中小型燃气锅炉低氮排放的几种解决方案
中小型燃气锅炉低氮改造及排放控制的几种解决方案

中小型燃气锅炉低氮改造及排放控制的几种解决方案一、低氮燃烧的必要性减少NOx排放是改善环境空气质量的需要近年来的监测数据表明,典型特征污染物PM2.5出现较大超标比例和区域性长时间严重超标情况,改善环境空气质量面临巨大挑战。
国内外研究和治理经验表明,控制区域性PM2.5污染是一项难度非常大的系统工程,必须在综合分析基础上,提出有针对性的控制对策,才能有效缓解区域PM2.5污染。
PM2.5包括一次排放和二次生成粒子两部分,以北京为例,二次粒子比例较高,特别是重污染时段PM2.5中二次粒子比例较常规时段明显增加。
有观测数据表明,重污染发生时PM2.5与NO x的环境质量浓度变化呈现强相关、同步变化的特征。
此外,NO x是PM2.5形成的重要前体物。
因此,减少NO x排放是改善空气环境质量的重要任务之一。
二、国内外燃气工业锅炉NO x控制技术现状现有低NO x燃烧技术主要围绕如何降低燃烧温度,减少热力型NO x生成开展的,主要技术包括分级燃烧、预混燃烧、烟气再循环、多孔介质催化燃烧和无焰燃烧。
(1)燃料分级燃烧或空气分级燃烧热力型NO x生成很大程度上取决于燃烧温度。
燃烧温度在当量比为1的情况下达到最高,在贫燃或者富燃的情况下进行燃烧,燃烧温度会下降很多。
运用该原理开发出了分级燃烧技术。
空气分级燃烧第一级是富燃料燃烧,在第二级加入过量空气,为贫燃燃烧,两级之间加入空气冷却以保证燃烧温度不至于太高。
燃料分级燃烧与空气分级燃烧正好相反,第一级为燃料稀相燃烧,而在第二级加入燃料使得当量比达到要求的数值。
这两种方法最终将会使整个系统的过量空气系数保持一个定值,为目前普遍采用的低氮燃烧控制技术。
(2)贫燃预混燃烧技术预混燃烧是指在混合物点燃之前燃料与氧化剂在分子层面上完全混合。
对于控制NO x的生成,这项技术的优点是可以通过当量比的完全控制实现对燃烧温度的控制,从而降低热力型NO x生成速率,在有些情况下,预混燃烧和部分预混可比非预混燃烧减少85%—90%的NO x生成。
锅炉低氮改造方案

锅炉低氮改造方案锅炉低氮改造方案一、背景介绍随着环保意识的增强和环境保护法规的逐步推进,减少氮氧化物(NOx)的排放已成为许多工业领域的关注重点之一。
作为重要的能源供应设备之一,锅炉在能源消耗和NOx排放方面面临着一定的挑战。
为了满足环境保护的要求,锅炉低氮改造成为一项重要的工程。
二、改造目标锅炉低氮改造的目标是降低锅炉燃烧过程中产生的氮氧化物排放。
具体目标如下:1. 将锅炉NOx排放浓度降低至国家环境保护规定标准以下;2. 保证锅炉燃烧效率不受明显影响;3. 减少锅炉运行成本,提高能源利用率。
三、改造方案3.1 锅炉燃烧调整通过控制锅炉的燃烧过程,可以有效降低锅炉燃烧产生的NOx排放。
具体措施包括:1. 优化燃烧器结构,采用低氮燃烧技术,控制燃烧温度和燃气混合比,减少NOx的生成;2. 优化燃烧过程参数,如氧供给量和负荷调整等,在保证燃烧效率的前提下降低NOx排放;3. 使用燃烧助剂,如变质煤粉等,改善燃烧条件,降低NOx排放。
3.2 污染物处理装置安装为了进一步减少锅炉排放的污染物,可以在锅炉排放气体处理系统中加装相应的污染物处理装置。
常见的处理装置包括:1. SCR(Selective Catalytic Reduction,选择性催化还原)装置:通过添加氨水或尿素作为还原剂,使用催化剂降解NOx为氮气和水,减少NOx的排放;2. SNCR(Selective Non-Catalytic Reduction ,选择性非催化还原)装置:通过添加尿素溶液或氨水等还原剂,直接喷入燃烧区域进行还原,减少NOx排放;3. 烟气脱硝装置:利用化学吸收法、氧化催化法等处理技术,将NOx转化为无害物质,降低NOx排放。
