矿井通风总阻力计算
矿井通风总阻力计算

华蓥市老岩湾煤业有限公司矿井通风总阻力计算沿着矿井通风容易时期和矿井通风困难时期的通风路线计算矿井通风总阻力。
通风摩擦阻力计算公式如下: h=23Q S P L a ⋅⋅⋅ 式中:h —— 通风摩擦阻力,Pa ;α—— 井巷摩擦阻力系数,N.S 2/m 4; L —— 井巷长度,m ; P —— 井巷净断面周长,m ; Q —— 通风井巷的风量,m 3/s ; S —— 井巷净断面面积,m 2; 通风局部阻力取同时期摩擦阻力的15%。
经计算,矿井通风容易时期采用中央分列式通风系统,其总阻力h 为573.99Pa ;矿井通风困难时期采用两翼对角式通风系统,其北风井和南平硐风井阻力分别为489.42Pa 、401.51Pa 。
(详见矿井通风阻力计算表5-2-2、表5-2-3、表5-2-4)。
五、对矿井通风状况的评价 计算矿井的风阻和通风等积孔a 、矿井通风容易时期采用中央分列式通风系统,矿井的总风阻R 易和矿井通风等积孔A 易为:R 易 =h 易/ Q 易2 =573.99÷30.42 =0.62N ·S 2/m 8 A 易 =易易h Q /19.1 =1.19×30.4÷99.573 =1.51m 2b 、矿井通风困难时期采用两翼对角式通风系统,其北风井的风阻R 1、通风等级孔A 1和南平硐风井的风阻R 2、通风等级孔A 2以及矿井的通风等积孔A 难为:R 1 =h 1/ Q 12 =489.42÷15.952 =1.92N ·S 2/m 8 A 1 =11/19.1h Q=1.19×15.95÷42.489 =0.86m 2 R 2 =h 2/ Q 22 =401.51÷12.552 =2.55N ·S 2/m 8 A 2 =22/19.1h Q=1.19×12.55÷51.401 =0.75 m 2A 难=()11111121)(19.1Q Q h Q h Q Q Q +++⨯=()55.1295.1551.40155.1242.48995.15)55.1295.15(19.1+⨯+⨯+⨯=1.6(m 2)式中: R 易-为矿井通风容易时期的矿井风阻,N ·S 2/m 8;A 易-为矿井通风容易时期的矿井通风等积孔,m 2; h 易―为通风容易时期的矿井通风阻力,Pa ; R 1-为北风井通风困难时期的矿井风阻,N ·S 2/m 8; A 1-为北风井通风困难时期的通风等积孔,m 2;h 1―为北风井通风困难时期的矿井通风阻力,Pa;Q1-为北风井通风困难时期的风量,(m3/s)R2-为南平硐风井通风困难时期的矿井风阻,N·S2/m8;A2-为南平硐风井通风困难时期的通风等积孔,m2;h 2―为南平硐风井通风困难时期的矿井通风阻力,Pa;Q2-南平硐风井通风困难时期的风量,(m3/s)A难-为矿井通风困难时期的总通风等级孔,(m2)经计算,矿井通风容易时期的风阻R易为0.62N·S2/m8,矿井通风等积孔A易为1.51m2,通风难易程度为中等。
矿井通风阻力计算

断面摩阻系数a净周长P 巷道长L 净断面S 形状方式(N.S 2/m 4)(m)(m)(m 2)1毛顶坪平硐三心拱裸巷0.027.660 5.1132.6512运输巷三心拱裸巷0.027.6210 5.1132.6513联络巷梯 形裸巷0.027.6300 5.1132.6514采区运输巷矩形裸巷0.027.6100 3.959.3195采面矩 形裸巷0.027.6170 3.959.3196采区回风巷0.027.61207总回风巷三心拱裸巷0.027.61203.959.3198小计9加15%局部阻力10合 计断面支护摩阻系数a 净周长P 巷道长L 净断面S 形状方式(N.S 2/m 4)(m)(m)(m 