(完整版)第三讲力矩平衡条件及应用(竞赛辅导—含答案)
力矩力矩的平衡

力矩力矩的平衡力矩力矩的平衡1.什么是物体的平衡状态?物体在共点力的作用下,如果保持静止或者做匀速直线运动,我们就说这个物体处于平衡状态。
2.在共点力作用下,物体的平衡条件是什么?F合= 0OA为轻质杆,求绳AB上的拉力B F2θOA F1 GG1G若考虑OA的重力由于OA的重量G1与其余三个力为非共点力,就不能用前面学到的知识解题,要用到今天上讲的知识。
一、转动平衡1、力可以使物体转动:(1)门转动时,门上各点绕门轴做圆周运动。
(2)电风扇转动时,叶片上各点都沿圆周运动,圆周的中心在同一直线上。
2、转动轴:物体转动时,各点做圆周运动的圆心的连线。
3、转动平衡:一个有固定转动轴的物体,在力的作用下,如果保持静止(或匀速转动),我们称这个物体处于转动平衡状态。
4、物体的平衡状态:包括保持静止、匀速直线运动、匀速转动这三种状态。
力对物体的转动作用跟什么因素有关?举例1力越大,力对物体的转动作用越大演示2即力臂演示3力和转动轴的距离越大,力对物体的转动作用越大力对物体的转动作用与转动轴到力的作用点的距离没有必然关系力臂:从转动轴到力的作用线的垂直距离。
※力臂的找法一轴:即先找到转动轴;二线:找到力的作用线;三垂直:从转轴向力的作用线作垂线示例:如图表示有两个力F1和F2作用在杠杆上,杠杆的转动轴过O点垂直于纸面,求F1和F2对转动轴的力臂?A L1OB L2F1 说转动轴到力的作用点的距离明不是力臂。
F2练习1:均匀正方形,边长为a,可绕过C点的水平轴转动,重力的力臂多大?在A点施力,如何使力臂最大?如何使力臂最小?力臂能否大于作用点到轴的距离?A a D a C B练习2:均匀杆重为G,用水平力F拉住,(1)画出F和G的力臂,(2)写出其表达式,(3)当增大时,它们的力臂各如何变化?F L O决定物体转动效果的两个因素:1.力的大小;2.力臂。
力和力臂的乘积越大,力对物体的转动作用就越大力矩为反映力对物体的转动作用大小而引入力矩的概念.二、力矩(M):力矩总是对某一转轴而言的,对不同的转轴,同一个力的力臂不同,力矩也不同。
物理竞赛力学典型题目汇编(含答案)

第一讲 平衡问题典题汇总类型一、物体平衡种类的问题一般有两种方法解题,一是根据平衡的条件从物体受力或力矩的特征来解题,二是根据物体发生偏离平衡位置后的能量变化来解题。
1、如图1—4所示,均匀杆长为a ,一端靠在光滑竖直墙上,另一端靠在光滑的固定曲面上,且均处于Oxy 平面内.如果要使杆子在该平面内为随遇平衡,试求该曲面在Oxy 平面内的曲线方程.分析和解:本题也是一道物体平衡种类的问题,解此题显然也是要从能量的角度来考虑问题,即要使杆子在该平面内为随遇平衡,须杆子发生偏离时起重力势能不变,即杆子的质心不变,y C 为常量。
又由于AB 杆竖直时12C y a =, 那么B 点的坐标为 sin x a θ=111cos (1cos )222y a a a θθ=-=- 消去参数得222(2)x y a a +-=类型二、物体系的平衡问题的最基本特征就是物体间受力情况、平衡条件互相制约,情况复杂解题时一定要正确使用好整体法和隔离法,才能比较容易地处理好这类问题。
例3.三个完全相同的圆柱体,如图1一6叠放在水平桌面上,将C 柱放上去之前,A 、B 两柱体之间接触而无任何挤压,假设桌面和柱体之间的摩擦因数为μ0,柱体与柱体之间的摩擦因数为μ,若系统处于平衡,μ0与μ必须满足什么条件?分析和解:这是一个物体系的平衡问题,因为A 、B 、C 之间相互制约着而有单个物体在力系作用下处于平衡,所以用隔离法可以比较容易地处理此类问题。
