七年级尖子生数学辅导资料
七年级尖子生数学辅导资料(12)

七年级尖子生数学辅导资料(12)一、选择题1、(-1)2007是( )A .最大的负数B .最小的非负数C .最大的负整数D .绝对值最小的整数2、若|a|=4,|b|=2,且|a+b|=a+b, 那么a-b 的值只能是( ).A 、2B 、 -2C 、 6D 、2或63、一个体商贩,在一次买卖中同时卖出两件不同的服装,每件以216元售出,按成本计算,其中一件盈利10%,另一件亏本10%,则此买卖中他大约( )A 、赔4元B 、赚8元C 、不赚不赔D 、赚4元4、若a 为正有理数,在-a 与a 之间(不包括-a 和a )恰有2007个整数,则a 的取值范围为( ).A 、0<a<1004B 、1003≤a ≤1004C 、1003≤a<1004D 、0<a ≤10035、如图,数轴上每个刻度为1个单位长度,点A 对应的数为a ,B 对应的数为b ,且b-2a=7,那么数轴上原点的位置在( )A 、A 点.B 、B 点。
C 、C 点。
D 、D 点。
6、x 是任意有理数,则2|x |+x 的值( ).A 、大于零B 、 不大于零C 、 小于零D 、不小于零7、若A 、B 、C 、D 、E 五名运动员进行乒乓球单循环赛(即每两人赛一场),比赛进行一段时间后,进行过的场次数与队员的对照统计表如下:那么与E 进行过比赛的运动员是( ) A 、A 和B B 、B 和C C 、A 和C D 、A 和D8、已知02=+q p ,)0(≠q ,则=-+-+-321q p q p q p ( )A 、 4.B 、6C 、3D 、4或69、商场举行优惠销售活动,采取“满一百元送二十元,并且连环赠送”的酬宾方式,即顾客每消费满100元(100元可以是现金,也可以是购物券,或二者合计)就送20元购物券,满200元就送40元购物券,依次类推,现一顾客第一次就用了16000元购物,并用所得购物券继续购物,那么他购回的商品大约相当于打( )。
七年级数学尖子生培优竞赛专题辅导第十八讲 平移、对称、旋转(含答案)

第十八讲平移、对称、旋转趣题引路】如图18-1,已知△ABC内有一点M,沿着平行于边BC的直线运动到CA边上时,再沿着平行于AB的直线运动到BC边时,又沿着平行于AC直线运动到AB边时,再重复上述运动,试证:点M最后必能再经过原来的出发点证明设点M运动过程中依次与三角形的边相遇于点A1,B1,B2,C2,C3,A3,A4,B5,….易知△AC2B₂≌△A1CB1≌△A3C3B.按点M平移的路线,△A C2B2可由△A1CB1平移得到;△A3C3B可由△AC2B2平移得到;△A1CB1可由△A3C3B平移得到,此时,A3应平移至A4,所以A4与A1重合.而这时的平移方向恰与点M开始平移时的方向一致,因此从A3平移到A1的过程中必经过点M,这表明在第七步时,点M又回到了原来的出发点.图18-1知识拓展】1.平移、对称和旋转是解决平面几何问题常用的三种图形变换方法,它们零散地分布在初中几何教材之中.例如,平行四边形的对边可以看成是平行移动而形成,这里的平行移动,就是平移变换.2.一般地,把图形F上的所有点都按照一定的方向移动一定距离形成图形F'.则由F到F'的变换叫做平移变换,简称平移.由此可知,线段平移可以保持长短、方向不变,角、三角形等图形平移保持大小不变.将平面图形F变到关于直线l成轴对称的图形F',这样的几何变换简称为对称,它可使线段、角大小不变.3.将平面图形F绕着平面内的一个定点O旋转一个定角a到图形F',由F到F'的变换简称为旋转.旋转变换下两点之间的距离不变,两直线的夹角不变,且对应直线的夹角等于旋转角.4.运用平移、对称或旋转变换,能够集中图形中的已知条件,沟通各条件间的联系.例1 已知:如图18-2,△ABC中,AD平分∠CAB,交BC于D,过BC中点E作AD的平行线交AB于F,交CA的延长线于C.求证:2ACAB=CG=BF.图18-2解析直接证三角形全等或者用角平分线定理显然不能解决问题.注意到要证式的形式,条件中又有角平分线和中点,如果能切分BF、CG,使分出的两部分一部分是AB的一半,余下的是AC的一半,问题就解决了.由中点,我们不难想到中位线,两条有推论效力的辅助线(EH和EI)就产生了,H、I切分了BF、CG,由平行线性质∠1=∠2=∠3=∠4=∠6,再由中位线定理,等腰三角形的判定定理,切分后的结论不难证明.略证过E作AC、AB的平行线交AB、AC于H、I,由平行线性质及已知条件得,∠1=∠2=∠3=∠4=∠6, ∴EI =GI ,EH =FH .∵E 为BC 中点,EH ∥AC ,EI ∥AB , ∴EI =2AB =BH ,EH =2AC=CI , ∴EI =GI =2AB=BH , FH =EH =2AC=CI . 