2)1+272m主平硐三心拱裸巷0.0513.22010.51157.6252运输巷三心拱裸巷0.0513.23210.51157.6253联络巷梯 形裸巷0.059.5830 4.87115.50134采区运输巷矩形裸巷0.049.5810 4.87115.50135采面矩 形裸巷0.0416301640966采区回风巷矩形裸巷0.049.5820 4.87115.50137总回风巷三心拱裸巷0.058.66705.66181.32158小计9加15%局部阻力10合 计矿井最小通风阻力计算序号巷道名称S 3矿井最大通风阻力计算S3矿井通风巷道负压损失用下式计算:h=α×L×P×Q 2/S 3风阻R=α×L×P/S 3风速序号巷道名称风量Q 风阻R 风速V 负压h (m 3/s)(Ku)(m/s)(Pa)9.127.454.760.068751838 1.4509804 3.76485062331.927.454.760.240631431 1.450980413.1769771845.67.454.760.343759188 1.450980418.8242531215.27.454.760.256241676 1.897435914.031794225.847.454.760.43561085 1.897435923.8540501418.247.454.760.307490012 1.897435916.8381530490.4900782913.57351174104.06359风量Q 风阻R 风速V 负压h (m 3/s)(Ku)(m/s)(Pa)13.210.6112.360.011402656 1.01 1.28120246221.1210.6112.360.01824425 1.01 2.04992393914.3710.6112.360.124414181 2.7413.979177363.832 4.217.640.0331771150.860.58524430719.2 4.217.640.00468750.260.08268757.664 4.217.640.066354230.86 1.17048861330.3110.6112.360.1671616481.8718.7822827137.93100695.68965103443.6206579计算α×L×PQ 2计算Q 2α×L×P×Q 2/S 3风速V=Q/S。
通风阻力 计算公式汇总

1、 巷道几何参数的测算(1)梯形:断面积 SL=H L *B L 周长 U L(2) 半圆拱:断面积 S L =(H L -0.1073B L )*B L 周长 U L=3.84*(3)三心拱:断面积 S L =(HL-0.0867B L )*B L 周长 U L(4)圆形:断面积 S L =π*R 2 周长 U L =2*π*R(5)矩形:断面积 S L = H L * B L 周长 U L =2*(H L +B L ) 式中: S L —巷道断面面积,m 2U L —巷道断面周长,m ;H L —巷道断面全高,m ;B L —巷道断面宽度或腰线宽度,m ;R —巷道断面圆半径,m ;π—圆周率,取3.14159。
以上有关参数均通过实测获取,而巷道各分支长度由地测部门提供。
2、 巷道内风量的计算(1)两测点之间巷道通过的风量按如下原则确定:Q=(Q i +Q i+1)/2 , m 3/min(2)井巷内风量、风速按以下公式计算:Q L =S L *V L , m 3/minV L =((S-0.4)/S )*(a X+ b ) , m 3/min式中: Q L --井巷内通过的风量,m 3/min ;S L (S )--井巷断面面积,m 2V L --井巷内平均风速,m/minX —表风速,m/mina 、b —风表校正系数3 井巷内空气密度的计算湿空气密度用下列公式计算:i b i=d0.0348(Pi 0.379P )273.15+t ϕ-ρ , kg/ m 3 式中:i ρ—测点i 处湿空气密度(i ϕ≠0), kg/ m 3Pi --测点i 处空气的绝对静压(大气压力),Pa ;d t --测点i 处空气的干温度,℃;i ϕ--测点i 处空气的相对湿度,%;P b —测点i 处d t 空气温度下的饱和水蒸气压力,Pa 。