设每个圆柱的重力均为G ,首先隔离C 球,受力分析如 图1一7所示,由∑Fc y =0可得111)2N f G += ① 再隔留A 球,受力分析如图1一8所示,由∑F Ay =0得1121022N f N G +-+= ② 由∑F Ax =0得211102f N N -= ③ 由∑E A =0得12f R f R = ④ 由以上四式可得12f f ===112N G =,232N G =而202f N μ≤,11f N μ≤0μ≥2μ≥类型三、物体在力系作用下的平衡问题中常常有摩擦力,而摩擦力F f 与弹力F N 的合力凡与接触面法线方向的夹角θ不能大于摩擦角,这是判断物体不发生滑动的条件.在解题中经常用到摩擦角的概念.例4.如图1一8所示,有两根不可伸长的柔软的轻绳,长度分别为1l 和2l ,它们的下端在C 点相连接并悬挂一质量为m 的重物,上端分别与质量可忽略的小圆环A 、B 相连,圆环套在圆形水平横杆上.A 、B 可在横杆上滑动,它们与横杆间的动摩擦因数分别为μ1和μ2,且12l l <。
物体平衡:平衡力和力矩的平衡条件

物体平衡:平衡力和力矩的平衡条件一、平衡力的概念1.平衡力的定义:当物体受到的两个力,使物体处于静止或匀速直线运动状态时,这两个力称为平衡力。
2.平衡力的特点:大小相等、方向相反、作用在同一直线上、作用在同一物体上。
二、力矩的概念1.力矩的定义:力矩是力对物体旋转效果的影响,是力与力臂的乘积。
2.力臂的定义:力臂是力的作用线到物体转轴的垂直距离。
3.力矩的特点:力矩决定了物体旋转的速度和方向。
三、平衡条件和力矩的平衡条件1.平衡条件:物体处于静止或匀速直线运动状态时,物体受到的合外力为零。
2.力矩的平衡条件:物体处于静止或匀速直线运动状态时,物体受到的合外力矩为零。
四、平衡力和力矩的平衡条件的应用1.静力学中的应用:如杠杆原理、轮轴、剪刀、钳子等工具的设计原理。
2.动力学中的应用:如汽车的转向系统、飞机的飞行控制系统等。
五、注意事项1.平衡力和力矩的概念及平衡条件在中考中占有重要地位,需要熟练掌握。
2.在实际问题中,要灵活运用平衡条件和力矩的平衡条件进行分析。
3.注意区分平衡力与非平衡力的区别,以及力矩与力的区别。
习题及方法:1.习题:一个物体静止在水平桌面上,物体受到的重力和桌面对物体的支持力是否是平衡力?方法:根据平衡力的定义,判断两个力是否是平衡力,需要满足四个条件:大小相等、方向相反、作用在同一直线上、作用在同一物体上。
分析重力和桌面对物体的支持力,它们满足以上四个条件,因此是平衡力。
2.习题:一个物体悬挂在绳子上,物体受到的重力和绳子对物体的拉力是否是平衡力?方法:同样根据平衡力的定义,分析重力和绳子对物体的拉力。
它们满足大小相等、方向相反、作用在同一直线上、作用在同一物体上这四个条件,因此是平衡力。
3.习题:一个物体放在倾斜的斜面上,物体受到的重力、斜面对物体的支持力和摩擦力,这三个力是否是平衡力?方法:分析这三个力是否满足平衡力的四个条件。
由于斜面对物体的支持力和摩擦力的作用点不在同一物体上,因此这三个力不满足作用在同一物体上的条件,所以不是平衡力。
力矩和定轴转动平衡+答案xs

高二物理【11】力矩定轴转动物体的平衡2012.61.力矩(1)力臂:转动轴到力的作用线的垂直距离叫力臂。
其最大可能值为力到转动轴的距离。
M ,单位:N·m。
在中学里只研究固定转动轴物体的平衡,所以力矩只(2)力矩:FL有顺时针和逆时针两种方向。