3.3 锅炉运行管理和维护锅炉低氮改造不仅需要改变锅炉的硬件结构,还需要加强对锅炉的运行管理和维护。
具体要求如下:1. 加强锅炉的日常巡检和维护,确保锅炉燃烧器等关键部件的正常运行;2. 定期清洗和检查锅炉换热面、烟道和排烟系统等,防止积灰和堵塞,影响排放效果;3. 对锅炉进行精细调试,合理控制炉膛温度和氧含量,达到低氮排放要求。
安全管理之中小型燃气锅炉低氮排放的几种解决方案

安全管理之中小型燃气锅炉低氮排放的几种解决方案随着环保要求的不断提高,燃气锅炉低氮排放已经成为了一个重要的问题。
作为一种常用的锅炉系统,在安全管理中应该尽可能的去改善其排放性。
本文将介绍几种解决方案,帮助中小型企业实现低氮排放。
一、燃烧优化调整在燃气锅炉的运行过程中,可通过优化燃烧参数来降低氮氧化物的排放。
具体的调整措施有以下几种:1. 调整气流调整燃烧的气流,使其与燃料混合均匀,燃满完整。
这样能够有效地降低燃烧时的温度峰值,减少氮氧化物的生成。
2. 调整燃烧温度燃烧温度过低或过高都会促进氮氧化物的生成,适当地调整燃烧温度能够有效地控制燃气锅炉的氮氧化物排放。
3. 优化供氧方式在燃烧过程中,适量的供氧可以促进燃料的燃烧,但过量的供氧会使燃烧温度降低,导致氮氧化物的生成增加。
因此在燃气锅炉运行时,可以根据需要进行供氧的调整,以达到最佳的排放效果。
二、运行控制系统除了优化燃烧参数,还可以通过安装运行控制系统来降低氮氧化物排放。
具体的措施有以下几种:1. 安装尾气再循环系统尾气再循环系统是一种常见的氮氧化物降低措施,其原理是将燃气锅炉排出的废气经过回收处理后,再次加入到燃烧过程中。
这样可以有效地降低燃料燃烧的温度和瞬时高温峰值,减少氮氧化物的生成。
2. 安装烟气净化器通过在燃气锅炉排放口安装烟气净化器,可以在燃烧过程中减少氮氧化物排放。
烟气净化器通常是通过灰尘捕集器、湿式电除尘器、干式电除尘器等方式去除烟气中的颗粒物、有机物等污染物,从而达到减少氮氧化物排放的目的。
三、替换低氮燃烧器低氮燃烧器是一种专为燃气锅炉设计的燃烧设备,其燃烧时可以减少NOx的生成。
替换低氮燃烧器可以是中小型燃气锅炉实现低氮排放的一种有效方案。
通常,低氮燃烧器的设计包括增加风量、增加点火能量、降低燃烧温度等措施,以达到减少氮氧化物排放的效果。
总结针对中小型企业的燃气锅炉,通过燃烧优化调整、安装运行控制系统以及替换低氮燃烧器等几种方案,可以有效地实现低氮排放的目的。
燃气锅炉低氮改造方案

燃气锅炉低氮改造方案燃气锅炉低氮排放成为了新时代的新要求,为了保护环境,保证国人健康,燃气锅炉低氮排放势在必行,使命必达。
远大锅炉紧跟时代步伐,积极响应国家政策,时刻不忘研发新产品,不忘为用户谋福利。
远大低氮燃气锅炉:FGR烟气再循环低氮燃烧技术;国外原装进口低氮燃烧器;压力、水位多重安全防护;PLC触摸屏智能化控制技术。
远大锅炉低氮技术研发历程:保护环境,节能减排,绿色生产,可持续发展是每一个企业的使命,远大锅炉每年按销售额的5%提取新产品研发费用,专注低氮、节能锅炉技术的研发。
2015年,远大锅炉与芬兰奥林、德国欧科、意大利利雅路、意科法兰等积极合作,通过使用超低NOx燃烧器,增加烟气外循环设计,实现氮氧化物<30mg/m3排放标准。
NOx成分分析及产生机理:在燃烧过程中所产生的氮的氧化物主要为NO和NO2,通常把这两种氮氧化物通称为氮氧化物NOx。