4 井巷断面速压的计算井巷断面的速压由其空气密度和平均风速确定,即:v i L 2h =(V )/2ρ式中:v h --巷道断面的速压,Pa ;i ρ--巷道断面的空气密度,Kg/ m 3L V --巷道断面的平均风速,m/s ;5 井巷通风阻力计算井巷两端断面之间的通风阻力按式(1)计算,即:i-j s(i,j)z(i,j)v(i,j)h h h +h =+ Pa (1)式中:h i-j —井巷始末测点间的通风阻力,Pa ;s(i,j)h —始断面静压与末断面静压之差,Pa ;即:s(i,j)i j i j h 9.81[(B -B )-(B '-B ')]=i B 、B j —分别为始断面、末断面静压差读数,mmH 2O ;i B'、j B '—分别为读取i B 、B j 时基点气压计静压差读数,mmH 2O ;z(i,j)h --始断面位压与末断面位压之差,Pa ;即:z(i,j)i j i j h =9.81(Z -Z )(+)/2ρρi ρ、j ρ --分别为始断面、末断面空气密度,Kg/m 3; i Z 、Z j —分别为始、末测点标高,m ;v(i,j)h --始断面速压与末断面速压之差,Pa ;6 矿井通风总阻力计算从进风井口测点到通风机前风洞内测点之间的全井通风阻力h ,等于任意一条风路线上各分支通风阻力之和,即:i j h h -=∑ ,Pa7 井巷风阻R L 的计算任意一条井巷的风阻值R L 大小用下列公式计算:2L L L R =h /Q , Kg/m 7; 式中:R L ---任一条井巷的风阻,Kg/m 7;h L---该条井巷的通风阻力,Pa ;QL —该条井巷通过的风量,m 3/s 。
矿井通风阻力计算说明

通风阻力计算说明一、风量计算根据采掘工作面配备和接替情况,1个综采工作面生产,1个安装工作面,11个掘进工作面、8个硐室均独立通风计算需要风量。
需风量按下列要求分别计算,并选用其中最大值。
{1}按区内所有作业场所实际需要风量的总和计算Q区=K区(ΣQ采+ΣQ掘+ΣQ硐+ΣQ它),m3/min式中:Q区—所有独立通风用风地点需风量之和,m3/minK区—风量不均衡系数,取值一般为1.10~1.15,取1.1ΣQ采—采煤工作面需风量之和,m3/minΣQ掘—掘进工作面需配风量之和,m3/minΣQ硐—独立通风硐室需风量之和,m3/minΣQ它—采掘工作面、硐室以外的其它作业场所和需要独立通风的巷道风量之和,m3/min。
(1)采煤工作面配风量采煤工作面,需风量按下列要求分别计算,并选取其中最大值。
①按瓦斯(二氧化碳)涌出量计算:Q采=100(67)×q采×K采通式中:Q采—采煤工作面风量,m3/min100(67)—单位瓦斯(二氧化碳)涌出量配风量,m3/min,以回风流瓦斯浓度1%或二氧化碳1.5%的换算值q采—采煤工作面回风巷风流中瓦斯或二氧化碳平均绝对涌出量,瓦斯绝对涌出量取4m3/min,二氧化碳绝对涌出量取1.2 m3/minK采通—采煤工作面瓦斯涌出不均衡系系数,一般K采通=1.2~1.6,取1.2Q采CH4=100×4×1.2=800m3/minQ采CO2=67×1.2×1.2=160.8m3/min②按工作面气温条件计算:Q采=60×70%×V采×S采×K高×K长式中:Q采—采煤工作面风量,m3/minV采—采煤工作面风速,根据采煤工作面空气温度与风速对应表,工作面温度为23℃左右,取1.4m/sS采—采煤工作面平均断面积,20m2K高—采煤工作面采高调整系数,采高>2.5及放顶煤面,取1.2K长—采煤工作面长度调整系数,工作面长度200m>180m,取1.3 