2.力矩计算中的两种等效转化(1)在计算某个力的力矩时,若将此力的作用点与转轴连起来,常可将此力分解为沿连线方向的和垂直于连线方向的两个分力,沿此连线方向的分力没有力矩,因而就转化为求垂直于此连线方向的分力的力矩了。
(2)在计算某物体重力的力矩时,可把物体看成一个整体,受到一个总重力,作用在其总重心;也可以把物体分成几块,每一块所受重力都作用在该块的重心上,然后计算这些重力的力矩和。
两种方法的结果是一致的。
3.定轴转动物体的平衡条件物体处于静止或匀速转动状态时称为力矩平衡状态。
物体所受合外力矩为零。
也可以表述为顺时针力矩之和等于逆时针力矩之和。
4.力矩最大的条件大小一定的力,其力矩最大的条件是:①力作用在离转动轴最远的点上;②力的方向垂直于力的作用点和转动轴的连线。
一、力臂和力矩1.如图所示,T字形架子A BO可绕过O点且垂直于纸面的转动轴自由转动.现在其A 端与B端分别施以图示方向的力F1、和F2,则关于F1和F2的力矩M1和M2,下列说法中正确的是( )A.都是顺时针的B.都是逆时针的C.M1是顺时针的.M2是逆时针的D.M1是逆时针的.M2是顺时针的2.如图甲、乙所示,相同的两球分别固定在相同的轻杆的一端,另一端用光滑铰链分别铰于墙面(如图甲所示)和地面(如图乙所示)。
球都搁在一粗糙的长木板上,木板放在水平地面上。
若用相同的力F分别将木板向右拉动。
那么板对球的摩擦力的力距方向各如何?二、有固定转动轴物体的平衡3.如图所示,用单位长度质量为ρ的材料制成的长方形框架A BCD ,已知AB =a ,BC =b,可绕过AB 边的水平轴自由转动.现在CD 边的中点施加一个水平力F ,为使框架静止时与竖直方向成α角,则力F 的大小应为 ( )A .ρg (a +b )tgα.B .ρg (a +b )ctgα.C .ρg (a +2b )tgα/2.D .ρg (a +2b )ctgα4. 如图所示,重为G 的L 形匀质杆的一端O 点通过铰链与墙连接,另一端B 点作用着一个力F ,当F 与水平面成α=45o 角时,杆OA 边呈水平而平衡。
(完整版)第三讲力矩平衡条件及应用(竞赛辅导—含答案)

第三讲力矩平衡条件及应用(竞赛辅导—含答案)一、力矩1.力和转动轴之间的距离,即从转动轴到力的作用线的距离,叫做力臂。
2.力矩:定义力F与其力臂L的乘积叫做力对转动轴的力矩。
用字母M表示。
表达式M=FL。
二、物体平衡条件力矩的平衡条件:有固定转动轴物体的平衡条件是力矩的代数和等于零。
即M1+M2+M3+ 0或者:M合=0力矩平衡以其广泛的实用性,其难点分布于:(1)从实际背景中构建有固定转动轴的物理模型.(2)灵活恰当地选取固定转动轴.(3)将转动模型从相关系统(连结体)中隔离分析等.实际上一个物体的平衡,应同时满足F合=0和M合=0.共点力作用下的物体如果满足F合=0,同时也就满足了M合=0,达到了平衡状态;而转动的物体只满足M合=0就不一定能达到平衡状态,还应同时满足F合=0方可.三、有固定转动轴物体平衡问题解题步骤1.明确研究对象,即明确绕固定转动轴转动的是哪一个物体.2.分析研究对象所受力的大小和方向,并画出力的示意图.3.依题意选取转动轴,并找出各个力对转动轴的力臂,力矩的大小和方向.4.根据平衡条件(使物体顺时针方向转动的力矩之和等于使物体逆时针方向转动的力矩之和)列方程,并求解.【解题方法指导】例1.一个重要特例:请分析杆秤上的刻度为什么是均匀的?例2. 如图所示,重G的均匀木杆可绕O轴在竖直平面内转动,现将杆的A端放在光滑地面上的木块上面,杆与竖直方向的夹角为30°,用水平力F=G/20匀速拉动木块,求杆和木块间的动摩擦因数。
