行循环的条件, 故输出的S 值为9,故选:B ;本题考查的知识点是程序框图,当循环次数不多,或有规律可循时,可采用模拟程序法进行解答.【考点精析】掌握程序框图是解答本题的根本,需要知道程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形;一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明. 4.D【解析】4.解:A .x 增大时,﹣x 减小,1﹣x 减小,∴增大; ∴函数在(﹣1,1)上为增函数,即该选项错误;B .y=cosx 在(﹣1,1)上没有单调性,∴该选项错误;C .x 增大时,x+1增大,ln (x+1)增大,∴y=ln(x+1)在(﹣1,1)上为增函数,即该选项错误;D. ;答案第6页,总12页○…………外…………○…………装………○………订…………○…………线※※请※※不※※※※在※※装※※订线※※内※※答※※题※※○…………内…………○…………装………○………订…………○…………线故选D .【考点精析】根据题目的已知条件,利用函数单调性的判断方法的相关知识可以得到问题的答案,需要掌握单调性的判定法:①设x 1,x 2是所研究区间内任两个自变量,且x 1<x 2;②判定f(x 1)与f(x 2)的大小;③作差比较或作商比较. 5.C【解析】5.解:∵圆(x+1)2+y 2=2的圆心为(﹣1,0), ∴圆(x+1)2+y 2=2的圆心到直线y=x+3的距离为: d= =.故选:C .【考点精析】解答此题的关键在于理解点到直线的距离公式的相关知识,掌握点到直线的距离为:,以及对圆的标准方程的理解,了解圆的标准方程:;圆心为A(a,b),半径为r 的圆的方程.6.B【解析】6.解:从甲、乙等5名学生中随机选出2人,基本事件总数n= =10,甲被选中包含的基本事件的个数m= =4,∴甲被选中的概率p= = = . 故选:B . 7.C【解析】7.解:如图A (2,5),B (4,1).若点P (x ,y )在线段AB 上, 令z=2x ﹣y ,则平行y=2x ﹣z 当直线经过B 时截距最小,Z 取得最大值, 可得2x ﹣y 的最大值为:2×4﹣1=7. 故选:C .…………外…………○………装…………○…………订…学校:_______姓名:___________班级:___________考号:…………内…………○………装…………○…………订…8.B【解析】8.解:∵这10名学生中,进入立定跳远决赛的有8人, 故编号为1,2,3,4,5,6,7,8的学生进入立定跳远决赛, 又由同时进入立定跳远决赛和30秒跳绳决赛的有6人, 则3,6,7号同学必进入30秒跳绳决赛,剩下1,2,4,5,8号同学的成绩分别为:63,a ,60,63,a ﹣1有且只有3人进入30秒跳绳决赛,故成绩为63的同学必进入30秒跳绳决赛, 故选:B【考点精析】本题主要考查了命题的真假判断与应用的相关知识点,需要掌握两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系才能正确解答此题. 9.π6【解析】9.解:∵向量 =(1,), =(,1), ∴ 与 夹角θ满足:cosθ= = = ,又∵θ∈[0,π], ∴θ=,所以答案是:.【考点精析】解答此题的关键在于理解数量积表示两个向量的夹角的相关知识,掌握设、都是非零向量,,,是与的夹角,则.10.2【解析】10.解:;∴f(x )在[2,+∞)上单调递减; ∴x=2时,f (x )取最大值2. 所以答案是:2.【考点精析】本题主要考查了函数的最大(小)值与导数的相关知识点,需要掌握求函数在上的最大值与最小值的步骤:(1)求函数在内的极值;(2) 将函数的各极值与端点处的函数值,比较,其中最大的是一个最大值,最小的是最小值才能正确解答此题.答案第8页,总12页○…………外……………………装………○…………订………○…………线……※请※※不※※要※※在※※※※订※※线※※内※※答※※题○…………内……………………装………○…………订………○…………线……11.32【解析】11.解:由已知中的三视图可得:该几何体上部是一个以俯视图为底面四棱柱,棱柱的底面面积S= ×(1+2)×1= , 棱柱的高为1,故棱柱的体积V= ,所以答案是:【考点精析】解答此题的关键在于理解由三视图求面积、体积的相关知识,掌握求体积的关键是求出底面积和高;求全面积的关键是求出各个侧面的面积. 12.1;2【解析】12.解:∵双曲线 ﹣ =1(a >0,b >0)的一条渐近线为2x+y=0,一个焦点为( ,0), ∴ ,解得a=1,b=2. 所以答案是:1,2. 13.1【解析】13.解:在△ABC 中,∠A= ,a= c , 由正弦定理可得:,=,sinC= ,C=,则B==.三角形是等腰三角形,B=C ,则b=c ,则 =1. 所以答案是:1. 14.16;29【解析】14.解:①设第一天售出商品的种类集为A ,第二天售出商品的种类集为B ,第三天售出商品的种类集为C , 如图,则第一天售出但第二天未售出的商品有16种;②由①知,前两天售出的商品种类为19+13﹣3=29种,当第三天售出的18种商品都是第一天或第二天售出的商品时,这三天售出的商品种类最少为29种.所以答案是:①16;②29.15.(1)解:f(x)=2sinωxcosωx+cos2ωx=sin2ωx+cos2ωx= √2(√22sin2ωx+√22cos2ωx) = √2sin(2ωx+π4).由T= 2π2ω=π,得ω=1;(2)解:由(1)得,f(x)= √2sin(2x+π4).再由−π2+2kπ≤2x+π4≤π2+2kπ,得−3π8+kπ≤x≤π8+kπ.∴f(x)的单调递增区间为[ −3π8+kπ,π8+kπ ](k∈Z)【解析】15.(1)利用倍角公式结合两角和的正弦化积,再由周期公式列式求得ω的值;(2)直接由相位在正弦函数的增区间内求解x的取值范围得f(x)的单调递增区间.;本题考查y=Asin(ωx+φ)型函数的图象和性质,考查了两角和的正弦,属中档题.16.(1)证明:∵PC⊥平面ABCD,DC⊂平面ABCD,∴PC⊥DC,∵DC⊥AC,PC∩AC=C,∴DC⊥平面PAC;(2)证明:∵AB∥DC,DC⊥AC,∴AB⊥AC,∵PC⊥平面ABCD,AB⊂平面ABCD,∴PC⊥AB,∵PC∩AC=C,∴AB⊥平面PAC,∵AB⊂平面PAB,∴平面PAB⊥平面PAC;(3)解:在棱PB上存在中点F,使得PA∥平面CEF.∵点E为AB的中点,∴EF∥PA,∵PA⊄平面CEF,EF⊂平面CEF,∴PA∥平面CEF答案第10页,总12页…………○………要※※在※※装※※订※※线…………○………【解析】16.(1)利用线面垂直的判定定理证明DC⊥平面PAC ;(2)利用线面垂直的判定定理证明AB⊥平面PAC ,即可证明平面PAB⊥平面PAC ; (3)在棱PB 上存在中点F ,使得PA∥平面CEF .利用线面平行的判定定理证明.本题考查线面平行与垂直的证明,考查平面与平面垂直的证明,考查学生分析解决问题的能力,属于中档题.【考点精析】本题主要考查了空间中直线与平面之间的位置关系和平面与平面之间的位置关系的相关知识点,需要掌握直线在平面内—有无数个公共点;直线与平面相交—有且只有一个公共点;直线在平面平行—没有公共点;两个平面平行没有交点;两个平面相交有一条公共直线才能正确解答此题. 17. (1) 解:∵椭圆C : x 2a2+y 2b2 =1过点A (2,0),B (0,1)两点,∴a=2,b=1,则 c =√a 2−b 2 = √4−1=√3 , ∴椭圆C 的方程为 x 24+y 2=1 ,离心率为e= √32(2)证明:如图,设P (x 0,y 0),则 k PA =y 0x 0−2,PA 所在直线方程为 y =y 0x 0−2(x −2) ,取x=0,得 y M =2y 0x0−2;k PB =y 0−1x 0,PB 所在直线方程为 y =y 0−1x 0x +1 ,取y=0,得 x N =x1−y 0.∴|AN|= 2−x N =2−x 01−y 0=2−2y 0−x 01−y 0,|BM|=1﹣ x M +2y 0x 0−2=x 0+2y 0−2x 0−2.