Q采=60⨯0.7⨯1.4×20×1.2×1.3=1834.6m3/min③按采煤工作面每班工作最多人数计算:Q采=4N采式中:N采—采煤工作面同时工作的最多人数,取26人Q采=4⨯26=104m3/min④按风速进行验算选取上述最大值Q采=1834.6m3/min,取1835 m3/mina、按最低风速验算,采煤工作面的最低风量(Q采)Q采>15S采=15×20=300 m3/min式中:S采—采煤工作面平均断面积,取20m2b、按最高风速验算,采煤工作面的最高风量(Q采)Q采<240S采= 240×20=4800m3/min式中:S采—采煤工作面平均断面积,取20m2即:300<1966<4800,符合要求。
矿井通风阻力及风机静压负压全压

矿井通风压力、通风阻力及风机静压、全压、负压一、矿井通风压力 (mine ventilation pressure)指矿井风流的压强,包括静压、动压与全压。
静压 空气分子之间或空气分子对风道壁施加的压力,不随方向而异。
静止的空气与流动的空气均有静压。
井巷或风筒中某点风流的静压与该点在深度上所处的位置与扇风机造成的压力有关。
按度量静压所选择的计量基准不同,有绝对静压与相对静压之分。
绝对静压就是以真空状态的绝对零压为基准计量空气的静压,恒为正值。
相对静压就是以当地大气压力为基准计量的空气静压,当其高于大气压时为正值,称正压;反之为负值,称负压。
动压 空气流动而产生的压力,恒为正值。
风流动压的计算式,式中H u 为动压,Pa;u 为风速,m /s;p 为空气密度,kg /m 3。
全压 静压与动压之与,有绝对全压与相对全压之分。
风流中任一点的绝对全压P t 等于该点绝对静压P s 与动压H u 相加,即P t =P s +H u 。
风流中任一点的相对全压H e 等于该点相对静压H s 与动压H u 的代数与,即H t =H s +H u 。
抽出式通风风流的相对静压H s 为负值。
压力测定 绝对静压用水银气压计或空盒气压计测量。
相对全压、相对静压与动压用U 形压差计、单管倾斜压差计或补偿式微压计与皮托管配合测量。
恒温压差计可测两点间的相对静压。
数字式精密气压计能测绝对静压与相对静压。
二、矿井通风阻力矿井通风阻力就是指风流从进风井进入井下、通过井下巷道后从风井出来、再从风机排出沿途所遇到的阻力(也即需要风机克服的阻力),其值由下式计算:N v s j H h h h +-=阻式中:h 阻j —矿井通风阻力,Pa;h s—风机入口静压(也称负压,若忽略静压管实际入口至风机入口处的沿程摩擦损失时,h s即为水柱计上的读数),Pa;h v—测静压断面的速压(也称动压),Pa;H N—矿井自然风压,Pa。
三、风机的静压、全压及速压(动压)如下图所示:图中:2为风机,风机左侧1为风机吸风侧,风机右侧3为风机出风侧。
煤矿矿井通风阻力的计算与优化

煤矿矿井通风阻力的计算与优化随着煤矿工作的深入开展,煤矿矿井通风阻力的计算与优化变得尤为重要。
合理的通风系统能够确保矿工的工作环境安全,并提高矿井的生产效率。
本文将探讨煤矿矿井通风阻力的计算与优化方法,以期为相关行业提供参考。
1. 通风阻力的计算在矿井通风系统中,通风阻力是造成通风空间流动的主要因素之一。
要合理计算煤矿矿井通风阻力,需要考虑以下几个方面:1.1. 管道阻力煤矿矿井通风系统中的管道阻力是通风阻力的重要组成部分。
通常可以通过矿井管道的尺寸、摩擦系数等参数来计算矿井管道的阻力。
1.2. 风门阻力风门是矿井通风系统中实现风量调节的重要设备,但也会产生一定的阻力。