【典型例题分析】例1.如下图是半径分别为r和2r的两个质量不计的圆盘,共轴固定连结在一起,可以绕水平轴O无摩擦转动,大圆盘的边缘上固定有一个质量为m的质点,小圆盘上绕有细绳。
开始时圆盘静止,质点处在水平轴O的正下方位置。
现以水平恒力F拉细绳,使两圆盘转动,若恒力F=mg,两圆盘转过的角度θ=时,质点m的速度最大。
例2.有人设计了一种新型伸缩拉杆秤。
力矩平衡条件的应用(精选7篇)

力矩平衡条件的应用(精选7篇)力矩平衡条件的应用篇1教学目标知识目标1、理解力臂的概念,2、理解力矩的概念,并会计算力矩能力目标1、通过示例,培养学生对问题的分析能力以及解决问题的能力情感目标:培养学生对现象的观察和探究能力,同时激发学习物理的兴趣。
典型例题关于残缺圆盘重心的分析例1 一个均匀圆盘,半径为,现在在园盘靠着边缘挖去一个半径为的圆孔,试分析说明挖去圆孔后,圆盘的重心在何处.解析:由于圆盘均匀,设圆盘的单位面积的重力为,为了思考问题的方便,我们设想在大圆盘的另一侧对称地再挖去一个半径等于的小圆,如图所示,我们要求的是红色的小圆盘与灰色部分的重心位置,根据对称性,一定是大圆圆心与小圆圆心连线上,设,则 .如果我们用手指支撑在点,则这个物体会保持平衡,这两部分的重心对点的力矩满足平衡条件.这两部分的重力分别是及 .可列出力矩平衡方程解方程,得出: .关于一端抬起的木杆重力问题例2 一个不均匀的长木杆,平放在地面上,当我们抬起它的一端(另一端支在地面上),需要用500N的力;如果抬另一端,发现这回需要用800N才能抬起.请分析说明这根木杆的重力是多少?解析:设木杆长为,重力为,已知抬起端时用力为500N,抬起端时用力大小为800N.可以假设木杆的重心距端为,距端为 .抬端时,以端点为轴由力矩平衡条件可得抬端时,以端点为轴由力矩平衡条件可得联立上面的两方程式可得关于圆柱体滚台阶的问题例3 如图所示,若使圆柱体滚上台阶,要使作用力最小,试分析作用力的作用点应作用在圆柱体截面的什么位置?解析:根据题意:在圆柱体滚上台阶的过程中,圆柱体与台阶相接处为转动轴.由固定转动轴物体的平衡条件可知:在匀速转动时圆柱体的重力的力矩应与作用力的力矩相等.又因为圆柱体的重力和它对转动轴的力臂是确定的,所以要使作用力最小其力臂一定最长,又因为转动轴在圆柱体的边缘上,作用力的作用点也要在圆柱体的边缘上,要想作用力的力臂最长就只有圆柱体截面的直径,如图;作用力的方向是垂直圆柱体截面直径向上,如图所示:力矩平衡条件的应用篇2教学目标知识目标1、理解力臂的概念,2、理解力矩的概念,并会计算力矩能力目标1、通过示例,培养学生对问题的分析能力以及解决问题的能力情感目标:培养学生对现象的观察和探究能力,同时激发学习物理的兴趣。
高考物理复习(3)力矩平衡条件及应用(含解析)

难点3 力矩平衡条件及应用力矩平衡以其广泛的实用性,再次被考纲列为考查的内容,且以此知识点为素材的高考命题屡次再现于近几年高考上海卷及全国理综卷中.其难点分布于:(1)从实际背景中构建有固定转动轴的物理模型.(2)灵活恰当地选取固定转动轴.(3)将转动模型从相关系统(连结体)中隔离分析等.●难点磁场1.(★★★★)如图3-1所示,一根长为L 的轻杆OA ,可绕水平轴O 在竖直平面内自由转动,左端A 挂一质量为m 的物体,从杆上一点B 系一不可伸长的细绳,将绳跨过光滑的钉子C 与弹簧K 连接,弹簧右端固定,这时轻杆在水平位置保持平衡,弹簧处于伸长状态,已知OB=OC=32L ,弹簧伸长量恰等于BC ,由此可知,弹簧的劲度系数等于______.2.(★★★★★)如图3-2所示是一种手控制动器,a 是一个转动着的轮子,b 是摩擦制动片,c 是杠杆,O 是其固定转动轴.