大量实验结果表明,燃烧装置排放的氮氧化物主要为NO,平均约占95%,而NO2仅占5%左右。
燃料燃烧过程生成的NOx,按其形成分类,可分为三种:1、热力型NOx(ThermalNOx),它是空气中的氮气在高温下氧化而生成的NOx;2、快速型NOx(PromptNOx),它是燃烧时空气中的氮和燃料中的碳氢离子团如CH等反应生成的NOx;3、燃料型NOx(FuelNOx),它是燃料中含有的氮化合物在燃烧过程中热分解而又接着氧化而生成的NOx;燃烧时所形成NO可以与含氮原子中间产物反应使NO还原成NO2。
实际上除了这些反应外,NO还可以与各种含氮化合物生成NO2。
在实际燃烧装置中反应达到化学平衡时,[NO2]/[NO]比例很小,即NO转变为NO2很少,可以忽略。
降低NOx的燃烧技术:NOx是由燃烧产生的,而燃烧方法和燃烧条件对NOx的生成有较大影响,因此可以通过改进燃烧技术来降低NOx,其主要途径如下:1选用N含量较低的燃料,包括燃料脱氮和转变成低氮燃料;2降低空气过剩系数,组织过浓燃烧,来降低燃料周围氧的浓度;3在过剩空气少的情况下,降低温度峰值以减少“热反应NO”;4在氧浓度较低情况下,增加可燃物在火焰前峰和反应区中停留的时间。
燃气锅炉低氮改造方案

3.改造完成后,定期对环保设施进行维护,确保其正常运行。
十、项目总结
本方案旨在通过对燃气锅炉进行低氮改造,实现氮氧化物排放浓度≤30mg/m³,满足国家及地方环保要求。改造过程中,注重安全性、环保性和经济效益,确保改造项目的顺利实施。通过本次改造,将为企业带来长期的环境效益和经济效益,为我国环保事业贡献力量。
6.调试优化:完成改造后,对锅炉进行调试,调整燃烧参数,确保氮氧化物排放浓度达标。
7.验收评估:组织专家对改造效果进行评估,确保各项指标达到预期目标。
八、改造效果评估
1.氮氧化物排放浓度:改造后,氮氧化物排放浓度应≤30mg/m³。
2.燃烧效率:改造后,锅炉燃烧效率提高3%以上。
3.能源消耗:改造后,能源消耗降低5%以上。
2.调整燃烧参数:根据实际运行情况,优化燃烧器结构,提高燃烧效率;
3.增设烟气再循环系统:在锅炉尾部增设烟气再循环风机,将部分烟气引入燃烧器,降低火焰温度;
4.优化控制系统:采用先进的控制策略,实现燃烧过程的实时监控和优化调整,提高锅炉运行稳定性;
5.更新锅炉本体及辅助设备:对锅炉本体进行改造,提高热效率,降低氮氧化物排放。
第2篇
燃气锅炉低氮改造方案
一、前言
为响应我国环保政策,降低大气污染物排放,特别是氮氧化物的排放,本方案针对某地区燃气锅炉进行低氮改造。通过采用先进的低氮燃烧技术和优化锅炉运行参数,旨在实现氮氧化物排放浓度符合国家及地方环保标准,同时提高锅炉的热效率,降低能源消耗。
二、改造目标
1.降低氮氧化物排放浓度,满足国家及地方环保要求。
4.安全性:改造后,锅炉运行安全性提高,故障率降低。
5.经济效益:改造成本在合理范围内,投资回收期≤3年。
燃气锅炉低氮改造方案

燃气锅炉低氮改造方案为了应对环境污染的挑战和改善空气质量,燃气锅炉低氮改造成为了必要的举措。
在本文中,我们将讨论燃气锅炉低氮改造的方案,以期提供有效的解决方案。
一、方案概述燃气锅炉低氮改造的目标是降低氮氧化物(NOx)的排放量。
通过优化燃烧系统和引入额外的氮氧化物控制措施,可以实现降低NOx排放的效果。
具体而言,方案包括以下几个关键步骤:1. 优化燃烧系统:通过更换锅炉燃烧设备,改善燃烧效率,减少NOx的生成。
新一代低氮燃烧器采用先进的燃烧技术,能够更好地控制燃烧反应过程,降低NOx排放。