由于BF =BH +FH , CG =GI +CI , ∴2ACAB =BF =CG .例2 如图18-3,E 是正方形ABCD 的BC 边上的一点,F 是∠DAE 的平分线与CD 的交点,求证:AE =FD +BE .图18-3解析 表面上看所要证等式的各边分布在正方形不同的边上,欲证它们之间的关系,似乎不可能.但我们可以将某一条边作适当的延伸,使等量关系转移(比如证某两个三角形全等,中位线的关系等).此题中可将FD 延长至G ,使得DG =BE ,于是易证△AGD ≌△AEB ,则将AE 与AG ,BE 与GD 联系了起来,转而只需证明AG =GF ,即只要证明△AGF 为等腰三角形即可,由∠1=∠2,∠3=∠4及AB ∥CD 即证得.略证 延长FD 至G 使DG =BE , ∵△ADG ≌△ABE ,∴AG =AE ,GD =BE ,∠1=∠2. 又∵ ∠3=∠4, ∴∠1+∠4=∠2+∠3. 由于DC ∥AB ,∴∠DFA =∠2+∠3, ∴∠1+∠4=∠DFA , ∴GF =AG .即GD +DF =BE +FD =AE .例3 已知∠MON =40°,P 为∠MON 内一点,A 为OM 上一点,B 为ON 上的点,则△PAB 的周长取最小值时,求∠APB 的度数.图18-4解析 如图18-4,若在OM 上A 点固定,不难在ON 上找出点B (B 为P 关于ON 的对称点P ''与A 点的连线与ON 的交点),同样若在ON 上B 点已固定,则点P 关于OM 的对称点P'与B 点的连线与OM 交于A ,因此A 、B 应为P'P ''与0M 、ON 的交点,这时可求得∠A .解 作P'为P 关于OM 的对称点,P ''为P 关于ON 的对称点,连接P'P ''分别交OM 、ON 于A 、B 两点,则△PAB 周长为最小,这时△ABP 的周长等于P'P ''的长(连接两点间距离最短).∵OM P P ⊥',ON P P ⊥''垂足分别为C 、D , ∴∠OCP =∠ODP =90°. ∵∠M O N=40°,∴∠CPD =180°-40°=140°.∴∠PP'P ''=∠P P ''P'=180°-140°=40°.由对称性可知:∠PAB =2∠P',∠PBA =2∠P '', ∴∠APB =180°-(∠PAB -∠PBA )=180°-(2∠P'-2∠P '')=100°.例4 如图18-5,在ABC 中,BC =h ,AB +AC =l ,由B ,C 向∠BAC 外角平分线作垂线,垂足为D 、E , 求证:BD ·CE =定值.图18-5解析 BC =h 是定值,AB +AC =l 是定值,要证BD ·CE 是定值,设法使BD ·CE 用h ,l 的代数式来表示,充分利用DE 是BAC 的外角平分线,构造对称图形,再利用勾股定理。
七年级数学尖子生培优竞赛专题辅导第一讲因式分解的常用方法和技巧(含答案)

第一讲因式分解的常用方法和技巧趣题引路】你知道如何分解因式^-+X9+/+/+1吗?试作一代换:若令疋= ),,贝IJ原式=h + ),3+y2 + y+l,指数为连续整数,可考虑用公式/-l = (^-l)(/ + / + / + y+l),则原式=V4 + V3 + V2 + V + 1 = —(y5 -1))‘一1x-l x2 + X + 1= (x4 + x3 +x2 +x+ l)(x8 -x7 +x5 +x3 -x + 1)一个代换,把一个复杂的问题转化为一个较简单的问题,这是数学方法之美.多项式的因式分解是数学中恒等变形的一种重要方法,它在初等数学乃至高等数学中都有广泛的应用,因式分解的方法很多,技巧性强,认真学好因式分解,不仅为以后学习分式的运算及化简、解方程和解不等式等奠定良好的基础,而且有利于思维能力的发展.知识拓展】因式分解与整式乘法的区别是:前者是把一个多项式变成几个整式的积,后者是把几个整式的积变成一个多项式,因式分解初中可在有理数域或实数域中进行,高中还可在复数域中进行.因式分解后每个因式应在指定数域中不能再分.“例如X4-A在有理数域内可分解为(X+2)(/-2),其中每个因式就不能再分,不然分解式的系数会超过有理数的范围;在实数域中,它的分解式是(X2+2)(X+>/2)(X->/2):在复数域中,它的分解式是因式分解的方法很多,除了数学教材中的提取公因式法、运用公式法、分组分解法和十字相乘法以外, 还有换元法、待定系数法、拆项添项法和因数定理法等.本讲在中学数学教材的基础上,对因式分解的方法、技巧作进一步的介绍.一、用换元法分解因式换元法是指将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来进行运算,从而使运算过程简单明了.换元法是中学数学中常用的方法之一.