传感器复习总结

合集下载

传感器原理与应用复习要点

传感器原理与应用复习要点

传感器原理与应用复习要点传感器是一种将非电学量转换为电学信号的装置,广泛应用于各个领域。

其原理可以分为物理效应、化学效应和生物效应三类。

下面是传感器原理与应用的复习要点:1.物理效应传感器:-热敏电阻:利用物质的电阻随温度变化的特性,常用于温度测量。

-压电传感器:利用压电材料电荷随机梯度变化的特性,可用于压力、力和加速度的测量。

-光电传感器:利用光的吸收、散射或发射等特性,常用于光强度、颜色和距离的测量。

-磁敏电阻:利用材料的磁阻随磁场变化的特性,可用于磁场的测量。

2.化学效应传感器:-pH传感器:利用溶液中氢离子浓度对电位的影响,用于测量酸碱度。

-气体传感器:利用气体与特定材料发生化学反应,测量气体浓度或类型。

-电化学传感器:利用电化学反应产生的电位差,测量氧气、氢气等的浓度。

3.生物效应传感器:-生物传感器:利用生物体与特定物质相互作用的特性,测量生物学参数,如酶、抗原和抗体等。

-DNA传感器:利用DNA序列的特定识别反应,用于检测和识别DNA的序列。

传感器的应用:1.工业自动化:传感器可用于测量温度、压力、流量、液位等工业参数,实现工业自动化控制。

2.环境监测:用于监测大气污染物质、水质、土壤质量等环境参数。

3.医疗保健:用于测量心率、体温、血压等生物参数,实现远程医疗监护。

4.智能家居:用于检测温度、湿度、光线等,实现智能调控家居环境。

5.汽车工业:应用于测量车速、转向角度、发动机参数,提升安全性和性能。

6.农业领域:用于监测土壤水分、光照强度、气温等农作物生长参数,实现精确农业。

总结起来,传感器的原理涉及物理、化学和生物效应,应用广泛,包括工业自动化、环境监测、医疗保健、智能家居、汽车工业和农业等领域。

对传感器的深入理解和应用有助于提升各个领域的技术水平和生活质量。

山东省考研测控技术与仪器复习传感器原理常见应用总结

山东省考研测控技术与仪器复习传感器原理常见应用总结

山东省考研测控技术与仪器复习传感器原理常见应用总结传感器是测控技术与仪器中常见且重要的组件,在各个领域都有广泛的应用。

本文将对传感器的原理进行简要介绍,并总结一些常见的传感器应用。

一、传感器的原理传感器是一种能够将感受到的物理量或化学量转化为电信号输出的装置。

其原理基于物理量与电信号之间的相互转换,以及传感器内部的感知元件和转换元件。

一般而言,传感器的原理可分为以下几类:1. 电阻式原理:基于电阻值与被测量关系的变化。

如温度传感器中的热敏电阻。

2. 电容式原理:基于电容值与被测量关系的变化。

如湿度传感器中的电容式湿度传感器。

3. 电感式原理:基于电感值与被测量关系的变化。

如液位传感器中的电感式液位传感器。

4. 磁敏式原理:基于磁场与被测量关系的变化。

如磁力传感器中的霍尔元件。

5. 光敏式原理:基于光的强弱与被测量关系的变化。

如光电传感器中的光敏电阻。

6. 声敏式原理:基于声音的强弱与被测量关系的变化。

如麦克风中的压电元件。

以上仅为传感器原理的一部分,不同领域和不同应用还有其他更为复杂的传感器原理。

二、常见传感器的应用1. 温度传感器:广泛应用于工业控制、气象监测、电子设备等领域,用于测量环境温度和物体温度。

常见的温度传感器有热敏电阻、热电偶、半导体温度传感器等。

2. 湿度传感器:主要用于测量空气中的湿度,被广泛应用于农业、温室、气象、制药等领域。

电容式湿度传感器、电阻式湿度传感器是常见的湿度传感器。

3. 光敏传感器:用来感知光的强弱,广泛应用于光电测量、自动照明控制、光电转换等领域。

光敏二极管、光敏电阻是光敏传感器的两个常见类型。