∴ S ABNM =12|AN|×|BM| = 12×2−2y 0−x 01−y×x 0+2y 0−2x 0−2= −12×(x 0+2y 0−2)2(1−y 0)(x 0−2)= 12×(x 0+2y 0)2−4(x 0+2y 0)+4x 0y 0+2−x 0−2y 0= 12 x 02+4x 0y 0−4x 0−8y 0+4x 0y 0+2−x 0−2y 0= 12×4(x 0y 0+2−2y 0−x 0)x 0y 0+2−x 0−2y 0.第11页,总12页…………○…………线………:___________…………○…………线………∴四边形ABNM 的面积为定值2.【解析】17.(1)由题意可得a=2,b=1,则,则椭圆C 的方程可求,离心率为e= ;(2)设P (x 0 , y 0),求出PA 、PB 所在直线方程,得到M ,N 的坐标,求得|AN|,|BM|.由 ,结合P 在椭圆上求得四边形ABNM 的面积为定值2.;本题考查椭圆的标准方程,考查了椭圆的简单性质,考查计算能力与推理论证能力,是中档题.【考点精析】通过灵活运用椭圆的标准方程,掌握椭圆标准方程焦点在x 轴:,焦点在y 轴:即可以解答此题.18. (1) 解:函数f (x )=x 3+ax 2+bx+c 的导数为f′(x )=3x 2+2ax+b ,可得y=f (x )在点(0,f (0))处的切线斜率为k=f′(0)=b ,切点为(0,c ),可得切线的方程为y=bx+c(2)解:设a=b=4,即有f (x )=x 3+4x 2+4x+c , 由f (x )=0,可得﹣c=x 3+4x 2+4x ,由g (x )=x 3+4x 2+4x 的导数g′(x )=3x 2+8x+4=(x+2)(3x+2), 当x >﹣ 23 或x <﹣2时,g′(x )>0,g (x )递增; 当﹣2<x <﹣ 23 时,g′(x )<0,g (x )递减. 即有g (x )在x=﹣2处取得极大值,且为0; g (x )在x=﹣ 23 处取得极小值,且为﹣ 3227 . 由函数f (x )有三个不同零点,可得﹣ 3227 <﹣c <0, 解得0<c < 3227 ,则c 的取值范围是(0, 3227 )(3)证明:若f (x )有三个不同零点,令f (x )=0, 可得f (x )的图象与x 轴有三个不同的交点. 即有f (x )有3个单调区间,即为导数f′(x )=3x 2+2ax+b 的图象与x 轴有两个交点, 可得△>0,即4a 2﹣12b >0,即为a 2﹣3b >0;若a 2﹣3b >0,即有导数f′(x )=3x 2+2ax+b 的图象与x 轴有两个交点,答案第12页,总12页当c=0,a=b=4时,满足a 2﹣3b >0,即有f (x )=x (x+2)2,图象与x 轴交于(0,0),(﹣2,0),则f (x )的零点为2个. 故a 2﹣3b >0是f (x )有三个不同零点的必要而不充分条件.【解析】18.(1)求出f (x )的导数,求得切线的斜率和切点,进而得到所求切线的方程; (2)由f (x )=0,可得﹣c=x 3+4x 2+4x ,由g (x )=x 3+4x 2+4x ,求得导数,单调区间和极值,由﹣c 介于极值之间,解不等式即可得到所求范围;(3)先证若f (x )有三个不同零点,令f (x )=0,可得单调区间有3个,求出导数,由导数的图象与x 轴有两个不同的交点,运用判别式大于0,可得a 2﹣3b >0;再由a=b=4,c=0,可得若a 2﹣3b >0,不能推出f (x )有3个零点.不同考查导数的运用:求切线的方程和单调区间、极值,考查函数的零点的判断,注意运用导数求得极值,考查化简整理的圆能力,属于中档题.。
2016年北京高考数学文科试题及答案

绝密★启封并使用完毕前2016年普通高等学校招生全国统一考试数学(文)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题共40分)一、选择题:共8个小题,每小题5分,共40 1.已知集合={|24}A x x <<,B =A B =()A.{|25}x x << B.{|4x x <或5}x >2x <或x >2.复数122i i+=-() A.i B.1i + C.i -D.1i -3.执行如图所示的程序框图,输出的s4. A.5.圆(x +6.概率为825D.925 7.已知(2,5)A ,(4,1)B ,若点(,)P x y 在线段AB 上,则2x y -的最大值为()A.?1B.3C.7D.88.某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊.在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则A.2号学生进入30秒跳绳决赛C.8号学生进入30秒跳绳决赛二、填空题共69.已知向量=a b 10.函数()(1x f x x x =≥-12.,则_____________.a =,则bc =_________. 14.19种商品,第二天售出13种商品,3种,后两天都售出的商品有4种,则该网店: 种;②这三天售出的商品最少有_______种.15.(本小题13分)已知}{n a 是等差数列,}{n b 是等差数列,且32=b ,93=b ,11b a =,414b a =.(1)求}{n a 的通项公式;(2)设n n n b a c +=,求数列}{n c 的前n 项和.16.(本小题13分)已知函数)0(2cos cos sin 2)(>+=ωωωωx x x x f 的最小正周期为π.(1)求ω的值;(2)求)(x f 的单调递增区间.17.(本小题13分)某市民用水拟实行阶梯水价,每人用水量中不超过w 立方米的部分按4元/立方米收费,超出w 立方米的部分按10元/立方米收费,从该市随机调查了10000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图:(I )如果w 为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w至少定为多少?(II )假设同组中的每个数据用该组区间的右端点值代替,当w=3时,估计该市居民该月的人均水费.18.(本小题14分)如图,在四棱锥ABCD P -中,⊥PC 平面ABCD ,,AB DC DC AC ⊥∥(I )求证:DC PAC ⊥平面;(II )求证:PAB PAC ⊥平面平面;(III )设点E 为AB 的中点,在棱PB .19.(本小题14分)已知椭圆C :22221x y a b+=过点(Ⅱ)设P 为第三象限内一点且在椭圆C 上,N ,求证:四边形20.(本小题13c 的取值范围;.C考点:集合交集【名师点睛】1. 首先要弄清构成集合的元素是什么(即元素的意义),是数集还是点集,如集合)}(|{x f y x =,)}(|{x f y y =,)}(|),{(x f y y x =三者是不同的.2.集合中的元素具有三性——确定性、互异性、无序性,特别是互异性,在判断集合中元素的个数时,以及在含参的集合运算中,常因忽视互异性,疏于检验而出错.3.数形结合常使集合间的运算更简捷、直观.对离散的数集间的运算或抽象集合间的运算,可借助Venn 图实施,对连续的数集间的运算,常利用数轴进行,对点集间的运算,则通过坐标平面内的图形求解,这在本质上是数形结合思想的体现和运用.4.空集是不含任何元素的集合,在未明确说明一个集合非空的情况下,要考虑集合为空集的可能.另外,不可忽视空集是任何元素的子集.2.【答案】A【解析】 试题分析:12(12)(2)2422(2)(2)5i i i i i i i i i +++++-===--+,故选A. 考点:复数运算【名师点睛】项式的合并同类项,再将3.的条件)D 符合题意,故选D.(2)(减)函数与一个减(增)函数的差是增(减)函数;(3).5.【答案】C考点:直线与圆的位置关系【名师点睛】点),(00y x 到直线b kx y +=(即0=--b kx y )的距离公式2001||k b kx y d +--=记忆容易,对于知d 求k ,b 很方便.6.【答案】B【解析】试题分析:所求概率为142525C P C ==,故选B. 