例1 (1999年希望杯题)分解因式(X2-1)(X +3)(X+5)+12.解析若全部展开,过于复杂,考虑局部重新组合.注意到在(x + l)(x + 3) = X + 4x + 3和(X-1)(X+5)= X2+4X-5中出现了相同部分X2+4X ,可考虑引入辅助元y = x2+4x分解(也可设y = F+4x + 3,y = x'+4x-l 等).解原式=[(x + l)(x + 3)][(A-1)(X + 5)] +12=(x2 +4x+ 3)(x2 + 4x-5)+12设y = x2 +4x f贝!I原式= (y+3)(y-5)+12= r-2y-3= (y-3)(y + l)=(x2+4x+ 3)(x2 +4x-l)点评换元法体现了数学中的整体代换思想,它是化繁为简的重要手段这里y取(x2 +4X + 3)和(x2 + 4X-1)的平均值时分解过程最为简便例2 (2001年天津初二题)分解因式(弓-1)= + (x+_ 2)(x+ > - 2xy).解析题中巧和卄y多次出现启发我们换元分解:设xy=d, x+y=b.解设xy=a, x+y=b,则,原式=(a -1): + (b - 2)(b - 2a)=cr -2a + l+br -2b-2cib+4a=a2 +b2 +l+2a-2ab-2b=(a-b+[)2注:这里用到公式a,+b2 +c2 + 2ab + 2bc + lac = (a + b +c)2.点评换元必须考虑多项式的结构特征:当代数式中出现相同、相近或相关联(如:互为相反数,互为倒数)的部分时都可以考虑换元.二、用待定系数法分解因式待定系数法是初中数学中的又一重要方法,其应用很广泛.在因式分解时,只要假定一个多项式能分解成某几个因式的乘积,而这些因式中某些系数未定,可用一些字母来表示待定的系数•根据两个多项式恒等的性质,即两边对应项的系数必相等,可列出关于待定系数的方程或方程组,解此方程(组)即可求出待定系数.这种因式分解的方法叫做待定系数法.例3 (第9届五羊杯初二题)设x3 + 3x2-2xy + kx-4y可分解为一次与二次因式之积,则k= ______________________ .解析首先确定两个因式的结构:因多项式中疋的系数是1,常数项是0,以及没有护项,所以分解所得因式可设为x+a 和x2+bx + cy,其中e b, c为待定系数.解设x3 + 3x2 - 2xy + kx-4y可分解为(x+a)(x2 +bx+cy),贝ijx3 + 3x2 -2xy + kx-4y = x3 +(a + b)x2 + cxy + abx + acy比较系数,得a+b=3 ,a +b = 3消去c,得\ab = -k ,消去a,b,解得k=-2.ab = -ka = 2ac = -4 i点评用待定系数法分解因式,关健在于确定因式分解的最终形式.三、用公式法分解因式初中教材中出现的公式有平方差公式,完全平方公式,在因式分解中还常用到下列公式:立方和公式:a3 +b3 = (a + b)(a2 -ab + b2)立方差公式:a3 -b3 =(a-b)(a2 +ab+b2)和的立方公式:(a + b)3 =a3 + 3a2b + 3ab2 + b3差的立方公式:(a - b)3 =a3 - 3crb + 3ab2 -b3三数和的平方公式:(tz + b + c)' =a2 +b2 +c2 + 2ab 4- lac + 2bc两数n 次方差公式:a” -b n =(a-b)(a n~l + a n~2b + • • • + ab"~2 + b n~l)三数立方和公式:a3 +b3+c‘ = (a + b +c)3 -3(a + b)(b + c)(a + c)在具体问题中要根据代数式的结构特征来选用适当的公式.例4 分解因式x l5+x l4+x l3+-+x2+x+l.解析对于指数成连续整数的多项式我们可以考虑公式a" - b n =(a- + a"~2b + ab"~2 + b n~l),令b=l,得a" = + a n~2 + …+ a + l).为化繁为简,及能用公式,给原式乘以x-1解原it= (x15 +x14 +X13 + - -X2 +X+1) -_ =- ---------------------- --x-l x-l=(土 + 1)(疋 + 1)(F + l)(x + 1)(— 1)=(x8 + l)(x4 + l)(x2 + l)(x + 1)点评这里原式乘以吕很必要,这种先乘以再除以(或先加上再减去)同一个式子的变形技能经常用到.例5 (昆明市初中数学竞赛题)分解因式(c-a)2-4(b-c)(a-b).解析把拾号展开后重新组合.解原式=c? 