4. 气体传感器:常用于气体浓度检测、环境监测、安全控制等。

如氧气传感器、二氧化碳传感器、可燃气体传感器等。

5. 压力传感器:用于测量压力值,并将其转化为电信号输出。

广泛应用于工业自动化、液位控制、汽车安全系统等。

压阻式传感器、电容式传感器是压力传感器的两个常见类型。

6. 加速度传感器:用于测量物体的加速度,广泛应用于汽车、航天、运动监测等领域。

(完整word版)传感器(唐文彦)总复习

(完整word版)传感器(唐文彦)总复习

一.电阻式传感器基本原理:将被测的非电量转换成电阻值的变化,再经转换电路变成电量输出。

1.应变式传感器工作原理:金属的电阻应变效应:金属导体的电阻随着机械变形(伸长或缩短)的大小发生变化的现象称为金属的电阻应变效应。

特点:结构简单,性能稳定,灵敏度较高,适用于动态测量。

1)横向效应:将直的电阻丝绕成敏感栅之后,虽然长度相同,但应变状态不同,其灵敏系数降低了。

这种现象称横向效应。

为了减少横向效应产生的测量误差,一般多采用箔式应变片,其圆弧部分尺寸较栅丝尺寸大得多,电阻值较小,因而电阻变化量也就小得多。

2)机械滞后应变片安装在试件上以后,在一定温度下,其(ΔR/R)–ε的加载特性与卸载特性不重合,在同一机械应变值εg下,其对应的ΔR/R值(相对应的指示应变εi)不一致。

加载特性曲线与卸载特性曲线的最大差值Δεm称应变片的滞后。

机械滞后产生的原因:敏感栅、基底和粘合剂在承受机械应变后所留下的残余变形所造成的.3)零漂(P0):粘贴在试件上的应变片,在温度保持恒定、不承受机械应变时,其电阻值随时间而变化的特性,称为应变片的零漂。

4)蠕变(θ): 如果在一定温度下,使其承受恒定的机械应变,其电阻值随时间而变化的特性,称为应变片的蠕变.一般蠕变的方向与原应变量变化的方向相反。

5)最大工作电流:是指允许通过应变片而不影响其工作的最大电流值。

6)绝缘电阻:是指应变片的引线与被测试件之间的电阻值。

通常要求50MΩ~100MΩ以上.7)电阻式应变片的温度误差:当测量现场环境温度变化时,由于敏感栅温度系数及栅丝与试件膨胀系数之差异性而给测量带来的附加误差,称为应变片的温度误差。

对应变片温度误差产生的主要因素进行分析: 1。

电阻温度系数的影响; 2。

测试件材料和电阻丝材料的线膨胀系数影响.温度补偿方法:(1)线路补偿法(加温度补偿电阻):利用电桥的和、差原理来达到温度补偿的目的.(2)自补偿法(选材):主要是通过精心选配敏感栅材料与应变片结构参数来实现温度补偿.2。

传感器复习总结(必看)

传感器复习总结(必看)

此份要重点看1.测量系统的静态特性指标主要有线性度、迟滞、重复性、分辨力、稳定性、温度稳定性、各种抗干扰稳定性等。

(2 分)2.霍尔元件灵敏度的物理意义是表示在单位磁感应强度下单位控制电流时的霍尔电势的大小。

(2分)3.光电传感器的理论基础是光电效应。

通常把光线照射到物体表面后产生的光电效应分为三类。

第一类是利用在光线作用下光电子逸出物体表面的外光电效应,这类元件有光电管、光电倍增管;第二类是利U 用在光线作用下使材料内部电阻率改变的内光电效应,这类元件有光敏电阻;第三类是利用在光线作用下使物体内部产生一定方向电动势的光生伏特效应,这类元件有光电池、光电仪表。

4•热电偶所产生的热电动势是两种导体的接触电动势和单一导体的温差电动势组成的,其表达式为Eab (T,To)=’仃-T o)ln也•和心7)d T。

在热电偶温度补偿中补偿导线法(即冷e N B端延长线法)是在连接导线和热电偶之间,接入延长线,它的作用是将热电偶的参考端移至离热源较远并且环境温度较稳定的地方,以减小冷端温度变化的影响。