考点:古典概型【名师点睛】如果基本事件的个数比较少,可用列举法把古典概型试验所含的基本事件一一列举出来,然后再求出事件A 中的基本事件数,利用公式nm A P =)(求出事件A 的概率,这是一个形象直观的好方法,但列举时必须按照某一顺序做到不重不漏.如果基本事件个数比较多,列举有一定困难时,也可借助两个计数原理及排列组合知识直接计算m ,n,再运用公式7.(1);④数形结合法;⑤换元法(;⑦不等式法,如(4),(5)问题,如应重点掌握.B分别是3,6,7,10,(1,5并列),49号需进30秒跳绳比赛名,,10,9,还需3个编号为1-8的同学进决赛,而(1,5)与4的成绩仅相隔1,故只能1,5,4进30秒跳绳的决赛,故选B.考点:统计【名师点睛】本题将统计与实际应用结合,创新味十足,是能力立意的好题,根据表格中数据分析排名的多种可能性,此题即是如此.列举的关键是要有序(有规律),从而确保不重不漏,另外注意条件中数据的特征.9.【答案】30考点:平面向量数量积 【名师点睛】由向量数量积的定义θcos ||||⋅⋅=⋅(θ为,的夹角)可知,数量积的值、模的乘积、夹角知二可求一,再考虑到数量积还可以用坐标表示,因此又可以借助坐标进行运算.当然,无论怎样变化,其本质都是对数量积定义的考查.求解夹角与模的题目在近年高考中出现的频率很高,应熟练掌握其解法.10.【答案】2【解析】 试题分析:1()11f x x =+-(1);④数形结合法;⑤换元法(;⑦不等式法,如(4),(5)问题,如(5)3.2.常见的有以下几对应的几何体为圆锥;④三视图为一个三角.12.【答案】1,2a b ==.【解析】试题分析:依题意有2c b a ⎧=⎪⎨=-⎪⎩,结合222c a b =+,解得1,2a b ==.考点:双曲线的基本概念【名师点睛】在双曲线的几何性质中,渐近线是其独特的一种性质,也是考查的重点内容.对渐近线:(1)掌握方程;(2)掌握其倾斜角、斜率的求法;(3)会利用渐近线方程求双曲线方程的待定系数. 求双曲线方程的方法以及双曲线定义和双曲线标准方程的应用都和与椭圆有关的问题相类似.因此,双曲线与椭圆的标准方程可统一为122=+By Ax 的形式,当0>A ,0>B ,B A ≠时为椭圆,当0<AB 时为双曲线.13.【答案】1考点:解三角形【名师点睛】①根据所给等式的结构特点利用余弦定理将角化边进行变形是迅速解答本题的关14.试题分析:①由于前二天都售出的商品有3种,②同①第三售出的商品中有14时,是第三天中14,,A B C是能力立意的好题,关键在于分析商品出.1,2,3,⋅⋅⋅);(2)2312-+n n 21n =-,13n n b -=.1213n n -=-+.n 的前n 项和2312n n -=+. 考点:等差、等比数列的通项公式和前n 项和公式,考查运算能力.【名师点睛】1.数列的通项公式及前n 项和公式都可以看作项数n 的函数,是函数思想在数列中的应用.数列以通项为纲,数列的问题,最终归结为对数列通项的研究,而数列的前n 项和S n 可视为数列{S n }的通项.通项及求和是数列中最基本也是最重要的问题之一;2.数列的综合问题涉及到的数学思想:函数与方程思想(如:求最值或基本量)、转化与化归思想(如:求和或应用)、特殊到一般思想(如:求通项公式)、分类讨论思想(如:等比数列求和,1=q 或1≠q )等.16.【答案】(Ⅰ)1ω=(Ⅱ)3,88k k ππππ⎡⎤-+⎢⎥⎣⎦(k ∈Z ). 考点:两角和的正弦公式、周期公式、三角函数的单调性.【名师点睛】三角函数的单调性:1.三角函数单调区间的确定,一般先将函数式化为基本三角函数标准式,然后通过同解变形或利用数形结合方法求解.关于复合函数的单调性的求法;2利用三角函数的单调性比较两个同名三角函数值的大小,必须先看两角是否同属于这一函数的同一单调区间(III )棱PB 上存在点F平面C F E ,C F E .常作的辅助线是在其中一个面内(必要时可以通过平面几何的.19.【答案】(Ⅰ)2214x y +=;2=e (Ⅱ)见解析.所以离心率c e a ==. 从而四边形ABNM 的面积为定值.考点:椭圆方程,直线和椭圆的关系,运算求解能力.【名师点睛】解决定值定点方法一般有两种:(1)从特殊入手,求出定点、定值、定线,再证明定点、定值、定线与变量无关;(2)直接计算、推理,并在计算、推理的过程中消去变量,从而得到定点、定值、定线.应注意到繁难的代数运算是此类问题的特点,设而不求方法、整体思想和消元的思想的运用可有效地简化运算.20.【答案】(Ⅰ)y bx c =+;(Ⅱ)320,27c ⎛⎫∈ ⎪⎝⎭;(III )见解析. (II )当4a b ==时,()3244f x x x x c =+++,所以()2384f x x x '=++.。
2016年高考数学(文)北京卷参考答案

数学(文)(北京卷)参考答案第1页(共7页)绝密★考试结束前2016年普通高等学校招生全国统一考试数学(文)(北京卷)参考答案一、选择题(共8小题,每小题5分,共40分)(1)C (2)A (3)B (4)D (5)C(6)B(7)C(8)B二、填空题(共6小题,每小题5分,共30分) ( 9 )30︒ (10)2 (11)32(12)12 (13)1(14)1629三、解答题(共6小题,共80分) (15)(共13分)解:(Ⅰ)等比数列{}n b 的公比32933b q b ===, 所以211b b q==,4327b b q ==. 设等差数列{}n a 的公差为d . 因为111a b ==,14427a b ==. 所以11327d +=,即2d =. 所以21(1,2,)n a n n =-= .(Ⅱ)由(Ⅰ)知,,.因此.从而数列的前项和.21n a n =-13n n b -=1213n n n n c a b n -=+=-+{}n c n ()11321133n n S n -=++⋅⋅⋅+-+++⋅⋅⋅+()12113213n n n +--=+-2312n n -=+数学(文)(北京卷)参考答案第2页(共7页)(16)(共13分)解:(Ⅰ)因为()2sin cos cos 2f x x x x ωωω=+sin 2cos 2x x ωω=+π)4x ω=+所以()f x 的最小正周期为22T ωωππ==. 依题意,ωπ=π,解得ω=1.(Ⅱ)由(Ⅰ)知,π())4f x x +函数的单调递增区间为(). 由,得. 所以的单调递增区间为().sin y x =2,222k k ππππ⎡⎤-+⎢⎥⎣⎦k ∈Z 222242k x k πππππ-≤+≤+388k x k ππππ-≤≤+()f x 3,88k k ππππ⎡⎤-+⎢⎥⎣⎦k ∈Z数学(文)(北京卷)参考答案第3页(共7页)(17)(共13分)解:(Ⅰ)由用水量的频率分布直方图知,该市居民该月用水量在区间[0.5,1],(1,1.5],(1.5,2],(2,2.5],(2.5,3]内的频率 依次为,,,,. 所以该月用水量不超过立方米的居民占%, 用水量不超过立方米的居民占%. 依题意,至少定为.(Ⅱ)由用水量的频率分布直方图及题意,得居民该月用水费用的数据分组与频率分布表:得居民该月用水费用的数据分组与频率分布表: 根据题意,该市居民该月的人均水费估计为:(元).0.10.150.20.250.15385245w 340.160.1580.2100.25120.15170.05220.05270.05⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯10.5=数学(文)(北京卷)参考答案第4页(共7页)(18)(共14分)解:(Ⅰ)因为PC ⊥平面ABCD ,所以PC DC ⊥. 又因为DC AC ⊥, 所以DC ⊥平面PAC . (Ⅱ)因为//AB DC ,DC AC ⊥,所以AB AC ⊥. 因为PC ⊥平面ABCD , 所以PC AB ⊥. 所以AB ⊥平面PAC , 所以平面PAB ⊥平面PAC .(Ⅲ)棱PB 上存在点F ,使得//PA 平面CEF .证明如下:取PB 中点F ,连结EF ,CE ,CF . 又因为E 为AB 的中点, 所以//EF PA . 