2. 引入尾气再循环技术:通过将一部分燃烧产生的废气回收再利用,将其混合到新鲜空气中重新参与燃烧,降低燃烧温度,减少NOx的生成。
3. 安装低氮燃烧系统:安装燃气锅炉专用的低氮燃烧系统,包括调节阀、排烟系统等。
这些系统在燃烧过程中能够减少NOx生成的同时,保持燃烧的稳定性和热效率。
二、方案优势1. 环保效益:通过燃气锅炉低氮改造,能够显著减少NOx的排放量,改善空气质量,保护环境。
减少大气污染物的排放对于人类健康和生态平衡都具有积极的影响。
2. 经济效益:低氮改造后的燃气锅炉在燃料利用率和热效率方面表现出色,能够节约能源和运行成本。
长期来看,低氮改造可以为企业带来可观的经济收益。
3. 质量保证:低氮燃烧系统的使用能够确保锅炉稳定运行和燃烧效果的优化。
燃烧过程的控制和调节能够提高锅炉的可靠性和耐久性,延长锅炉的使用寿命。
三、方案实施1. 技术评估:在实施燃气锅炉低氮改造之前,需要进行现有锅炉系统的技术评估。
通过现场勘测和数据分析,确定适合该锅炉的低氮改造方案。
2. 设备选型:根据实际需求和技术评估结果,选择合适的低氮燃烧器和相关设备。
确保设备的质量和性能能够满足要求。
3. 施工安装:根据设计方案,进行施工和设备安装。
确保施工过程中符合安全和质量要求,以及相关环保法规。
4. 调试验收:在施工完成后,进行系统调试和性能测试。
燃气锅炉低氮改造施工方案

燃气锅炉低氮改造施工方案一、背景介绍燃气锅炉是工业和民用领域常见的供暖设备,但其燃烧产生的氮氧化物对环境有害,严重影响空气质量。
为了减少燃气锅炉排放的氮氧化物,提高环保水平,低氮改造成为迫切需求。
二、改造目标燃气锅炉低氮改造的主要目标是降低氮氧化物排放浓度,实现燃烧过程更加充分、高效,最终达到绿色环保标准。
三、方案设计1. 燃烧系统优化通过调整燃烧参数,优化燃气锅炉燃烧系统,使燃烧更加完全,减少氮氧化物的生成。
2. SNCR技术应用选择合适的选择性非催化还原(SNCR)技术,通过喷射尿素溶液的方式,在适当温度下还原氮氧化物,降低排放浓度。
3. 烟气循环利用引入烟气循环利用技术,通过回收部分烟气中的热能,提高热效率,减少排放。
4. 智能控制系统安装智能控制系统,通过监测燃烧参数,实现精准控制,提升燃烧效率,减少氮氧化物排放。
四、施工流程1. 前期准备•制定详细的改造方案和施工计划•确定改造所需材料和设备•安排专业人员进行技术培训2. 施工操作•拆卸原有设备,清理燃烧系统•安装SNCR设备和烟气循环利用装置•调试燃烧系统和控制系统3. 后期验收•对改造后的燃气锅炉进行运行测试•评估排放数据,确保达到低氮排放标准•出具改造工程验收报告五、效果评估对改造后的燃气锅炉进行长期监测,持续跟踪排放数据,确保低氮改造方案的有效实施,达到节能减排的预期效果。
六、结论燃气锅炉低氮改造是一项重要的环保措施,通过科学的方案设计和施工操作,可以有效减少氮氧化物排放,提高燃气锅炉的环保水平,符合可持续发展要求。
燃气锅炉低氮燃烧改造方案

燃气锅炉低氮燃烧改造方案燃气锅炉低氮燃烧改造方案目标1.实施燃气锅炉低氮燃烧改造,使其达到环保要求;2.减少氮氧化物的排放,从而改善大气质量;3.提高燃烧效率,降低能源消耗。
方案概述为了实现以上目标,我们提出以下方案:1. 锅炉氧气控制系统升级通过升级锅炉氧气控制系统,调整气体进入燃烧室的氧气含量,以达到低氮燃烧效果。
具体步骤如下:•安装氧气传感器,实时监测燃烧室内的氧气浓度;•配置氧气控制阀门,根据传感器反馈的氧气浓度进行调节;•通过智能控制系统,稳定氧气浓度在适宜的范围内;•实施定期检测和校准,确保系统稳定可靠运行。