一 2ac十/ 一 4ab + 4ac — 4bc + 4b‘=c2 + lac + a2 - Aab一4bc + 4b2=(c2 + 2ac + a2)-4b(a + c) + (2b)2= (a + c- 2b)2点评欲进先退,这是为了更清楚地认识代数式的结构特征.例6 分解因式(x+2y_77),+ (3x_4y + 6zF_(4x_2y_z)B解析本题与三个数的立方和有关.联想到公式a3 + + c5 = (a + b + c)(«2 + b2 +c2 -ab-be- ca)+ 3abc , 而(x + 2y- 7z)+(3x - 4y + 6乙)+ (- 4x + 2y+ z)= 0.故原式可分解为3(x + 2y - 7z)(3x - 4y + 6乙)(-4x + 2y + z) ■四、用拆项添项法分解因式在对某些多项式分解因式时,需要对某些项作适当的变形,使其能分组分解,添项和拆项是两种重要的技巧例7分解因式:x3-9x+8.解析多项式有三项,若考虑拆项,有三种选择.注意只有让分解能继续的拆法才是可取的.若考虑添项,式中无二次项,可添加-F + F.解法1将常数项拆成一1+9,原式=/3_9大_] + 9 =疋_1_9(尤_1) = (—1)(疋+尤_8)解法2 将一次项-9兀拆成-x-3x ,原式=X3-X-3X +3=(X3-X)- 8(x-l)=x(x + l)(x-1)-8(x-1) = (x - l)(x: +x-8)解法3 将三次项/拆成9疋-8疋,原式=9X3-8X3-9X +8=(9X3-9X)+(-8X3+8)=9x(x + l)(x-1)-8(x - l)(x2 + x + l)=(X-1)(X2+ X-8)解法4添加-x2+x2,原式=x3 -x2 +x2 -9x+8= X2(X-1)+(X-8)(X-1)= (x-l)(x2 +x-8)点评一题四种解法,可谓“横看成岭侧成峰,左添右拆都成功”.拆项、添项是因式分解中技巧性最强的一种例8己知x2 + x+l = O ,试求X8 + x4 +1的值.解析设法使疋+疋+1变成含x2+x+l的式子,因x8 = (x4)2,可考虑完全平方公式,将十拆成2x4-%4.解原式=^8+2X4+1-X4=(X4+1)-(x2)2 =(x2+x + IX%2 -x + 1)因为疋+"1 = 0,所以原式的值为0.五、利用因式定理分解因式因式定理的内容:如果x=a时,多项式的值为零,即f(a) = 0 ,则/'(x)能被x-a整除,即/(兀)一定有因式x-d・运用因式定理和综合除法可以解决一些较复杂的多项式分解问题.例9 分解因式X4+2?-9X:-2X+8.解析设f(x) = x4 + 2x3-9x2-2x + 3,可知/(1) = 0, /(-1) = 0,因此/⑴有因式(x+l)(x-l),用综合除法可求另外因式.解依题意知y(l) = /(-l) = 0,故/'(x)有因式x-1, x+1,作综合除法:12-9-2811 3 -6 -813-6-80—]—1 — 2 812-80因此f(x) = (x- l)(x + l)(x2 + 2x- 8),则原式=(x- 1)(A-+l)(x一2)(A-+4) •好题妙解】佳题新题品味例1 (2001年呼和浩特市中考题)要使二次三项式x^rnx-6能在整数范围内分解因式,则加可取的整数为.解析该式可用十字相乘法分解.那么m等于一6的两个整因数之和.而—6=lx ( —6) = ( — 1) x6=2x ( —3) = ( —2) x3,因而m 可能的值为一5, 5, —1, 1. 点评本题训练逆向思维及枚举法.例2 (2003年江苏初中竞赛)若a, b, c为三角形三边,则下列关系式中正确的是()A. a2-b2-c2-2bc>QB. a2-b2-c2-2bc = QC. a2-b2-c2-2bc<0D. a2 -b2-c2-2bc<0解析因a' -b1 -c2 -2bc = a2 -(b2 +c2 + 2bc) = a2 -(b + c)1 =(a + b + c)(a-b-c)而在三角形中,a<b+c ,即a~b—c<Q,故选C.点评注意隐含条件:三角形中两边之和大于第三边中考真题欣赏例1 (武汉中考题)分解因式a2-l+b2-2ab= _________________________ .解析将a2 +b2 -2ab作一组恰为(«-b)2与1构成平方差,应填(a—b+1) (a—b—1).例2 (北京朝阳区)分解因式m3-2m2-4m+8.解析第一、二项作一组可提公因式沪,后两项作一组可提公因数4,于是m3 -2nr一4m+3 = m2(m-2)-4(m-2) = (m2一4)(m-2) = (m—2):(m+2).点评分解因式一定分解到不能再分解为止.例3 (1999年北京中考题)多项式x2 + axy + by1 -5x+ y + 6的一个因式是x+y-2,试求d+b的值.