5•压磁式传感器的工作原理是:某些铁磁物质在外界机械力作用下,其内部产生机械压力,从而引起极化现象,这种现象称为正压电效应。

相反,某些铁磁物质在外界磁场的作用下会产生机械变形,这种现象称为负压电效应。

6.变气隙式自感传感器,当街铁移动靠近铁心时,铁心上的线圈电感量(增加)8.电容传感器的输入被测量与输出被测量间的关系,除(变极距型)外是线性的。

(2分)(a)8-2四、下面是热电阻测量电路,试说明电路工作原理答:该热电阻测量温度电路由热敏电阻、测量电阻和显示仪表组成。

图中G 为指示仪表,R i、R2、R3为固定电阻,Ra为零位调节电阻。

热电阻都通过电阻分别为「2、「3、R g的三个导线和电桥连接,「2和「3 分别接在相邻的两臂,当温度变化时,只要它们的R g分别接在指示仪表和电源的回路中,其电阻变化也不会影响电桥的平衡状态,电桥在零位调整时,应使 &二Ra+R to为电阻在参考温度(如0 C)时的电阻值。

传感器及应用复习

传感器及应用复习

传感器及应用复习名词解释:10道第1章传感器的基本知识传感器:传感器就是利用物理效应、化学效应、生物效应,把被侧的物理量、化学量、生物量等非电量转换成电量的器件或装置。

应力:截面积为S的物体受到外力F的作用并处于平衡状态时,在物体单位截面积上引起的内力称为应力。

应变:应变是物体受外力作用时产生的相对变形。

εl:纵向应变,εr:横向应变110-6ε胡克定律与弹性模量:胡克定律:当应力未超过某一限值时,应力与应变成正比;E为弹性模量或杨氏模量,单位为N/m2;G为剪切模量或刚性模量,τ为切应力第2张线性位移传感器及应用应变式传感器由弹性敏感元件、电阻应变片和应变电桥组成。

电感式传感器原理:把可移动的铁心称为衔铁,通过测杆与被侧运动物体接触,就可把运动物体的位移转换成电感或互感的变化。

电涡流式传感器原理:电涡流式传感器是一个绕在骨架上的导线所构成的空心线圈,它与正弦交流电源接通,通过线圈的电流会在线圈的周围空间产生交变磁场。

压电效应:当某些电介质受到一定方向外力作用而变形时,其内部便会产生极化现象,在他们的上下表面会产生符号相反的等量电荷;当外力的方向改变时,其表面产生的电荷极性也随之改变;当外力消失后又恢复不带电状态,这种现象称为压电效应。

霍尔效应:在通有电流的金属板上加一匀强磁场,当电流方向与磁场方向垂直时,在与电流和磁场都垂直的金属板的两表面间出现电势差,这个现象称为霍尔效应。

光电效应:当物质受光照射后,物质的电子吸收了光子的能量所产生的电现象称为光电效应。

①外光电效应:外光电效应即光电子发射效应,在光的作用下使电子逸出物体表面;②内光电效应:内光电效应有光电导效应、光电动势效应及热电效应。

第3章位移传感器在制造业中的应用第4章力与运动学量传感器及应用第5章压力、流量和物位传感器及应用第6章温度传感器及应用热电效应(赛克威尔效应):将两种不同导体A、B两端连接在一起组成闭合回路,并使两端处于不同温度环境,在回路中会产生热电动势而形成电流,这一现象称为热电效应。

传感器应用技术复习要点整理

传感器应用技术复习要点整理

1、是能够感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置。

敏感元件,转换元件,转换电量。

测谎仪→湿敏电阻3、表示传感器在被测量处于稳定状态时的输出-输入关系线性度,迟滞,重复性,灵敏度,分辨力和阀值,稳定性,漂移4、是指传感器测量动态信号时,输出输入关系动态特性常用阶跃响应和频率响应来描述动态特性衡量指标:电阻应变效应:导体或半导体材料在外力作用下产生机械形变时,它的电阻值也相应的发生变化,这一物理现象称为电阻应变效应。

6、灵敏度:传感器的灵敏度就是校准曲线的斜率7、分辨力:是指传感器能检测到最小的输入增量。

⑧、分辨力和阀值二者的区别:a:分辨力说明了传感器可测出的最小可测出的输入变量。

b:阀值则说明了传感器的可测出的最小输入量9、稳定性:有短期稳定性和长期稳定性之分。

10、使电桥测量前满足平衡条件:输出电压E0=0→R1R3=R2R411、单臂电桥:12、差动半桥:13、差动全桥:14、热敏电阻按其温度特性通常分为两大类:a:负温度系数热敏电阻NTC临界温度型→CTRb:正温度系数热敏电阻PTC15、在实际应用中我们可以利用的变化来进行某些物理量的测量。