又因为PA ⊄平面CEF , 所以//PA 平面CEF .PDCBEF数学(文)(北京卷)参考答案第5页(共7页)(19)(共14分)解:(Ⅰ)由题意得,2a =,1b =.所以椭圆C 的方程为2214x y +=.又c = 故椭圆C的离心率c e a ==.(Ⅱ)设00(,)P x y ,其中000,0x y <<,则22004x y +=.又(2,0),(0,1)A B ,所以 直线PA 的方程为. 令,得,从而||BM . 直线PB 的方程为. 令,得,从而||AN .所以四边形ABNM 的面积1||||2S AN BM =⋅.从而四边形ABNM 的面积为定值.()0022y y x x =--0x =0022y y x M =--002112y y x MBM =-=+-0011y y x x -=+0y =001x x y N =--00221x x y N AN =-=+-00002121212x y y x ⎛⎫⎛⎫=++ ⎪⎪--⎝⎭⎝⎭()22000000000044484222x y x y x y x y x y ++--+=--+00000000224422x y x y x y x y --+=--+2=数学(文)(北京卷)参考答案第6页(共7页)(20)(共13分)解:(Ⅰ)由32()f x x ax bx c =+++得2()32f x x ax b '=++.因为(0)f c =,(0)f b '=,所以曲线()y f x =在点(0,(0))f 处的切线方程为y bx c =+. (Ⅱ)当4a b ==时,32()44f x x x x c =+++,所以2()384f x x x '=++.令()0f x '=,得23840x x ++=,解得2x =-或23x =-.()f x 与()f x '在区间(,)-∞+∞上的情况如下:所以,当且时,存在,, ,使得.由的单调性知,当且仅当时,函数有三个不同零点.(Ⅲ)当24120a b ∆=-<时,2()320f x x ax b '=++>,(,)x ∈-∞+∞,此时函数()f x 在区间(,)-∞+∞上单调递增,所以()f x 不可能有三个不同零点. 当24120a b ∆=-=时,2()32f x x ax b '=++只有一个零点,记作0x . 当0(,)x x ∈-∞时,()0f x '>,()f x 在区间0(,)x -∞上单调递增;0c >32027c -<()14,2x ∈--222,3x ⎛⎫∈-- ⎪⎝⎭32,03x ⎛⎫∈- ⎪⎝⎭()()()1230f x f x f x ===()f x 320,27c ⎛⎫∈ ⎪⎝⎭()3244f x x x x c =+++数学(文)(北京卷)参考答案第7页(共7页)当0(,)x x ∈+∞时,()0f x '>,()f x 在区间0(,)x +∞上单调递增. 所以()f x 不可能有三个不同零点.综上所述,若函数()f x 有三个不同零点,则必有24120a b ∆=->. 故230a b ->是()f x 有三个不同零点的必要条件. 当4a b ==,0c =时,230a b ->,322()44(2)f x x x x x x =++=+只有两个不同的零点, 所以230a b ->不是()f x 有三个不同零点的充分条件. 因此,230a b ->是()f x 有三个不同零点的必要不充分条件.。
2016年北京高考数学真题及答案(文科)

数学(文)(北京卷) 第 1 页(共 10 页)绝密★启封并使用完毕前2016年普通高等学校招生全国统一考试数 学(文)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合{|24}A x x =<<,{|3B x x =<或5}x >,则A B =I(A ){|25}x x << (B ){|4x x <或5}x > (C ){|23}x x << (D ){|2x x <或5}x >(2)复数12i2i+=- (A )i (B )1i + (C )i -(D )1i -(3)执行如图所示的程序框图,输出的s 值为(A )8 (B )9 (C )27 (D )36(4)下列函数中,在区间(1,1)-上为减函数的是(A )11y x=- (B )cos y x = (C )ln(1)y x =+(D )2x y -=数学(文)(北京卷) 第 2 页(共 10 页)(5)圆22(1)2x y ++=的圆心到直线3y x =+的距离为(A )1 (B )2 (C(D)(6)从甲、乙等5名学生中随机选出2人,则甲被选中的概率为(A )15(B )25 (C )825(D )925(7)已知(2,5),(4,1)A B .若点(,)P x y 在线段AB 上,则2x y -的最大值为(A )1- (B )3 (C )7(D )8(8)某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊.在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则(A )2号学生进入30秒跳绳决赛 (B )5号学生进入30秒跳绳决赛 (C )8号学生进入30秒跳绳决赛(D )9号学生进入30秒跳绳决赛数学(文)(北京卷) 第 3 页(共 10 页)第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
2016年普通高等学校招生全国统一考试北京卷文科数学(2016年北京市高考文科数学)

2016年普通高等学校招生全国统一考试北京文科数学1.已知集合A={x|2<x<4},B={x|x<3或x>5},则A∩B=()A.{x|2<x<5}B.{x|x<4或x>5}C.{x|2<x<3}D.{x|x<2或x>5}答案C∵A={x|2<x<4},B={x|x<3或x>5},∴A∩B={x|2<x<3}.故选C.2.复数1+2i2﹣i=()A.i B.1+i C.﹣i D.1﹣i答案A1+2i2﹣i =(1+2i)(2+i)(2﹣i)(2+i)=2+i+4i﹣25=i,故选A.3.执行如图所示的程序框图,输出的s值为()A.8B.9C.27D.36答案B由程序框图可知,k=0,s=0;满足k≤2,则s=0+03=0,k=1;满足k≤2,则s=0+13=1,k=2;满足k≤2,则s=1+23=9,k=3;不满足k≤2,退出循环,输出s=9.故选B.4.下列函数中,在区间(﹣1,1)上为减函数的是()A.y=11﹣xB.y=cos xC.y=ln(x+1)D.y=2﹣x答案D选项A中,可设μ=1﹣x,则y=1x.由x∈(﹣1,1),知μ∈(0,2).由同增异减,可知复合函数y=11﹣x在(﹣1,1)上为增函数;选项B中,由y=cos x在(﹣π,0)上是增函数,在(0,π)上是减函数,可知y=cos x在(﹣1,0)上是增函数,在(0,1)上是减函数;选项C中,可设μ=x+1,则y=lnμ.由x∈(﹣1,1),知μ∈(0,2).由同增异减,可知复合函数y=ln(x+1)在(﹣1,1)上为增函数;选项D中,y=2﹣x=(12)x,易知该函数在R上为减函数,故y=2﹣x在(﹣1,1)上为减函数.故选D.5.圆(x+1)2+y2=2的圆心到直线y=x+3的距离为()A.1B.2C.√2D.2√2答案C由题意可知圆心坐标为(﹣1,0),故圆心到直线y=x+3的距离d=2√2,故选C.6.从甲、乙等5名学生中随机选出2人,则甲被选中的概率为()A.15B.25C.825D.925答案B从甲、乙等5名学生中选2人有10种方法,其中2人中包含甲的有4种方法,故所求的概率为4 10=25.7.已知A(2,5),B(4,1).若点P(x,y)在线段AB上,则2x﹣y的最大值为()A.﹣1B.3C.7D.8答案C由题意得,线段AB的方程为y﹣1=5﹣12﹣4(x﹣4)(2≤x≤4),即y=﹣2x+9(2≤x≤4),∴2x﹣y=2x﹣(﹣2x+9)=4x﹣9.又∵2≤x≤4,∴﹣1≤4x﹣9≤7.∴2x﹣y的最大值为7,故选C.8.