2. 燃烧室结构调整针对燃烧室结构进行调整,以提高燃烧效率和降低氮氧化物的生成。
具体措施如下:•加装预混板,使气体和空气更好地混合;•优化喷嘴设计,实现均匀燃烧;•加设燃烧室过量空气探测器,控制燃烧室内空气流量,降低过量空气率;•配置可调节燃烧器,实现灵活调节燃烧参数。
3. 定期维护与保养为了保证燃气锅炉低氮燃烧效果的持久稳定,需要进行定期维护与保养。
具体措施如下:•清洗和更换燃烧器内的积碳和灰尘;•检查和调整各个传感器和控制阀门的工作状态;•检查和清洗烟道和换热器,以提高热传递效率;•定期监测燃烧室内的氧气浓度、排放氮氧化物的含量。
预期效果通过实施上述方案,我们预计将达到以下效果:1.氮氧化物排放浓度显著降低,满足环保要求;2.锅炉燃烧效率提升,能源利用效率提高;3.燃烧室运行更加稳定,减少故障和维修次数;4.降低锅炉运行成本,节约燃气资源。
结论通过燃气锅炉低氮燃烧改造方案的实施,我们将有效改善大气质量,减少氮氧化物的排放,同时提高能源利用效率。
这一方案将使您的锅炉达到环保要求,并带来长期的经济效益。
如需了解更多详细信息,请与我们联系。
4. 燃气供应系统优化优化燃气供应系统是改造燃气锅炉低氮燃烧的重要环节,可以提高燃烧稳定性和能源利用效率。
具体措施如下:•升级燃气管道和控制阀门,优化气体流量和压力控制;•加装燃气调压装置,稳定供气压力;•安装燃气流量计,精确掌握燃气消耗情况;•配置燃气自动供给系统,实现智能化控制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中小型燃气锅炉低氮排放的几种解决方案一、低氮燃烧的必要性减少NOx排放是改善环境空气质量的需要近年来的监测数据表明,典型特征污染物PM2.5出现较大超标比例和区域性长时间严重超标情况,改善环境空气质量面临巨大挑战。
国内外研究和治理经验表明,控制区域性PM2.5污染是一项难度非常大的系统工程,必须在综合分析基础上,提出有针对性的控制对策,才能有效缓解区域PM2.5污染。
PM2.5包括一次排放和二次生成粒子两部分,以北京为例,二次粒子比例较高,特别是重污染时段PM2.5中二次粒子比例较常规时段明显增加。
有观测数据表明,重污染发生时PM2.5与NOx的环境质量浓度变化呈现强相关、同步变化的特征。
NOx是PM2.5的重要前体物,在形成过程中有两个作用:一是反应生成的NO3-是二次粒子的重要化学组分;二是通过光解链式反应生成O3-,增加大气氧化性,提供将SOx、NOx氧化生成SO42-和NO3-的氧化剂。
美国加州利用CAMQ模型模拟削减一次排放的NOx对PM2.5的影响,结果是每减少1吨NOx排放可减少约0.13吨PM2.5。
北京最新研究结果表明,二次粒子是目前PM2.5的主要贡献者,且比2000年有明显上升,主要成分为水溶性离子(占53%)、地壳元素(占22%)、有机质(占20%)和元素碳(占3%),其他未知元素约占2% ,且NO3-/SO42-比例关系呈现增加趋势。
水溶性离子中以SO42-、 NO3-和NH4+为主,三者之和(SNA)占PM2.5的比例平均近50%,SNA的浓度贡献是造成PM2.5污染的主要原因。
因此,减少NOx排放是改善空气环境质量的重要任务之一。
二、低氮燃烧机理及技术研究1、甲烷-空气燃烧过程氮化学基本原理燃烧理论将NOx的生成分为热力型NOx(Thermal NOx)、快速型NOx(Prompt NOx)和燃料型NOx(Fuel NOx)。
天然气中含氮量较低,因此,燃料型NOx不是其主要的控制类型。
热力型NOx是指燃烧用空气中的N2在高温下氧化生成NOx。