电容式传感器可以分为以下3类:a:改变极板面积的b:改变极板距离的c:改变介电常数的17、常见的电路有:普通交流电桥,紧耦合电感臂电桥,变压器电桥,双T电桥电路,运算放大器测量电路,差动脉冲调制电路,调频电路。

电感式传感器的优缺点:优点:结构简单,输出功率大,输出阻抗小,抗干扰能力强,对环境要求不高,分辨力较高缺点:频率响应低,不宜快速测量19、电感式传感器是利用线圈自感或互感变化进行测量。

20、由于在使用时两个结构尺寸和参数完全相同的次级绕组采用以差动方式输出,所以又把这种传感器称为差动变压器式电感传感器,通常简称为。

21、电磁感应定律:22、自感L:S0→面积与自感成正比23、电涡流效应:根据法拉第电磁感应定律,块状金属导体置于变化的磁场中,或作切割磁力线运动时,导体内将产生呈旋涡状的感应电流,此电流叫电涡流,以上现象称为电涡流效应。

(完整版)传感器期末复习重点知识点总结必过.doc

(完整版)传感器期末复习重点知识点总结必过.doc
狭义: 能把外界非电信息转换成电信号输出的器件。
国家标准对传感器定义是:
能够感受规定的被测量并按照一定规律转换成可用输出信号的器件和装置
以上定义表明传感器有以下含义:
1、它是由敏感元件和转换元件构成的检测装置;
2、能按一定规律将被测量转换成电信号输出;
3、传感器的输出与输入之间存在确定的关系;
按使用的场合不同又称为:变换器、换能器、探测器
1.1.2传感器的组成
传感器由敏感元件、转换元件、基本电路三部分组成:
图示 :被测量---敏感原件-----转换原件----基本电路-------电量输出
电容式压力传感器-------------------压电式加速度传感器----------------------电位器式压力传感器
1.1.3传感器的分类
第一章传感器概述
人的体力和脑力劳动通过感觉器官接收外界信号, 将这些信号传送给大脑, 大脑把这些信号分析处理传递给肌体。
如果用机器完成这一过程, 计算机相当人的大脑, 执行机构相当人的肌体, 传感器相当于人的五官和皮肤。
1.1.1传感器的定义
广义: 传感器是一种能把特定的信息(物理、化学、生物)按一定规律转换成某种可用信号的输出器件和装置。
1) 按传感器检测的范畴分类:生物量传感器、化学量传感器、物理量传感器、
2)按输入量分类:速度、位移、角速度、力、力矩、压力、流速、液面、温度、湿度
3)按传感器的输出信号分类:模拟传感器数字传感器
4)按传感器的结构分类:结构型传感器、物性型传感器、复合型传感器
5)按传感器的功能分类:智能传感器、多功能传感器、单功能传感器
差!
入信号按正弦 化 ,分析 特性的相位、振幅、
率, 称 率响 ;