解析 利用待定系数法,设原式=(x+y-2)(x+^y-3)展开比较系数得号; 解得 a=~l, b=~2,因此 a+b=—3.竞赛样题展示例1 (江苏省第十七届初中数学竞赛)如果是ax 3+bx 2+l 的一个因式,则b 的值为()A.-2B.-lC.OD.2解析 运用待定系数法,依题可设另一因式为ax-1,比较系数可得b=—2,选A.(23 -1)(33 ~1)(43 -1) - (1003 -1)(23 +1](33 +1J43 +1)---(1003 +1)a 3 -1 _(a ~ 1)3 + a + l) _ fl-1 (a +1)3 +1 (a + 2)(a 2 4-ti + l) a + 2故呼式=(2-1X3-1)…(99-山00,-1) 収 玖 (23 +1)(3 +1X4+ 1)-(100-1)1X 2X 3X (1OO 3-1) 3367 小― (23 +1)x99x100x1015050例3设多项式与多项式F+x-a 有非常数公因式,贝仏= ______________________________ . 解析 0或6.因为(兀3-X-d ) - (F+x-d ) = x (x+l )(x-2),所以,X’-X-d 与 F +兀-4 的公因式必为 X 、兀+1、X-2中的一个.当公因式为x 或x+1时,£7=0;当公因式为X —2时,a = 6.例4 (2003年太原市初中数学竞赛)已知直角三角形的各边长为正整数,它的周长为80.则三边长分 别是 •解析涉及直角三角形问题勾股定理举足轻重! 解 30、 16、 34.设直角三角形的三边长分别为4、b 、c.由题设得a 2+b 2^c 2且a+b+c=80.将 c=SQ-a~b 代入a 2+b 2=c 2,整理得 6400—80a — 80b+ab=3200,即(80—。
初一数学万唯尖子生题库怎么样

初一数学万唯《尖子生题库》怎么样
【示例范文仅供参考】
---------------------------------------------------------------------- 对于学霸来说,万唯的教辅书还是有必要入手的。
尤其是中考预测卷押题很准。
万唯数学尖子生是针对数学科目的教辅书,如果自己孩子条件合适,可以尝试做做。
但是如果自己孩子不是尖子生也没有意愿冲刺,想顺其自然这种,那也没有必要搞这么难的题打击孩子积极性。
其中万唯的尖子生每日一题还是不错的,首先这里面的题目它都是中考的真题,并且每一道题目几乎都是类似于压轴题的那种,难度是比较大的。
如果是同量放在一小段时间内可能会做不完,所以把它分散开来,每天只做一道题,那么日积月累下来,就可以掌握很多种题型。
并且这里面的每一道题目都是非常符合现在的考试趋势以及一个走向的,难度呢也是比较大,而且题型出的也比较新颖,与现在大多数地区的中考形式都是非常符合的。
所以非常建议数学比较好一些的学生来做这一本题目,可以很有效的帮助你在重大考试的时候提升很高的成绩。
初一数学尖子生复习讲义

级奥赛数学基础知识讲义主讲:王三祝第一讲和绝对值有关的问题一、知识结构框图:数二、绝对值的意义:(1)几何意义:一般地,数轴上表示数a的点到原点的距离叫做数a的绝对值,记作|a|。
(2)代数意义:①正数的绝对值是它的本身;②负数的绝对值是它的相反数;③零的绝对值是零。
也可以写成:()()() ||0a aa aa a⎧⎪⎪=⎨⎪-⎪⎩当为正数当为0当为负数说明:(Ⅰ)|a|≥0即|a|是一个非负数;(Ⅱ)|a|概念中蕴含分类讨论思想。
三、典型例题例1.(数形结合思想)已知a、b、c在数轴上位置如图:则代数式| a | + | a+b | + | c-a | - | b-c | 的值等于()A.-3a B. 2c-a C.2a-2b D. b解:| a | + | a+b | + | c-a | - | b-c |=-a-(a+b)+(c-a)+b-c=-3a分析:解绝对值的问题时,往往需要脱去绝对值符号,化成一般的有理数计算。
脱去绝对值的符号时,必须先确定绝对值符号内各个数的正负性,再根据绝对值的代数意义脱去绝对值符号。
这道例题运用了数形结合的数学思想,由a、b、c在数轴上的对应位置判断绝对值符号内数的符号,从而去掉绝对值符号,完成化简。
例2.已知:zx<<0,0>xy,且xzy>>,那么yxzyzx--+++的值()A.是正数B.是负数C.是零D.不能确定符号解:由题意,x、y、z在数轴上的位置如图所示:所以分析:数与代数这一领域中数形结合的重要载体是数轴。
这道例题中三个看似复杂的不等关系借助数轴直观、轻松的找到了x、y、z三个数的大小关系,为我们顺利化简铺平了道路。
虽然例题中没有给出数轴,但我们应该有数形结合解决问题的意识。