某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则()A.2号学生进入30秒跳绳决赛B.5号学生进入30秒跳绳决赛C.8号学生进入30秒跳绳决赛D.9号学生进入30秒跳绳决赛答案B将30秒跳绳成绩确定的学生,按其成绩从大到小,把他们的序号排列为3,6,7,10,1与5并列,4;由题意可知3,6,7号同时进入立定跳远和30秒跳绳的决赛.假设5号学生没有进入30秒跳绳决赛,则1号和4号学生也没有进入30秒跳绳决赛.这与“同时进入立定跳远决赛和30秒跳绳决赛的有6人”矛盾.故5号学生进入30秒跳绳决赛,故选B.9.已知向量a=(1,√3),b=(√3,1),则a与b夹角的大小为__________.答案π6解析设a与b的夹角为θ,则cosθ=x·x|x||x|=2√32×2=√32,且两个向量夹角范围是[0,π],∴所求的夹角为π6.10.函数f(x)=xx﹣1(x≥2)的最大值为__________.答案2解析∵f(x)=1+1x﹣1在[2,+∞)上是减函数,∴f(x)的最大值为2.11.某四棱柱的三视图如图所示,则该四棱柱的体积为__________.答案32解析由三视图 可知,四棱柱高h 为1,底面为等腰梯形,且底面面积S =12×(1+2)×1=32,故四棱柱的体积 V =S ·h =32.12.已知双曲线x 2x2−x 2x 2=1(a>0,b>0)的一条渐近线为2x +y =0,一个焦点为(√5,0),则a =__________;b=__________. 答案1 2解析∵双曲线的方程为x 2x2−x 2x2=1, ∴双曲线的渐近线 方程为y =±xx x.∴由题意可知{xx =2,x =√5,x 2=x 2+x 2.∴{x =1,x =2.13.在△ABC 中,A =2π3,a =√3c ,则x x=__________. 答案1解析由正弦定理知sin x sin x =xx =√3,即sin C =sin 2π3√312,又a>c ,可得C =π6,∴B =π﹣2π3−π6=π6,∴b =c ,即xx=1. 14.某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种.则该网店 (1)第一天售出但第二天未售出的商品有__________种; (2)这三天售出的商品最少有__________种. 答案(1)16 (2)29解析(1)由于前两天都售出的商品有3种,因此第一天售出但第二天未售出的商品有19﹣3=16种.(2)同理可知第三天售出但第二天未售出的商品有18﹣4=14种.当前两天都售出的3种商品与后两天都售出的4种商品有3种是一样的,剩下的1种商品在第一天未售出;且第三天售出但第二天未售出的14种商品都在第一天售出的商品中,此时商品总数最少,为29种.如图,分别用A ,B ,C 表示第一、二、三天售出的商品种数.15.已知{a n }是等差数列,{b n }是等比数列,且b 2=3,b 3=9,a 1=b 1,a 14=b 4. (1)求{a n }的通项公式;(2)设c n =a n +b n ,求数列{c n }的前n 项和. 解(1)等比数列{b n }的公比 q =x3x 2=93=3,所以b 1=x2x =1,b 4=b 3q =27.设等差数列{a n }的公差 为D . 因为a 1=b 1=1,a 14=b 4=27, 所以1+13d =27,即d =2.所以a n =2n ﹣1(n =1,2,3,…).(2)由(1)知,a n =2n ﹣1,b n =3n ﹣1.因此c n =a n +b n =2n ﹣1+3n ﹣1. 从而数列{c n }的前n 项和S n =1+3+…+(2n ﹣1)+1+3+…+3n ﹣1=x (1+2x ﹣1)2+1﹣3x 1﹣3=n 2+3x ﹣12. 16.已知函数f (x )=2sin ωx cos ωx +cos2ωx (ω>0)的最小正周期为π. (1)求ω的值;(2)求f (x )的单调递增区间.解(1)因为f (x )=2sin ωx cos ωx +cos2ωx=sin2ωx +cos2ωx=√2sin (2xx +π4),所以f (x )的最小正周期 T =2π2x =πx . 依题意,πx =π,解得ω=1.(2)由(1)知f (x )=√2sin (2x +π4).函数y =sin x 的单调递增区间 为[2x π﹣π2,2x π+π2](k ∈Z). 由2k π﹣π2≤2x +π4≤2k π+π2, 得k π﹣3π8≤x ≤k π+π8.所以f (x )的单调递增区间 为[x π﹣3π8,x π+π8](k ∈Z).17.某市居民用水拟实行阶梯水价.每人月用水量中不超过w 立方米的部分按4元/立方米收费,超出w 立方米的部分按10元/立方米收费.从该市随机调查了10000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图:(1)如果w为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w至少定为多少?(2)假设同组中的每个数据用该组区间的右端点值代替.当w=3时,估计该市居民该月的人均水费.解(1)由用水量的频率分布直方图知,该市居民该月用水量在区间[0.5,1],(1,1.5],(1.5,2],(2,2.5],(2.5,3]内的频率依次为0.1,0.15,0.2,0.25,0.15.所以该月用水量不超过3立方米的居民占85%,用水量不超过2立方米的居民占45%.依题意,w至少定为3.(2):根据题意,该市居民该月的人均水费估计为4×0.1+6×0.15+8×0.2+10×0.25+12×0.15+17×0.05+22×0.05+27×0.05=10.5(元).18.如图,在四棱锥P﹣ABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC.(1)求证:DC⊥平面P AC;(2)求证:平面P AB⊥平面P AC;(3)设点E为AB的中点,在棱PB上是否存在点F,使得P A∥平面CEF?说明理由.解(1)因为PC⊥平面ABCD,所以PC⊥DC.又因为DC⊥AC,所以DC⊥平面P AC.(2)因为AB∥DC,DC⊥AC,所以AB⊥AC.因为PC⊥平面ABCD,所以PC⊥AB.所以AB⊥平面P AC.所以平面P AB⊥平面P AC.(3)棱PB上存在点F,使得P A∥平面CEF.证明如下:取PB中点F,连接EF,CE,CF.又因为E为AB的中点,所以EF∥P A.又因为P A ⊄平面CEF , 所以P A ∥平面CEF .19.已知椭圆C :x 2x 2+x 2x2=1过A (2,0),B (0,1)两点.(1)求椭圆C 的方程及离心率;(2)设P 为第三象限内一点且在椭圆C 上,直线P A 与y 轴交于点M ,直线PB 与x 轴交于点N.求证:四边形ABNM 的面积为定值.解(1)由题意,得a =2,b =1,所以椭圆C 的方程为x 24+y 2=1.又c =√x 2﹣x 2=√3,所以离心率 e =xx =√32.(2)设P (x 0,y 0)(x 0<0,y 0<0),则x 02+4x 02=4. 又A (2,0),B (0,1),所以直线P A 的方程 为y =x 0x 0﹣2(x ﹣2).令x =0,得y M =﹣2x 0x 0﹣2,从而|BM|=1﹣y M =1+2x 0x 0﹣2.直线PB 的方程 为y =x 0﹣1x 0x +1. 令y =0,得x N =﹣x 0x 0﹣1,从而|AN|=2﹣x N =2+x 0x 0﹣1.所以四边形ABNM 的面积 S =12|AN|·|BM|=12(2+x 0x 0﹣1)(1+2x 0x 0﹣2) =x 02+4x 02+4x 0x 0﹣4x 0﹣8x 0+42(x 0x 0﹣x 0﹣2x 0+2)=2x 0x 0﹣2x 0﹣4x 0+4x 0x 0﹣x 0﹣2x 0+2=2.从而四边形ABNM 的面积为定值. 20.设函数f (x )=x 3+ax 2+bx +C .(1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)设a =b =4,若函数f (x )有三个不同零点,求c 的取值范围; (3)求证:a 2﹣3b>0是f (x )有三个不同零点的必要而不充分条件. 解(1)由f (x )=x 3+ax 2+bx +c ,得f'(x )=3x 2+2ax +B .