传感器期末总结心得

传感器期末总结心得

传感器期末总结心得随着科学技术的进步和人们对社会经济发展的不断追求,传感器技术在各个领域都得到了广泛的应用。

作为将物理量转变为可视化和可感知信号的设备,传感器在工业自动化、环境监测、医疗诊断等领域发挥着至关重要的作用。

在本学期的传感器课程学习中,我对传感器的原理、制作和应用有了更深入的了解,也积累了一些实际操作经验。

在本学期初,我们首先学习了传感器的基本原理和分类。

传感器的基本原理是根据物理量与电信号之间的相互转换关系来工作的。

根据传感器的工作原理和应用范围,我们将传感器分为了光学传感器、电磁传感器、声学传感器、压力传感器等不同类型。

通过学习不同类型传感器的工作原理和实际应用案例,我深刻体会到了传感器的多样性和重要性。

在传感器的制作与测量原理方面的学习中,我对传感器的结构有了更深入的了解。

传感器的结构由敏感元件、信号处理电路和输出电路组成。

敏感元件根据不同的物理量进行测量,信号处理电路将敏感元件获取的信号进行放大和滤波处理,输出电路将信号转化为标准信号输出。

通过实际操作,我学会了如何选择合适的敏感元件、如何设计信号处理电路和输出电路,以及如何进行精确的测量和校准。

除了理论学习,我们还进行了一些实验操作和实际应用探索。

在实验室中,我们利用传感器对不同物理量进行测量,如光强、温度、湿度等,并通过数据分析和处理来推测物理量的变化规律。

在实际应用探索中,我们使用传感器进行环境监测、安防系统的构建、智能家居的实现等,并通过编程和网络通信实现实时数据传输和远程控制。

这些实践操作让我更加深入地理解了传感器的工作原理和应用方法。

在本学期的传感器课程学习中,我侧重于理论知识的学习和实验操作的积累。

通过课堂的学习,我掌握了传感器的基本原理,学会了将物理量转换为电信号并进行测量分析。

通过实验的操作,我加深了对传感器结构和工作原理的理解,掌握了传感器的制作和校准技巧。

我还通过一些实际应用的探索,对传感器在物联网、智能制造等领域的应用有了更加深入的了解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 什么是测量值的绝对误差、相对误差、引用误差?某量值的测得值和真值之差称为绝对误差。

相对误差有实际相对误差和标称相对误差两种表示方法。

实际相对误差是绝对误差与被测量的真值之比;标称相对误差是绝对误差与测得值之比。

引用误差是仪表中通用的一种误差表示方法,也用相对误差表示,它是相对于仪表满量程的一种误差。

引用误差是绝对误差(在仪表中指的是某一刻度点的示值误差)与仪表的量程之比。

2. 什么是测量误差?测量误差有几种表示方法?它们通常应用在什么场合?测量误差是测得值与被测量的真值之差。

测量误差可用绝对误差和相对误差表示,引用误差也是相对误差的一种表示方法。

在实际测量中,有时要用到修正值,而修正值是与绝对误差大小相等符号相反的值。

在计算相对误差时也必须知道绝对误差的大小才能计算。

采用绝对误差难以评定测量精度的高低,而采用相对误差比较客观地反映测量精度。

引用误差是仪表中应用的一种相对误差,仪表的精度是用引用误差表示的。

3. 已知待测力为70N,现在有两只测力仪表。

一直测量范围为0-500N,精度为0.5级,另一只测量范围为0-100N,精度为1.0级。

问选用哪一只测力仪表好?解:最大满度相对误差为±0.5%±1%,绝对误差为±2.5和±1。

R1=±2.5/70=±3.57%,R2=±1/70=±1.43%,R1>R2,则选第二只表较好。

4. 标准差有几种表示形式?如何计算?分别说明它们的含义。

标准偏差简称标准差,有标准差,标准差的估计值及算术平均值的标准差。

ImageImage()Image由于随机误差的存在,等精度测量列中各个测得值一般皆不相同,它们围绕着该测量列的算术平均值有一定的分散,此分散度说明了测量列中单次测得值的不可靠性,标准差是表征同一被测量的n次测量的测得值分散性的参数,可作为测量列中单次测量不可靠性的评定标准。

而被测量的真值为未知,故不能求得标准差,在有限次测量情况下,可用残余误差代替真误差,从而得到标准差的估计值,标准差的估计值含义同标准差,也是作为测量列中单次测量不可靠性的评定标准。

若在相同条件下对被测量进行m组的“多次重复测量”,每一组测量都有一个算术平均值,由于随机误差的存在,各组所得的算术平均值也不相同,它们围绕着被测量的真值有一定分散,此分散说明了算术平均值的不可靠性,算术平均值的标准差则是表征同一被测量的各个独立测量列算术平均值分散性的参数,可作为算术平均值不可靠性的评定标准。

5.传感器组成原理图。

6. 什么叫传感器?它由哪几部分组成?它们的作用及相互关系如何?传感器是能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置。

通常传感器有敏感元件和转换元件组成。

其中,敏感元件是指传感器中能直接感受或响应被测量的部份;转换元件是指传感器中能将敏感元件感受或响应的被测量转换成适于传输或测量的电信号部份。

由于传感器输出信号一般都很微弱,需要有信号调理与转换电路,进行放大、运算调制等,此外信号调理转换电路以及传感器的工作必须要有辅助的电源,因此信号调理转换电路以及所需的电源都应作为传感器组成的一部份。