通常可以通过风门的开度、面积等参数来计算风门的阻力。
1.3. 散流器阻力煤矿矿井通风系统中的散流器是用于分散风力、均匀通风的设备,但同样也会产生一定的阻力。
散流器的阻力计算通常依赖于散流器的类型、尺寸等参数。
1.4. 压井损失煤矿矿井通风系统中的压井损失是由于风流与煤层之间的接触产生的气动力导致的阻力。
压井损失的计算需要考虑煤层的厚度、透气性等因素。
2. 通风阻力的优化为了实现煤矿矿井通风系统的高效运行,需要进行通风阻力的优化。
以下是一些常见的通风阻力优化方法:2.1. 管道优化通过对矿井管道的尺寸、布局等进行优化,减小管道的阻力。
例如,可以采用合适的管道截面形状、减少弯头数量等方式来降低管道阻力。
2.2. 风门调节风门的合理调节可以保证通风系统的稳定运行。
根据矿井实际情况,通过合理调整风门的开度,达到最佳通风效果。
2.3. 散流器优化矿井中的散流器的选择和布局对通风效果有着重要影响。
通过合理选择散流器的类型、尺寸和布置位置,可以达到均匀通风的效果。
2.4. 煤层管理合理的煤层管理能够降低煤层的透气性阻力,从而减小通风阻力。
例如,可以采取足够的支护措施,防止煤层崩落导致通风阻力的增加。
通过对煤矿矿井通风阻力的计算与优化,可以提高煤矿工作环境的安全性,减少事故发生的风险,并提高矿井的生产效率。
通风计算公式

矿井通风参数计算手册2005年九月前言在通风、瓦斯抽放与利用、综合防尘的设计及报表填报过程中,经常需要进行一些计算,计算过程中经常要查找设计手册、规程、细则、文件等资料,由于资料少,给工作带来不便,为加强通风管理工作,增强“一通三防”理论水平,提高工作效率;根据现场部分技术管理人员提出的要求,结合日常工作需要,参考了《采矿设计手册》,《瓦斯抽放细则》、《防治煤与瓦斯突出细则》、《瓦斯抽放手册》,矿井通风与安全,煤矿安全读本等资料,编写了通风计算手册,以便于通风技术管理人员查阅参考,由于时间伧促,错误之处在所难免,请各位给预批评指证。
2005年9月编者目录一、通风阻力测定计算公式 (5)1、空气比重(密度) (5)2、井巷断面(S) (6)3、巷道周边长 (6)4、巷道风量 (6)5、动压 (7)6、巷道风阻 (7)7、通风阻力 (7)8、自然风压 (8)9、井巷通风阻力 (8)二、通风报表常用计算公式 (9)1、矿井等积孔 (9)2、扇风机参数的计算 (9)3、有效风量 (10)4、有效风量率是指矿井有效风量与各台主要通风机风量总和之比(C)按下式进行计算 105、外部漏率 (11)6、巷道失修率 (11)三、矿井通风风量计算公式 (12)1、矿井风量按下式计算,并取其中最大值 (12)2、采煤工作面风量计算 (12)3、掘进工作面风量按以下方法计算: (14)4、硐室风量计算 (15)四、通风网路解算 (16)五、抽放参数测算 (17)1、瓦斯压力测定计算。
(17)2、沼气涌出量计算 (18)3、煤层透气性系数测定计算 (19)4、瓦斯含量计算 (21)5、矿井瓦斯储量计算 (21)6、可抽瓦斯量 (22)7、矿井抽放率 (22)8、抽放量(标量)换算 (23)四、瓦斯流量计算 (23)六、抽放设计 (24)1、管径 (24)2、管壁厚度 (25)3、管路阻力计算: (25)4、瓦期泵参数计算: (26)八、瓦斯利用 (27)1、已知计划民用瓦斯总量,按高峰用量根据灶俱额定耗瓦斯量来计算能够供应户数的方法。
矿井局部通风机选型计算示例

矿井局部通风机选型计算示例一、风量计算1、按瓦斯涌出量计算:根据进风立井揭4#煤实测瓦斯涌出量为0.4m3/min进行计算,其公式如下:Q掘=100×QCH4×K=100×0.4×2=80m3/min其中:Q-掘进工作面需风量,k-掘进工作面的通风系数,取2,QCH4-掘进工作面的瓦斯绝对涌出量,m3/min。