因为f (0)=c ,f'(0)=b ,所以曲线y =f (x )在点(0,f (0))处的切线方程 为y =bx +C . (2)当a =b =4时,f (x )=x 3+4x 2+4x +c , 所以f'(x )=3x 2+8x +4.令f'(x )=0,得3x 2+8x +4=0,解得x =﹣2或x =﹣23. f (x )与f'(x )在区间(﹣所以,当c>0且c﹣3227<0时,存在x1∈(﹣4,﹣2),x2∈(﹣2,﹣23),x3∈(﹣23,0),使得f(x1)=f(x2)=f(x3)=0.由f(x)的单调性知,当且仅当c∈(0,3227)时,函数f(x)=x3+4x2+4x+c有三个不同零点.(3)当Δ=4a2﹣12b<0时,f'(x)=3x2+2ax+b>0,x∈(﹣∞,+∞),此时函数f(x)在区间(﹣∞,+∞)上单调递增,所以f(x)不可能有三个不同零点.当Δ=4a2﹣12b=0时,f'(x)=3x2+2ax+b只有一个零点,记作x0.当x∈(﹣∞,x0)时,f'(x)>0,f(x)在区间(﹣∞,x0)上单调递增;当x∈(x0,+∞)时,f'(x)>0,f(x)在区间(x0,+∞)上单调递增.所以f(x)不可能有三个不同零点.综上所述,若函数f(x)有三个不同零点,则必有Δ=4a2﹣12b>0.故a2﹣3b>0是f(x)有三个不同零点的必要条件.当a=b=4,c=0时,a2﹣3b>0,f(x)=x3+4x2+4x=x(x+2)2只有两个不同零点,所以a2﹣3b>0不是f(x)有三个不同零点的充分条件.因此a2﹣3b>0是f(x)有三个不同零点的必要而不充分条件.。
2016年北京高考数学真题及答案解析(文科)..

...... 2016年北京高考数学真题及答案解析(文科)第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.已知集合={|24}A x x ,{|3B x x 或5}x ,则A B ()A.{|25}x x B.{|4x x 或5}x C.{|23}x x D.{|2x x 或5}x 【答案】C考点:集合交集【名师点睛】1.首先要弄清构成集合的元素是什么(即元素的意义),是数集还是点集,如集合)}(|{x f y x ,)}(|{x f y y ,)}(|),{(x f y y x 三者是不同的.2.集合中的元素具有三性——确定性、互异性、无序性,特别是互异性,在判断集合中元素的个数时,以及在含参的集合运算中,常因忽视互异性,疏于检验而出错.3.数形结合常使集合间的运算更简捷、直观.对离散的数集间的运算或抽象集合间的运算,可借助Venn 图实施,对连续的数集间的运算,常利用数轴进行,对点集间的运算,则通过坐标平面内的图形求解,这在本质上是数形结合思想的体现和运用.4.空集是不含任何元素的集合,在未明确说明一个集合非空的情况下,要考虑集合为空集的可能.另外,不可忽视空集是任何元素的子集.2.复数122i i ()A.iB.1iC.iD.1i 【答案】A[【解析】试题分析:12(12)(2)2422(2)(2)5ii i i i i i i i ,故选 A.考点:复数运算【名师点睛】复数代数形式的加减乘除运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化3.执行如图所示的程序框图,输出的s 值为()。
2016年北京市高考文科数学试题及答案

(8)某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛(D) {x|x<2或 x> 5} rrpLj(A) 1(B) 2 (C) (D) 2迈(6)从甲、乙等5名学生中随机选出2人,则甲被选中的概率为 (A) 1( B) 2( C)—5 5 25(D)_9 25(7)已知 A(2,5),B( 4,1).若点P( x ,y)在线段AB 上,贝U 2x-y 的最大值为(A) -1 (B) 3(D) 82016年普通高等学校招生全国考试数学(文)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无 效。
考试结束后,将本市卷和答题卡一并交回。
第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要 求的一项。
(1 )已知集合 A ={x|2 :::x :::4}, B 二{x|x :::3或x>5},则 A B =(A) {x|2<x<5} ( B) {x|x<4或x> 5} (C) {x|2<x<3}(2)复数1 2i2 —i(A)i(B)1+i( C) -i ( D)1 -i(3) 执行如图所示的程序框图,输出的 s 值为 (A) 8 (B) 9 (C)27绝密★启用前 fr - 0, 5 - 0Wife(D)36(4)下列函数中,在区间(-1,1)上为减函数的是1(A) y ( B) y =cosx ( C) y =1 n(x 1) ( D) y=2»1 -x(5)圆(x+1) 2+y2=2的圆心到直线y=x+3的距离为成绩,其中有三个数据模糊学生序号 1 2 3 4 5 6 7 8 9 10 立定跳远(单位:米) 1.96 1.92 1.82 1.80 1.78 1.76 1.74 1.72 1.68 1.6030秒跳绳(单位:次) 63 a 75 60 63 72 70 a-1 b 65 在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有 6人,则(A)2号学生进入30秒跳绳决赛(B)5号学生进入30秒跳绳决赛(C) 8号学生进入30秒跳绳决赛 (D)9号学生进入30秒跳绳决赛第二部分(非选择题共110分)二、填空题(共6小题,每小题5分,共30分)(9)已知向量a =(1,J3), b = (J3,1),则a与b夹角的大小为________________________ .x(10)函数f (x) (x_2)的最大值为x—1(11)某四棱柱的三视图如图所示,则该四棱柱的体积为2 2 _(12)已知双曲线务-每=1 (a > 0, b> 0)的一条渐近线为2x+y=0,一个焦点为(J5 ,0),则a= ______________________________a bb= ________________ ./ 2兀尸 b(13)在△ABC 中,N A=——,a=j3c,则一= .3 c -----------(14)某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种,则该网店①第一天售出但第二天未售出的商品有_____________ 种;②这三天售出的商品最少有 ___________ 种.三、解答题(共6题,共80分.解答应写出文字说明,演算步骤或证明过程)(15)(本小题13分)已知{a n}是等差数列,{b n}是等差数列,且b2=3, b3=9, a1 =b1,a14=b4.(I)求{a n}的通项公式;(n)设C n= a n+ b n,求数列{切的前n项和.w=3(16) (本小题13分)已知函数f (x) =2sin axcos cos 2 ®x( 3>0 )的最小正周期为 n .(I)求3的值;(H)求f (x)的单调递增区间.(17) (本小题13分)某市民用水拟实行阶梯水价,每人用水量中不超过 w 立方米的部分按4元/立方米收费,超出w 立方米的部分按10元/立方米收费,从该市随机调查了 10000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图:(I) 如果w 为整数,那么根据此次调查, 为使80%以上居民在该月的用水价格为 4元/立方米,w 至少定为多少?(II) 假设同组中的每个数据用该组区间的右端点值代替,当 (18) (本小题14分)如图,在四棱锥 P-ABCD 中,PC 丄平面ABCD AB// DC ,DC 丄AC(I )求证:DC _平面PAC ;(II )求证:平面PAB _平面PAC ;已知椭圆C :=1 过点 A (2,0), B (0,1)两点.