手在A 点施加一个作用力F 时,b 将压紧轮子,使轮子制动.若使轮子制动所需的力矩是一定的,则下列说法正确的是A.轮a 逆时针转动时,所需的力F 较小B.轮a 顺时针转动时,所需的力F 较小C.无论逆时针还是顺时针转动,所需的力F 相同D.无法比较F 的大小●案例探究例1](★★★★★)如图3-3所示,长为L 质量为m 的均匀木棒,上端用绞链固定在物体上,另一端放在动摩擦因数为μ的小车平台上,小车置于光滑平面上,棒与平台的夹角为θ,当:(1)小车静止时,求棒的下端受小车的支持力; (2)小车向左运动时,求棒的下端受小车的支持力; (3)小车向右运动时,求棒的下端受小车的支持力. 命题意图:题目出示的物理情境,来考查考生受力分析能力及力矩平衡条件的应用能力.B 级要求.错解分析:对“车的不同运动状态使棒所受摩擦力大小方向的图3-1图3-2 图3-3变化”理解分析不透,从而错列力矩平衡方程.解题方法与技巧:(1)取棒为研究对象.选绞链处为固定转动轴,除转动轴对棒的作用力外,棒的受力情况如图3-4所示,由力矩平衡条件知:F N1Lcos θ=mg2Lcos θF N1=21mg图3—4 图3—5(2)小车向左运动,棒另外受到一个水平向左的摩擦力F 1作用,受力如图3-5所示,则有2N F Lcos θ=mg2Lcos θ+μ2N F Lsin θ 所以2N F =)tan 1(2θμ-mg,则2N F >1N F(3)小车向右运动时,棒受到向右的摩擦力F 2作用,受力如图3-6所示,有3N F Lcos θ+μ3N F Lsin θ=mg 2L cos θ 解得3N F =)tan 1(2θμ+mg 所以3N F <1N F本题的关键点是取棒作为研究对象,由于车有不同的运动方向,故棒所受摩擦力的方向也不同,从而导致弹力的不同.例2](★★★★★)(2002年上海卷)如图3-7所示,一自行车上连接脚踏板的连杆长R 1,由脚踏板带动半径为r 1的大齿盘,通过链条与半径为r 2的后轮齿盘连接,带动半径为R 2的后轮转动.图3—6图3—7(1)设自行车在水平路面上匀速行进时,受到的平均阻力为f ,人蹬脚踏板的平均作用力为F ,链条中的张力为T ,地面对后轮的静摩擦力为f s .通过观察,写出传动系统中有几个转动轴,分别写出对应的力矩平衡表达式;(2)设R 1=20 cm ,R 2=33 cm ,脚踏大齿盘与后轮齿盘的齿数分别为48和24,计算人蹬脚踏板的平均作用力与平均阻力之比;(3)自行车传动系统可简化为一个等效杠杆.以R 1为一力臂,在框中画出这一杠杆示意图,标出支点,力臂尺寸和作用力方向.命题意图:以生活中的自行车为背景,设立情景,考查运用力矩、力矩平衡条件解决实际问题的能力,尤其是构建物理模型的抽象、概括能力.B 级要求.错解分析:(1)尽管自行车是一种常见的交通工具,但多数考生缺少抽象概括的能力,无法构建传动系统简化的杠杆模型.(2)不能再现自行车的工作过程,无法将r 1/r 2之比与两个齿盘的齿数之比加以联系,导致中途解题受阻.解题方法与技巧:(1)自行车传动系统中的转动轴个数为2,设脚踏齿轮、后轮齿轮半径分别为r 1、r 2,链条中拉力为T.对脚踏齿盘中心的转动轴可列出:FR 1=Tr 1 对后轮的转动轴可列出:Tr 2=f s R 2 (2)由FR 1=Tr 1,Tr 2=f s R 2 及f s =f (平均阻力) 可得24482121==r r R f FR s 所以1033202433481221=⨯⨯==R r R r f F =3.3 (3)如图3-8所示。