2、按炸药量计算需风量:式中Q炸——按爆破炸药量计算的工作需风量,m3/min;t——通风时间,取t=30min;A——一次爆破最大炸药量,kg;S——巷道断面,m2;L---掘进巷道通风长度;P——局部通风机吸入风量和掘进工作面风筒出口风量比,取P=1.1;k---井筒淋水修正系数,取0.6;3、按最多工作人数计算Q掘=4×N=4×50=200m3/min式中Q掘—掘进工作面实际需要的风量,m3/min;N—掘进工作面同时工作的最多人数,取交接班时50人;4—每人供给的最小风量,m3/min。
4、按最低风速进行计算:Q 掘=60VminSmax=60×0.3×33=594m 3/min式中Q 掘—掘进工作面实际需要的风量,m 3/min ;Vmin —最低风速,按煤巷掘进工作面进行计算取0.25m/s ;Smax —巷道最大断面,考虑到进风大巷联络巷配风量,断面计算取22+(22/2)=33m 2。
根据计算取以上1、2、3、4式中最大值进行计算,即:594m 3/min 。
二、局扇选型计算1.通风阻力计算:由于该通风系统为非负压通风,通风阻力为巷道通风阻力与风筒通风阻力之和。
1.1巷道通风阻力计算:R 巷道=R 井筒+R 进风大巷+R 集中胶带上山R 井筒=(α×L ×P/S 3)×K=(0.003×310×22/26.93)×1.2=0.0013R 井筒-风筒的阻力,N ×s 2÷m 8;α-摩擦阻力系数0.003L -巷道长度310mP -巷道周长22mS -巷道的净断面38.5-8.9=26.9m 2K -风压系数,包括局部阻力等因素,取1.2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
华蓥市老岩湾煤业有限公司
矿井通风总阻力计算
沿着矿井通风容易时期和矿井通风困难时期的通风路线计算矿井通风总阻力。
通风摩擦阻力计算公式如下: h=
2
3
Q S P L a ⋅⋅⋅ 式中:h —— 通风摩擦阻力,Pa ;
α—— 井巷摩擦阻力系数,N.S 2/m 4; L —— 井巷长度,m ; P —— 井巷净断面周长,m ; Q —— 通风井巷的风量,m 3/s ; S —— 井巷净断面面积,m 2; 通风局部阻力取同时期摩擦阻力的15%。
经计算,矿井通风容易时期采用中央分列式通风系统,其总阻力h 为573.99Pa ;矿井通风困难时期采用两翼对角式通风系统,其北风井和南平硐风井阻力分别为489.42Pa 、401.51Pa 。
(详见矿井通风阻力计算表5-2-2、表5-2-3、表5-2-4)。
五、对矿井通风状况的评价 计算矿井的风阻和通风等积孔
a 、矿井通风容易时期采用中央分列式通风系统,矿井的总风阻R 易和矿井通风等积孔A 易
为:
R 易 =h 易/ Q 易2 =573.99÷30.42 =0.62N ·S 2/m 8 A 易 =易易h Q /19.1 =1.19×30.4÷99.573 =1.51m 2
b 、矿井通风困难时期采用两翼对角式通风系统,其北风井的风阻R 1、通风等级孔A 1和南平硐风井的风阻R 2、通风等级孔A 2以及矿井的通风等积孔A 难为:
R 1 =h 1/ Q 12 =489.42÷15.952 =1.92N ·S 2/m 8 A 1 =11/19.1h Q
=1.19×15.95÷42.489 =0.86m 2 R 2 =h 2/ Q 22 =401.51÷12.552 =2.55N ·S 2/m 8 A 2 =22/19.1h Q
=1.19×12.55÷51.401 =0.75 m 2
A 难=
()
111
11121)(19.1Q Q h Q h Q Q Q +++⨯
=
()
55.1295.1551
.40155.1242.48995.15)55.1295.15(19.1+⨯+⨯+⨯