(III) 设点E 为AB 的中点,在棱PB 上是否存在点F ,使得P A_平面 C E F 说明理(19) (本小题14分)2 2£. y_ a 2 b 2(I )求椭圆C 的方程及离心率;(II )设P 为第三象限内一点且在椭圆 C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证: 四边形ABNM 的面积为定值.(20) (本小题13分) 设函数 f x =x 3 ax 2 bx c.(I)求曲线y = f x .在点0, f 0处的切线方程;(II )设a =b =4,若函数f x 有三个不同零点,求 c 的取值范围;2(III )求证:a -3b> 0是f x .有三个不同零点的必要而不充分条件2016年普通高等学校招生全国统一考试数学(文)(北京卷)参考答案一、选择题(共 8小题,每小题5分,共40分)(I)C ( 2)A ( 3)B ( 4)D ( 5)C ( 6)B ( 7)C ( 8)B 二、填空题(共 6小题,每小题5分,共30分)/C、兀 3(9)(10)2 (11)( 12)1 26 2(13)1 (14)16 29三、解答题(共6小题,共80分)(15)(共 13 分)解:(I)等比数列g的公比4 =色=9=3,6 3所以 0 =1,b4二Qq =27 .q设等差数列玄!的公差为d .因为q =b^1 , % 二b4 =27,所以1 • 13d =27,即卩d =2 .所以a n=2n -1 (n =1, 2 , 3,…).(II)由( I)知,a n二2n -1, b n = 3n‘ .因此c^a n b n-2n -1 3n4.从而数列<^c n{的前n项和& =1 3 2n_1 13 『n 1 2n -1 1 -3n= ------------- "r -----2 1-32 3n-1=n2(16)(共 13 分)解:(I)因为f x =2sin xcos x cos2 x=sin 2 x cos2 x/—( 兀)=■. 2 sin 12,x14丿2 TT -TF所以f x的最小正周期一2® 虫依题意,一二…,解得• = 1 .co(II) 由( I)知f x 二 2sin 2x 寸•函数y =sinx的单调递增区间为2k二-丄,2 k二匸 (Z ).- 2 2_ j[ it nt由2k 2x 2k二2 4 2+ 3兀兀得k x _ k 二8 8所以f(x)的单调递增区间为阿—牛k兀+市1( M Z).(17)(共 14 分)解:(I)由用水量的频率分布直方图知,该市居民该月用水量在区间10.5,1, 1,1.51, 1.5,2 1, 2,2.51, 2.5,3 ]内的频率依次为0.1 , 0.15 , 0.2 , 0.25 , 0.15 .所以该月用水量不超过3立方米的居民占85%,用水量不超过2立方米的居民占45%.依题意,w至少定为3 .(I I)由用水量的频率分布直方图及题意,得居民该月用水费用的数据分组与频率分布表:组号 1 2 3 4 5 6 7 8 分组12,4] (4,61 (6,81 (8,101 (10,12】(12,17】(17,22】(22,27】频率0.1 0.15 0.2 0.25 0.15 0.05 0.05 0.05根据题意,该市居民该月的人均水费估计为:40.1 6 0.15 8 0.2 10 0.25 12 0.15 17 0.05 22 0.05 27 0.05 = 10.5 (元).(18)(共 13 分)解:(I)因为PC _平面「2 CD ,所以?C _ DC .又因为DC _二C ,所以DC _平面—C .(II)因为丄三//DC , DC _ 一二C ,所以 C .因为me _平面二meD ,所以?c _ .—所以丄三—平面「心C .所以平面m丄三—平面?.-.C .(III )棱弋上存在点F,使得-■ //平面C F .证明如下: 取中点F,连结I.F , C;:, CF .又因为上为一二的中点,所以上F//PZ.又因为r匚平面C F ,所以?.-.//平面C F .(19)(共 14 分)解:(I)由题意得,a = 2 , b = 1. 2所以椭圆C的方程为x y2= 1 .4又c = , a2 - b2 =、、3 ,(II)设P(x o, y° ) ( X。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前2016年普通高等学校招生全国考试数学(文)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本市卷和答题卡一并交回。
第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合{|24},{|3>5}A x x B x x x =<<=<或,则AB =(A ){|2<<5}x x (B ){|<45}x x x >或 (C ){|2<<3}x x (D ){|<25}x x x >或 (2)复数12i=2i+- (A )i (B )1+i (C )i - (D )1i -(3)执行如图所示的程序框图,输出的s 值为 (A )8 (B )9 (C )27 (D )36(4)下列函数中,在区间(1,1)- 上为减函数的是 (A )11y x=- (B )cos y x = (C )ln(1)y x =+ (D )2x y -= (5)圆(x +1)2+y 2=2的圆心到直线y =x +3的距离为(A )1 (B )2 (C )2 (D )22 (6)从甲、乙等5名学生中随机选出2人,则甲被选中的概率为(A )15 (B )25 (C )825 (D )925(7)已知A (2,5),B (4,1).若点P (x ,y )在线段AB 上,则2x −y 的最大值为(A )−1 (B )3 (C )7 (D )8(8)某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊.学生序号12345678910立定跳远(单位:米) 1.96 1.92 1.82 1.80 1.78 1.76 1.74 1.72 1.68 1.60 30秒跳绳(单位:次) 63a7560637270a −1b65在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则(A )2号学生进入30秒跳绳决赛 (B )5号学生进入30秒跳绳决赛 (C )8号学生进入30秒跳绳决赛 (D )9号学生进入30秒跳绳决赛第二部分(非选择题共110分)二、填空题(共6小题,每小题5分,共30分)(9)已知向量=(1,3),(3,1)=a b ,则a 与b 夹角的大小为_________. (10)函数()(2)1xf x x x =≥-的最大值为_________. (11)某四棱柱的三视图如图所示,则该四棱柱的体积为___________.(12) 已知双曲线22221x y a b-= (a >0,b >0)的一条渐近线为2x +y =0,一个焦点为(5 ,0),则a =_______;b =_____________. (13)在△ABC 中,23A π∠=,a=3c ,则bc=_________. (14)某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种,则该网店 ①第一天售出但第二天未售出的商品有______种; ②这三天售出的商品最少有_______种.三、解答题(共6题,共80分.解答应写出文字说明,演算步骤或证明过程)(15)(本小题13分)已知{a n }是等差数列,{b n }是等差数列,且b 2=3,b 3=9,a 1=b 1,a 14=b 4. (Ⅰ)求{a n }的通项公式;(Ⅱ)设c n = a n + b n ,求数列{c n }的前n 项和.(16)(本小题13分)已知函数f (x )=2sin ωx cos ωx + cos 2ωx (ω>0)的最小正周期为π. (Ⅰ)求ω的值;(Ⅱ)求f (x )的单调递增区间.