例3.(分类讨论的思想)已知甲数的绝对值是乙数绝对值的3倍,且在数轴上表示这两数的点位于原点的两侧,两点之间的距离为8,求这两个数;若数轴上表示这两数的点位于原点同侧呢?分析:从题目中寻找关键的解题信息,“数轴上表示这两数的点位于原点的两侧”意味着甲乙两数符号相反,即一正一负。
七年级尖子生数学辅导资料(1)

七年级数学辅导资料(资料整理:石怿)一、填空题 1.()()_______________1541957.0154329417.0=-⨯+⨯+-⨯+⨯。
2. 定义a*b=ab+a+b,若3*x=27,则x 的值是________。
3.有一个正方体,在它的各个面上分别标上字母A 、B 、C 、D 、E 、F ,甲、乙、丙三位同学从不同方向去观察其正方体,观察结果如图所示。
问:F 的对面是( )。
4.A 、B 、C 、D 、E 、F 六足球队进行单循环比赛,当比赛到某一天时,统计出A 、B 、C 、D 、E 、五队已分别比赛了5、4、3、2、1场球,则还没与B 队比赛的球队是( )。
5.某商场经销一种商品,由于进货价格比原来预计的价格降低了6.4%,使得销售利润增加了8个百分点,那么原来预计的利润率是( )。
6.计算=+++++4213012011216121( )。
7.若()(.......).(.......),,052=-==-++aab a a b b a b b 。
8.已知ab >0,|a|=2,|b|=7,则a+b=( )。
9.直线l 上有10个点A 1,A 2,A 3,A 4,A 5,A 6,A 7,A 8,A 9,A 10,A 1A 2=A 2A 3=A 3A 4=…=A 9A 10,则以这些点为端点的线段共有( )条;将所有这些线段的中点用红点标出,则可得( )个红点。
10.某时刻钟表在10点到11点之间,这个时刻再过6分钟的分针和这个时刻3分钟前的时针正好相反,且在同一直线上,那么钟表的这个时刻是( )。
11.在直线上取A 、B 两点,使AB=10厘米,再在直线上取一点C ,使AC=7厘米,M 、N 分别是AB 、AC 的中点,则MN=( )厘米。
12.当x=( )时,6)1(42x --的值最大,其最大值为( )。
13.已知:x:y:z=1:2:7 且2x-y+3z=105, 则xyz=( )。
七年级尖子生数学辅导资料(4)

七年级尖子生数学辅导资料(4)一、选择题1、下列叙述中,正确的是---------------------------------------------------------------------------( )A 有理数中有最大的数B 有理数中有绝对值最小的数C 零是整数中最小的数D 无限小数都是有理数2、数442233)21()1(,)21()1(,)21()1(,21)1(⨯-⨯-⨯-⨯-中最小的数是-----------------( ) A )21()1(⨯- B 33)21()1(⨯- C 22)21()1(⨯- D 44)21()1(⨯- E 不确定 3、乘积)1011()311)(211(222--- 等于------------------------------------------------------( ) A 125 B 32 C 2011 D 21 E 107 4、满足不等式541010≤≤A 的整数A 的个数是1104+⨯x ,则x 的值是------------( )A 9B 8C 7D 65a 、b 、c 在数轴上的位置如图,则在a1-,a -,b c -,a c +中最大的一个是-------------------------------------------------------------------------------( )A a -B b c -C a c +D a1- 6、数轴上坐标是整数的点称为整点,某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为1995厘米的线段AB ,则线段AB 盖过的整点有-------------------------------( )A 1994个或1995个B 1994个或1996个C 1995个或1996个D 1995个或1997个7、数00101.1,0101.1,001.1,01.1,1.1-----中最大的一个数是-------------------------( )A 00101.1-B 01.1-C 001.1-D 0101.1- 8、a 、b 则-------------( ) A b a 111<< B 111<<b a C 111<<a b D ab 111<< 9、 如果a 、b 均为有理数,且0<b ,则a ,b a -,b a +的大小关系是-----------( )A b a b a a -<+<B b a b a a +<-<C b a a b a -<<+D a b a b a <+<-10、当01.0-=a 时,在2)(a --,a --,2a -,)(2a --中,其值为正数的是---( )A )(2a --B a --C 2a - D 2)(a -- 11、如果0=ba ,那么有理数a 、b -------------------------------------------------------------( ) A 都是零 B 互为相反数 C 互为倒数 D 不都是零12、在1428.0-中用数字3替换其中的一个非零数码后,使所得的数最大,则替换( )A 1B 4C 2D 814、计算:2000199987654321-++-+-+-+- 的最后结果是--------------( )A 0B 1-C 1999D 1000-二、填空题1、 1010010001.0,333.0,14.3,3,718.2-各数中,属于有理数的有 ;2、 已知53-a 与a 23-的值互为相反数,则______=a ;3、a 、b 、c 在数轴上的位置如图,则在b a -1,bc -1,c a -1 中,最大的是 ;三、解答题1、 试比较大小:89012345667890123455,89012345677890123456==B A ;2、 设有如下一列数:1;12,21;13,22,31;14,23,32,41; 51如果我们从左边第一个数起一直往右数,那么98是这列数的第几个?3、 3个有理数a 、b 、c 两两不等,那么c b b a --,a c c b --,ba a c --中有几个是负数? 4、用简便方法计算:(折数、凑数)(1)999979997997977++++(2)19999999819999997199999619999519994199319211+++++++(3)200220012000199987654321-+-++-+-+-+-5、(整体换元)(1))19961413121)(1997131211()199********)(1996131211(++++-----++++----(2))199********)(1997131211()1996131211)(199713121(++++++++-+++++++6、(拆项相消):(1)19982)56154213301120912731(3⨯⨯-+-+-(2)1431899163135115131+++++。
七年级尖子生数学辅导资料(8)

七年级尖子生数学辅导资料(八)一 选择题1、数2003(1)--是().(A ) 最大的负整数(B )绝对值最小的整数(C )最小的正整数 (D )最小的正数2、若一整数为两位数,它等于其数字和的8倍,今互易原两位整数个位数字和十位数字的位置,那么,所得的新两位数是其数字和的( )倍(A ) 17 (B )1 (C )2 (D ) 33、已知 35y ax bx =+-中,当3x =-时,7,y =那么当3x =时,y 的值是( ).A.3- B.7- C.–17 D.74、在下列时间段内时钟的时针和分针会出现重合的是( )(A ) 5:20—5:26 (B ) 5:26—5:27 (C ) 5:27—5:28 (D )5:28—5:295、甲用1000元人民币购买了一手股票,随即他将这手股票转卖给了乙,获利10%,而后来乙又将这手股票转给了甲,但乙损失了10%,最后甲按乙卖给甲的价格的九折将这手股票卖给了乙,甲在上述股票交易中( )(A ) 刚好盈亏平衡 (B ) 盈利1元 (C ) 盈利9元 (D )亏本1.1元6、已知200020032000200220002001,,200120022001200320022003A B C ⨯⨯⨯=-=-=-⨯⨯⨯ ,则A ,B ,C 的大小关系是( ) (A ) A >B >C (B )C >B >A (C )B >A >C (D )B >C >A7、) ( 1997ab99b 1898a b 22的值等于是互为相反数,则与-+a A.0 B. 1 C.-1 D.1997 8、把足够大的一张厚度为0.1mm 的纸连续对折,要使对折后的整叠纸总厚度超过12mm ,至少要对折( )A.6次B.7次C.8次D.9次9、某超市推出如下优惠方案:⑴购物款不超过200元不享受优惠;⑵购物款超过200元但不超过600元一律享受九折优惠;⑶购物款超过600元一律享受八折优惠。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级尖子生数学辅导资料(1)