=1.6(m 2)
式中: R 易-为矿井通风容易时期的矿井风阻,N ·S 2/m 8;
A 易-为矿井通风容易时期的矿井通风等积孔,m 2; h 易―为通风容易时期的矿井通风阻力,Pa ; R 1-为北风井通风困难时期的矿井风阻,N ·S 2/m 8; A 1-为北风井通风困难时期的通风等积孔,m 2;
h 1―为北风井通风困难时期的矿井通风阻力,Pa;
Q1-为北风井通风困难时期的风量,(m3/s)
R2-为南平硐风井通风困难时期的矿井风阻,N·S2/m8;
A2-为南平硐风井通风困难时期的通风等积孔,m2;
h 2―为南平硐风井通风困难时期的矿井通风阻力,Pa;
Q2-南平硐风井通风困难时期的风量,(m3/s)
A难-为矿井通风困难时期的总通风等级孔,(m2)
经计算,矿井通风容易时期的风阻R易为0.62N·S2/m8,矿井通风等积孔A易为1.51m2,通风难易程度为中等。
矿井通风困难时期的北风井的风阻R1为1.92N·S2/m8,通风等级孔为0.86m2,南风井的风阻R2为2.55N·S2/m8,通风等级孔为0.75m2,矿井总通风等积孔A难为1.6m2,通风难易程度为中等。
矿井在生产过程中应加强现场管理,确保通风风路的畅通;及时维修变形巷道,扩大巷道断面,降低矿井风阻,保障矿井通风的安全、稳定。
井下调风设施较多,管理不善易造成矿井风流短路,生产中应加对通风设施的管理,主要风门(包括调节风门)必须采用连锁控制以防止开关风门造成风流短路。
提高矿井通风等积孔的措施:
1、要维护好主斜井、主要运输巷道、回风上山及采区回风巷、引风道等主要巷道,适当增加巷道断面积,降低通风风阻,提高通风等积孔。
2、积极搞好回采工作面上下端头和出口的维护,确保采煤工作面及出口畅通无阻,减少局部阻力,降低通风风阻。
六、通风设施及防止漏风和降低风阻的措施
1、为保证各采、掘工作面、硐室的风量,并使风流按规定路线流动,在风流流动的路线中设置有风门、调节风门、密闭墙等通风构筑物。
2、为防止爆炸性气体爆炸时冲击波冲击主要通风机,在回风井井口设置防爆门,引风道与
回风井之间的夹角为30~45º,引风道长度比防爆门至井筒内引风道开口位置长10~15m。
矿井安有两台同型号同能力的主要通风机,一台工作,一台备用。
3、为了能够实现井下区域和全矿井反风,井下各主要风门安装处要安装正反向风门。
4、风门、密闭、调节风门等通风构筑物都设在围岩坚固、地压稳定地段,并加强管理,经常检查、维修,防止漏风。
5、矿井主要通风机设有电源反相开关,当井下发生灾害时,经矿技术负责人同意,可控制风机反转使全矿井反风,反风风流要大于正常通风风流的40%。
6、防止漏风措施
风门、密闭等通风构筑物应设在围岩坚固、地压稳定地段,并加强管理,经常检查、维修。
主要风门应设开启联锁装置,保证风门不会同时开启,增强控制风流的可靠性。
同时,对频繁运输通行的风门要设置防止矿车碰撞风门的设施,以免损坏风门。
密闭墙的四周必须掏槽,砌入基岩、质量要达到要求。
7、降低风阻措施
⑴砌碹巷道应尽可能光滑,力求使巷道光滑平整,以降低风阻。
为降低巷壁的粗糙程度,从而减小摩擦风阻。
要尽量采取光面爆破,降低巷壁的粗糙程度。
⑵在容易产生局部阻力的地点,应尽量减少局部阻力系数。
如减少巷道急拐弯、突然扩大、突然缩小,尽量避免在主要巷道内停放矿车,堆积木材,器材等。
巷道连接边缘应做成斜线或圆弧形,巷道转弯处应尽量避免转弯或小于90°转弯,并将转弯处内、外侧按斜线或圆弧形施工,必要时应设置导风板。
⑶落实足够的维修人员及时维修垮塌、变形、断面缩小的巷道,保证巷道有足够的有效通风断面,以利风流畅通降低通风阻力。
表5-2-2 通风容易时期矿井通风阻力计算表
表5-2-3 通风困难时期矿井通风阻力计算表(北风井)。