(17)(本小题13分)某市民用水拟实行阶梯水价,每人用水量中不超过w 立方米的部分按4元/立方米收费,超出w 立方米的部分按10元/立方米收费,从该市随机调查了10000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图:(I )如果w 为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w 至少定为多少?(II )假设同组中的每个数据用该组区间的右端点值代替,当w=3时,估计该市居民该月的人均水费.(18)(本小题14分)如图,在四棱锥P-ABCD 中,PC ⊥平面ABCD ,,AB DC DC AC ⊥∥ (I )求证:DC PAC ⊥平面; (II )求证:PAB PAC ⊥平面平面;(III)设点E 为AB 的中点,在棱PB 上是否存在点F ,使得PA CEF ⊥平面?说明理由.(19)(本小题14分)已知椭圆C :22221x y a b+=过点A (2,0),B (0,1)两点.(I )求椭圆C 的方程及离心率;(II )设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值.(20)(本小题13分) 设函数()32.f x x ax bx c =+++(I )求曲线().y f x =在点()()0,0f 处的切线方程;(II )设4a b ==,若函数()f x 有三个不同零点,求c 的取值范围;(III )求证:230a b ->是().f x 有三个不同零点的必要而不充分条件.2016年普通高等学校招生全国统一考试数学(文)(北京卷)参考答案一、选择题(共8小题,每小题5分,共40分)(1)C (2)A (3)B (4)D (5)C (6)B (7)C (8)B 二、填空题(共6小题,每小题5分,共30分) (9)6π (10)2 (11)32(12)1 2 (13)1 (14)16 29 三、解答题(共6小题,共80分) (15)(共13分) 解:(I )等比数列{}n b 的公比32933b q b ===, 所以211b b q==,4327b b q ==. 设等差数列{}n a 的公差为d . 因为111a b ==,14427a b ==, 所以11327d +=,即2d =.所以21n a n =-(1n =,2,3,⋅⋅⋅).(II )由(I )知,21n a n =-,13n n b -=. 因此1213n n n n c a b n -=+=-+.从而数列{}n c 的前n 项和()11321133n n S n -=++⋅⋅⋅+-+++⋅⋅⋅+()12113213n n n +--=+-2312n n -=+.(16)(共13分)解:(I )因为()2sin cos cos2f x x x x ωωω=+sin 2cos2x x ωω=+2sin 24x πω⎛⎫=+ ⎪⎝⎭,所以()f x 的最小正周期22ππωωT ==. 依题意,ππω=,解得1ω=. (II )由(I )知()2sin 24f x x π⎛⎫=+ ⎪⎝⎭.函数sin y x =的单调递增区间为2,222k k ππππ⎡⎤-+⎢⎥⎣⎦(k ∈Z ). 由222242k x k πππππ-≤+≤+,得388k x k ππππ-≤≤+. 所以()f x 的单调递增区间为3,88k k ππππ⎡⎤-+⎢⎥⎣⎦(k ∈Z ). (17)(共14分)解:(I )由用水量的频率分布直方图知,该市居民该月用水量在区间[]0.5,1,(]1,1.5,(]1.5,2,(]2,2.5,(]2.5,3内的频 率依次为0.1,0.15,0.2,0.25,0.15.所以该月用水量不超过3立方米的居民占85%,用水量不超过2立方米的居民占45%. 依题意,w 至少定为3.(II )由用水量的频率分布直方图及题意,得居民该月用水费用的数据分组与频率分布表: 组号 12345678分组 []2,4(]4,6(]6,8(]8,10(]10,12 (]12,17 (]17,22 (]22,27频率0.10.150.20.250.150.050.050.05根据题意,该市居民该月的人均水费估计为:40.160.1580.2100.25120.15170.05220.05270.05⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯10.5=(元). (18)(共13分)解:(I )因为C P ⊥平面CD AB , 所以C DC P ⊥. 又因为DC C ⊥A , 所以DC ⊥平面C PA .(II )因为//DC AB ,DC C ⊥A , 所以C AB ⊥A .因为C P ⊥平面CD AB , 所以C P ⊥AB .所以AB ⊥平面C PA .所以平面PAB ⊥平面C PA .(III )棱PB 上存在点F ,使得//PA 平面C F E .证明如下: 取PB 中点F ,连结F E ,C E ,CF . 又因为E 为AB 的中点, 所以F//E PA .又因为PA ⊄平面C F E , 所以//PA 平面C F E .(19)(共14分) 解:(I )由题意得,2a =,1b =.所以椭圆C 的方程为2214x y +=. 又223c a b =-=, 所以离心率32c e a ==. (II )设()00,x y P (00x <,00y <),则220044x y +=.又()2,0A ,()0,1B ,所以, 直线PA 的方程为()0022y y x x =--. 令0x =,得0022y y x M =--,从而002112y y x M BM =-=+-.直线PB 的方程为0011y y x x -=+. 令0y =,得001x x y N =--,从而00221x x y N AN =-=+-.所以四边形ABNM 的面积12S =AN ⋅BM 00002121212x y y x ⎛⎫⎛⎫=++ ⎪⎪--⎝⎭⎝⎭()22000000000044484222x y x y x y x y x y ++--+=--+ 00000000224422x y x y x y x y --+=--+2=.从而四边形ABNM 的面积为定值. (20)(共13分)解:(I )由()32f x x ax bx c =+++,得()232f x x ax b '=++.因为()0f c =,()0f b '=,所以曲线()y f x =在点()()0,0f 处的切线方程为y bx c =+. (II )当4a b ==时,()3244f x x x x c =+++,所以()2384f x x x '=++.令()0f x '=,得23840x x ++=,解得2x =-或23x =-. ()f x 与()f x '在区间(),-∞+∞上的情况如下:x(),2-∞-2-22,3⎛⎫-- ⎪⎝⎭23-2,3⎛⎫-+∞ ⎪⎝⎭()f x '+-+()f xc3227c -所以,当0c >且32027c -<时,存在()14,2x ∈--,222,3x ⎛⎫∈-- ⎪⎝⎭,32,03x ⎛⎫∈- ⎪⎝⎭,使得()()()1230f x f x f x ===.由()f x 的单调性知,当且仅当320,27c ⎛⎫∈ ⎪⎝⎭时,函数()3244f x x x x c =+++有三个不同零点.(III )当24120a b ∆=-<时,()2320f x x ax b '=++>,(),x ∈-∞+∞,此时函数()f x 在区间(),-∞+∞上单调递增,所以()f x 不可能有三个不同零点.当24120a b ∆=-=时,()232f x x ax b '=++只有一个零点,记作0x .当()0,x x ∈-∞时,()0f x '>,()f x 在区间()0,x -∞上单调递增; 当()0,x x ∈+∞时,()0f x '>,()f x 在区间()0,x +∞上单调递增. 所以()f x 不可能有三个不同零点.综上所述,若函数()f x 有三个不同零点,则必有24120a b ∆=->. 故230a b ->是()f x 有三个不同零点的必要条件.当4a b ==,0c =时,230a b ->,()()232442f x x x x x x =++=+只有两个不同 零点, 所以230a b ->不是()f x 有三个不同零点的充分条件. 因此230a b ->是()f x 有三个不同零点的必要而不充分条件.。