7. 什么是传感器的静态特性?它有哪些性能指标?分别说明性能指标的含义传感器的静态特性是指被测量的值处于稳定状态时的输出输入关系。

传感器的静态特性可以用一组性能指标来描述,有灵敏度、迟滞、线性度、重复性和漂移等。

①灵敏度是指传感器输出量增量△y 与引起输出量增量△y的相应输入量增量△x的之比。

用S表示灵敏度,即S=△y/△x②传感器的线性度是指在全量程范围内实际特性曲线与拟合直线之间的最大偏差值△Lmax满量程输出值Yfs之比。

线性度也称为非线性误差,用Rl表示。

③迟滞是指传感器在输入量由小到大(正行程)及输入量由大到小(反行程)变化期间其输入输出特性曲线不重合的现象。

即传感器在全量程范围内最大的迟滞差值ΔHmax与满量程输出值Yfs之比称为迟滞误差,用Rl表示。

④重复性是指传感器在输入量按同一方向作全量程连续多次变化时,所得特性曲线不一致的程度。

重复性误差属于随机误差,常用均方根误差计算,也可用正反行程中最大重复差值△Rmax计算。

8.当被测介质温度为t1,测温传感器示值温度为t2时,有下列方程式成立,当被测介质温度从25℃突然变化到300℃,测温传感器的时间常数τ0=120s,试确定经过350s后的动态误差。

由题可知该测温传感器为典型的一阶系统,则传感器的输出y(t)与时间满足如下关系:把120及t=350s代入上式得可知经过350s后,输出y(t)达到稳态值的94.5%则该传感器测量温度经过350秒后的动态误差为:△=(300-25)x(1-0.945)=14.88 ℃9.什么叫应变效应?利用应变效应解释金属电阻应变片的工作原理。

在外力作用下,导体或半导体材料产生机械变形,从而引起材料电阻值发生相应变化的现象,称为应变效应。

其表达式为dR/R=K·ε,式中K 为材料的应变灵敏系数,当应变材料为金属或合金时,在弹性极限内K 为常数。

金属电阻应变片的电阻相对变化量与金属材料的轴向应变成正比,因此,利用电阻应变片,可以将被测物体的应变ε转换成与之成正比关系的电阻相对变化量,这就是金属电阻应变片的工作原理。

10.试述应变片温度误差的概念,产生原因和补偿办法。

由于测量现场环境温度偏离应变片标定温度而给测量带来的附加误差,称为应变片温度误差。

产生应变片温度误差的主要原因有:⑴由于电阻丝温度系数的存在,当温度改变时,应变片的标称电阻值发生变化,⑵当试件与与电阻丝材料的线膨胀系数不同时,由于温度的变化而引起的附加变形,使应变片产生附加电阻。

电阻应变片的温度补偿方法有线路补偿法和应变片自补偿法两大类。

电桥补偿法是最常用且效果较好的线路补偿法,应变片自补偿法是采用温度自补偿应变片或双金属线栅应变片来代替一般应变片,使之兼顾温度补偿作用。

11.说明差动变隙电压传感器的主要组成,工作原理和基本特性。

差动变隙电压传感器结构如下图所示。

主要由铁芯,衔铁,线圈三部分组成。

传感器由两个完全相同的电压线圈合用一个衔铁和相应磁路。

工作时,衔铁与被测件相连,当被测体上下移动时,带动衔铁也以相同的位移上下移动,使两个磁回路中磁阻发生大小相等方向相反的变化。

导致一个线圈的电感量增加,另一个线圈的电感量减小,形成差动形式。

其输出特性为:△L/L0=2(△δ/δ0)为了使输出特性能得到有效改善,构成差动的两个变隙式电感传感器在结构尺寸、材料、电气参数等方面均应完全一致。

12. 差动变压器等效电路图,基本特性。

差动变压器式传感器有变隙式差动变压器式和螺线管式差动变压器式传感器二种结构形式。

输出电压与M1/M2比值成正比,然而M2/M1比值与变压的体积与零点残余电压有关器。

应综合考虑;U0与δ0成反比关系,因此要求δ0越小越好,但较小的δ0使测量范围受到约束,通常在0.5mm左右。

13.螺线管式差动变压器与激励对变压器性能影响?螺线管式差动变压器式传感器的输出特性是激励电压U和激磁频率f的函数,理论上,灵敏度K与U、f成正比关系,而实际上由于传感器结构的不对称、铁损、磁漏等因素影响,K与f不成正比关系,一般在400Hz~10KHz范围内K有较大的稳定值,K与U不论在理论上和实际上都保持较好的线性关系。