关于热力型NOx的生成机理一般采用捷里道维奇机理:当温度低于1500℃时,热力NOx 的生成量很少;高于1500℃时,温度每升高100℃,反应速度将增大6~7倍。
在实际燃烧过程中,由于燃烧室内的温度分布是不均匀的,如果有局部高温区,则在这些区域会生成较多的NOx,它可能会对整个燃烧室内的NOx生成起关键性的作用。
快速型NOx在碳氢燃料燃烧且富燃料的情况下,反应区会快速生成NOx。
在实际的燃烧过程中各种因素是单独变化的,许多参数均处于不断的变化中,即使是最简单的气体燃料的燃烧,也要经历燃料和空气相混合,燃烧产生烟气,直到最后离开炉膛。
炉膛的温度、燃料和空气的混合程度、烟气在炉内停留时间等这些对NOx排放有较大影响的参数均处于不断的变化之中。
燃料和空气混合物进入炉膛后,由于受到周围高温烟气的对流和辐射加热,混合物气流温度很快上升。
当达到着火温度时,燃料开始燃烧,这时温度急剧上升到近于绝热温度水平。
同时,由于烟气与周围介质间的对流和辐射换热,温度逐渐降低,直到与周围介质温度相同,也即烟气边冷却边流过整个炉膛。
由此可见,炉内的火焰温度分布实际上是不均匀的。
通常,离燃烧器出口一定距离处的温度最高,在其前后的温度都较低,即存在局部高温区。
由于该区的温度要比炉内平均温度水平高得多,因此它对NOx生成量有很大的影响:温度越高,NOx生成量越多。
因此,在炉膛中,为了抑制NOx的生成,除了降低炉内平均温度外,还必须设法使炉内温度分布均匀,避免局部高温。
2、国内外燃气工业锅炉NOx控制技术现状现有低NOx燃烧技术主要围绕如何降低燃烧温度,减少热力型NOx生成开展的,主要技术包括分级燃烧、预混燃烧、烟气再循环、多孔介质催化燃烧和无焰燃烧。
(1)燃料分级燃烧或空气分级燃烧热力型NOx生成很大程度上取决于燃烧温度。
燃烧温度在当量比为1的情况下达到最高,在贫燃或者富燃的情况下进行燃烧,燃烧温度会下降很多。
运用该原理开发出了分级燃烧技术。
空气分级燃烧第一级是富燃料燃烧,在第二级加入过量空气,为贫燃燃烧,两级之间加入空气冷却以保证燃烧温度不至于太高。
燃料分级燃烧与空气分级燃烧正好相反,第一级为燃料稀相燃烧,而在第二级加入燃料使得当量比达到要求的数值。
这两种方法最终将会使整个系统的过量空气系数保持一个定值,为目前普遍采用的低氮燃烧控制技术。
(2)贫燃预混燃烧技术预混燃烧是指在混合物点燃之前燃料与氧化剂在分子层面上完全混合。
对于控制NOx的生成,这项技术的优点是可以通过当量比的完全控制实现对燃烧温度的控制,从而降低热力型NOx生成速率,在有些情况下,预混燃烧和部分预混可比非预混燃烧减少85%—90%的NOx生成。
另外,完全预混还可以减少因过量空气系数不均匀性所导致的对NOx生成控制的降低。
但是,预混燃烧技术在安全性控制上仍存在未解决的技术难点:一是预混气体由于其高度可燃性可能会导致回火;二是过高的过量空气系数会导致排烟损失的增加,降低了锅炉热效率。
(3)外部烟气再循环和内部烟气再循环技术燃烧温度的降低可以通过在火焰区域加入烟气来实现,加入的烟气吸热从而降低了燃烧温度。
通过将烟气的燃烧产物加入到燃烧区域内,不仅降低了燃烧温度,减少了NOx生成;同时加入的烟气降低了氧气的分压,这将减弱氧气与氮气生成热力型NOx的过程,从而减少NOx的生成。
根据应用原理的不同,烟气再循环有两种应用方式,分别为外部烟气再循环与内部烟气再循环。
对于外部烟气再循环技术来说,烟气从锅炉的出口通过一个外部管道,重新加入到炉膛内。
根据研究,外部烟气再循环可以减少70%的NOx生成。