一、填空题 1.()()_______________1541957.0154329417.0=-⨯+⨯+-⨯+⨯。
2. 定义a*b=ab+a+b,若3*x=27,则x 的值是________。
3.有一个正方体,在它的各个面上分别标上字母A 、B 、C 、D 、E 、F ,甲、乙、丙三位同学从不同方向去观察其正方体,观察结果如图所示。
问:F 的对面是( )。
4.A 、B 、C 、D 、E 、F 六足球队进行单循环比赛,当比赛到某一天时,统计出A 、B 、C 、D 、E 、五队已分别比赛了5、4、3、2、1场球,则还没与B 队比赛的球队是( )。
5.某商场经销一种商品,由于进货价格比原来预计的价格降低了
6.4%,使得销售利润增加了8个百分点,那么原来预计的利润率是( )。
6.计算=+++++42
13012011216121( )。
7.若()(.......).(.......),,052=-==-++a
ab a a b b a b b 。
8.已知ab >0,|a|=2,|b|=7,则a+b=( )。
9.直线l 上有10个点A 1,A 2,A 3,A 4,A 5,A 6,A 7,A 8,A 9,A 10,A 1A 2=A 2A 3=A 3A 4=…=A 9A 10,则以这些点为端点的线段共有( )条;将所有这些线段的中点用红点标出,则可得( )个红点。
10.某时刻钟表在10点到11点之间,这个时刻再过6分钟的分针和这个时刻3分钟前的时针正好相反,且在同一直线上,那么钟表的这个时刻是( )。
11.在直线上取A 、B 两点,使AB=10厘米,再在直线上取一点C ,使AC=7厘米,M 、N 分别是AB 、AC 的中点,则MN=( )厘米。
12.当x=( )时,6
)1(42x --的值最大,其最大值为( )。
13.已知:x:y:z=1:2:7 且2x-y+3z=105, 则xyz=( )。
14、绝对值小于2002的所有整数之和为 ___________ 。
15、如果|x+3|+(2y-5)2=0,则x+2y= _________ 。
16、若|a|=4,|b|=2,且a、b异号,则|a-b|= _______ 。
17、已知a<-b,且 >0,化简|a|-|b|+|a+b|+|ab|= ___________.
18、代数式2000—(x+y)2的最大值为( ),当代数式取最大值时,x与y的关系是( )
29、已知,当 时, ,则当 时, =_____。
20、已知 ,则 =____________________。
二、选择题
1、如果有2013名学生排成一列,按1、
2、
3、
4、3、2、1、2、3、4、3、2、1……的规律报数,那么第2013名学生所报的数是( )。
A 、1
B 、2
C 、3
D 、4
2、某商场国庆期间举行优惠销售活动,采取“满一百元送二十元,并且连环赠送”的酬宾方式,即顾客每消费满100元(100元可以是现金,也可以是购物券,或二者合计)就送20元购物券,满200元就送40元购物券,依次类推,现有一位顾客第一次就用了16000元购物,并用所得购物券继续购物,那么他购回的商品大约相当于打( )销售。
A、9折 B、8.5折 C 、8折 D、7.5折
3、从四点钟开始,到时针和分针第二次成90°角,共经过( )分钟(答案四舍五入到整数)。
A 、30
B 、33
C 、38
D 、40
三、解答题
1、小明、小颖比赛登楼梯,他们从一幢高楼的地面(一楼)出发,到达28楼后返回地面。
当小明到达4楼时,小颖刚到3楼。
如果他们保持固定的速度,那么小明到达28楼后返回地面途中,将与小颖在几楼相遇。
(注:一楼与二楼之间的楼梯均属于一楼,以下类推)
2.[(-2)]3×(-21)2-1]×(-131)2-[(-1)÷(—3
1)+1]2÷(—8)
3.现定义两种运算“※”和“#”,对于整数a 、b 有a ※b= a+b -1 ,a #b= ab -1。
求4#[(6※8)※(3#5)]的值。
4.甲、乙两人相距22.5千米,分别以每小时2.5千米和5千米的速度相向而行,同时甲所带的小狗以每小时7.5千米的速度奔向乙,小狗遇乙后立即回头奔向甲,遇甲后又奔向乙,……直到甲、乙相遇,求小狗所走的路程。
5.A 、B 两地间的路程为15千米,早晨8时整,甲从A 地出发步行前往B 地,20分钟后,乙从B 地出发骑车前往A 地。
乙到达A 地后停留40分钟,然后骑车按原路返回,结果甲、乙两人同时到达B 地。
如果乙骑车比甲步行每小时多走10千米,问几点钟时甲、乙两人一齐到达B 地?
6.父子二人在400米的环形跑道上跑步,父亲每分钟跑240米,儿子每分钟跑200米,二人从同时同方向出发,几分钟后两人第一次相遇?父亲再跑多少圈后二人第二次相遇?。