一般差动变压器的功率控制在1瓦左右,因此U取值在3~8伏范围之内。

为保证传感器有较好的线性度,其测量范围为线圈骨架长度的1/10到1/4。

因此可以测量大位移范围。

14.光电耦合器分为哪两类?各有什么用途?光电耦合器件可分为线型CCD图像传感器和面型CCD图像传感器两类。

线型CCD图像传感器可以直接接收一维光信息,但是不能直接讲而为图像先好转换为视频信号输出,为了得到整个二维图像的视频信号,就必须使用扫描的方法,而民星CCD图像传感器主要用于摄像机及测试技术。

15.差动变压器式传感器的零点残余电压产生的原因是什么?怎样减小和消除它的影响?差动电压器在零位移时的输出电压称为零点残余电压。

对零点残余电压进行频谱分析,发现其频谱主要由基波和三次谐波组成,基波产生的主要原因是传感器两个次级绕组的电气参数与几何尺寸不对称,三次谐波产生的原因主要是磁性材料磁化曲线的非线性(磁饱和,磁滞)所造成的。

消除或减小零点残余电压的主要方法有:①尽可能保证传感器几何尺寸,线圈电气参数和磁路的相互对称。

②传感器设置良好的磁屏蔽,必要时再设置静电屏蔽。

③将传感器磁回电路工作区域设计在铁芯曲线的线性段。

④采用外电路补偿。

⑤配用相敏检波测量电路。

16. 电涡传感器常用的测量电路有哪几种?画出电路,等效电路及测量电路。

(1)等效原理图(2)调频式电路 (3)条幅式电路17.根据工作原理可将电容式传感器分为那几种类型?每种类型各有什么特点?各适用于什么场合?根据电容式传感器的工作原理,电容式传感器有三种基本类型,即变极距(d)型(又称变间隙型)、变面积(A)型和变介电常数(ε)型。

变间隙型可测量位移,变面积型可测量直线位移、角位移、尺寸,变介电常数型可测量液体液位、材料厚度。

电容式传感器具有以下特点:功率小,阻抗高,由于电容式传感器中带电极板之间的静电引力很小,因此,在信号检测过程中,只需要施加较小的作用力,就可以获得较大的电容变化量及高阻抗的输出;动态特性良好,具有较高的固有频率和良好的动态响应特性;本身的发热对传感器的影响实际上可以不加考虑;可获取比较大的相对变化量;能在比较恶劣的环境条件下工作;可进行非接触测量;结构简单、易于制造;输出阻抗较高,负载能力较差;寄生电容影响较大;输出为非线性。

18. 如何改善单极式变极距型传感器的非线性?采用差动式结构,可以使非线性误差减小一个数量级。

19.什么叫正压电效应和逆压电效应?什么叫纵向压电效应和横向压电效应?某些电介质在沿一定的方向上受到外力的作用而变形时,内部会产生极化现象,同时在其表面上产生电荷,当外力去掉后,又重新回到不带电的状态,这种现象称为压电效应。

这种机械能转化成电能的现象,称为“顺压电效应”。

反之,在电介质的极化方向上施加交变电场或电压,它会产生机械变形,当去掉外加电场时,电介质变形随之消失,这种现象称为“逆压电效应”。

在石英晶体中,通常把沿电轴x方向的力作用下产生电荷的压电效应称为“纵向压电效应”, 而把沿机械轴y方向的力作用下产生电荷的压电效应称为“横向压电效应”。

20.五种测量电路(1) 环形二极管电容测量电路不要求画图(2)调频式测量电路(3)运算放大器式电路(4)二极管双T形交流电桥(5)脉冲带宽调制电路21. 画出压电传感器的两种等效电路(1)电压源(2)电荷源22.什么是霍尔效应?霍尔电势与哪些因素有关?金属或半导体薄片置于磁场中,当有电流通过时,在垂直于电流和磁场的方向上将产生电动势,这种物理现象称为霍尔效应。

相关文档
最新文档