外循环比例对NOx控制效果也有较大影响,随着外循环比例的增加NOx降低幅度也更加明显,但循环风机电耗也将增加。
对于内部烟气再循环,烟气回流到燃烧区域主要通过燃烧器的气体动力学。
内部烟气再循环主要通过高速喷射火焰的卷吸作用或者旋流燃烧器使得气流产生旋转达到循环效果。
通过运用一个旋流器或者切向气流进口来生成一个有切向速度的气流,旋转过程即产生了涡流。
涡流的强度可以用一个无量纲数旋流度S表示。
当旋流度超过0.6,气流中将会产生足够的径向和轴向压力梯度,这会导致气流反转,在火焰中心产生一个环形的再循环区域。
中心再循环区域的高温气体将回到燃烧器喉部,这确保了对冷的未燃烧气体的点火,同时通过降低火焰温度和降低氧气分压减少NOx生成。
(4)多孔介质催化燃烧降低火焰温度的另一个办法就是尽可能快和多的加强火焰对外的传热。
在燃烧器内增加了多孔介质(PIM),使得燃烧反应发生在多孔介质内,这样从燃烧器到周围环境的辐射和对流换热就被加强了。
实验表明,使用PIM燃烧器的燃烧温度低于1600K,NOx生成量在5-20ppm左右。
PIM燃烧器还可以在燃烧器入口处添加催化剂,这样燃料分子和氧化剂分子就会以一个比较低的活化能在催化剂表面进行反应。
这样反应温度相比于同类的燃烧要更低。
由于反应过程只在催化剂表面进行,不会产生NOx,这样催化燃烧的NOx生成可以降至1ppm。
催化燃烧的缺点就是必须保证活性表面在一个比较低的温度下不被氧化或蒸发,且催化剂造价相对较高,难以得到工业化应用。
(5)无焰燃烧传统的火焰燃烧分为预混燃烧和扩散燃烧,其主要特点包括:①燃料与氧化剂在高温下反应,温度越高越有助于火焰的稳定;②火焰面可视(甲烷燃烧的火焰一般为蓝色,有碳烟产生时为黄色);③大多数燃料在很薄的火焰层内完成燃烧,但是燃烧反应会在下游的不可见的区域内完成。
为了建立一个火焰,燃料与氧化剂之比必须在可燃极限之内,同时需要点火装置。
一般情况下,火焰在点燃以后一般自己充当点火器,对来流进行点火。
这就需要足够高的火焰温度来达到最小点火能量,但是高的火焰温度会使得NOx生成增加。
经研究,在炉内温度为1000℃,空气预热到650℃的情况下,燃料在无焰的情况下燃烧,一氧化碳低于1ppm,NOx接近于零排放。
为了稳定火焰,可视的燃烧过程需要在燃烧后产生很强的烟气回流;对于无焰燃烧,烟气回流发生在燃烧之前,甚至可能在燃烧器当中,这样再循环的烟气加热了预混的燃料,降低了炉膛温度,扩大了反应区域。
无焰燃烧火焰分布均匀,燃烧温度低,同时羟基生成少,这使得NOx产生更少。
无焰燃烧需要以下条件:①分别射入高动量的空气和燃料流;②大量内部的或者外部的高温燃烧产物循环;③热量的快速移除,以保证炉膛内各处均未达到绝热火焰温度。
无焰燃烧不需要传统的稳燃装置或条件(比如强涡)。
三、全预混表面燃烧技术降低NOx排放的可行性及实现方式“全预混金属纤维表面燃烧技术”将空气和天然气在进入燃烧室之前按比例完全混合,使天然气充分燃烧的同时,降低火焰温度以减少NOx的产生,使NOx在运行工况下最高排放可控制到30ppm以下;同时还降低空气的需求量,提高烟气的露点,使烟气尽早进入冷凝阶段,以进一步提高燃烧效率。
国外的金属纤维燃烧器产品已经有多年的应用经验,并且配套了铸铝等高效率的换热结构,排放效果毋庸置疑;但也存在必须在其配套换热器中才能达到排放效果的弊端;在低氮排放要求下,传统的燃烧机面临必须更换的尴尬局面,而昂贵的新装备无疑也带来了不菲的使用成本。
结束语目前已建设的低氮燃气锅炉普遍采用了低氮燃烧头结构设计结合烟气再循环的燃烧优化技术,不仅降低了NOx的排放,而且不会太多降低锅炉热效率。