高中物理竞赛力矩和力矩平衡知识点讲解

高中物理竞赛力矩和力矩平衡知识点讲解力矩是表示力对物体产生转动作用的物理量,是物体转动转动状态改变的原因。
它等于力和力臂的乘积。
表达式为:M=FL,其中力臂L是转动轴到F的力线的(垂直)距离。
单位:Nm 效果:可以使物体转动.正确理解力矩的概念力矩是改变转动物体的运动状态变化的物理量,门、窗等转动物体从静止状态变为转动状态或从转动状态变为静止状态时,必须受到力的作用。
但是,我们若将力作用在门、窗的转轴上,则无论施加多大的力都不会改变其运动状态,可见转动物体的运动状态的变化不仅与力的大小有关,还受力的方向、力的作用点的影响。
力的作用点离转轴越远,力的方向与转轴所在平面越趋于垂直,力使转动物体运动状态变化得就越明显。
物理学中力的作用点和力的作用方向对转动物体运动状态变化的影响,用力矩这个物理量综合表示,因此,力矩被定义为力与力臂的乘积。
力矩概括了影响转动物体运动状态变化的所有规律,力矩是改变转动物体运动状态的物理量。
力矩是矢量,在中学物理中,作用在物体上的力都在同一平面内,各力对转轴的力矩只能使物体顺时针转动或逆时针转动,这样,求几个力矩的合力就简化为代数运算。
力对物体的转动效果使物体转动改变的效果不仅跟力的大小有关,还跟力臂有关,即力对物体的转动效果决定于力矩。
①当臂等于零时,不论作用力多么大,对物体都不会产生转动作用。
②当作用力与转动轴平行时,不会对物体产生转动作用,计算力矩,关键是找力臂。
需注意力臂是转动轴到力的作用线的距离,而不是转动轴到力的作用点的距离。
大小一定的力有最大力矩的条件:①力作用在离转动轴最远的点上;②力的方向垂直于力作用点与转轴的连线。
力矩的计算:①先求出力的力臂,再由定义求力矩M=FL如图中,力F 的力臂为LF=Lsin θ 力矩M =F •L sin θ②先把力沿平行于杆和垂直于杆的两个方向分解,平行于杆的分力对杆无转动效果,力矩为零;平行于杆的分力的力矩为该分力的大小与杆长的乘积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三讲力矩平衡条件及应用(竞赛辅导—含答案)一、力矩1.力和转动轴之间的距离,即从转动轴到力的作用线的距离,叫做力臂。
2.力矩:定义力F与其力臂L的乘积叫做力对转动轴的力矩。
用字母M表示。
表达式M=FL。
二、物体平衡条件力矩的平衡条件:有固定转动轴物体的平衡条件是力矩的代数和等于零。
即M1+M2+M3+ 0或者:M合=0力矩平衡以其广泛的实用性,其难点分布于:(1)从实际背景中构建有固定转动轴的物理模型.(2)灵活恰当地选取固定转动轴.(3)将转动模型从相关系统(连结体)中隔离分析等.实际上一个物体的平衡,应同时满足F合=0和M合=0.共点力作用下的物体如果满足F合=0,同时也就满足了M合=0,达到了平衡状态;而转动的物体只满足M合=0就不一定能达到平衡状态,还应同时满足F合=0方可.三、有固定转动轴物体平衡问题解题步骤1.明确研究对象,即明确绕固定转动轴转动的是哪一个物体.2.分析研究对象所受力的大小和方向,并画出力的示意图.3.依题意选取转动轴,并找出各个力对转动轴的力臂,力矩的大小和方向.4.根据平衡条件(使物体顺时针方向转动的力矩之和等于使物体逆时针方向转动的力矩之和)列方程,并求解.【解题方法指导】例1.一个重要特例:请分析杆秤上的刻度为什么是均匀的?例2. 如图所示,重G的均匀木杆可绕O轴在竖直平面内转动,现将杆的A端放在光滑地面上的木块上面,杆与竖直方向的夹角为30°,用水平力F=G/20匀速拉动木块,求杆和木块间的动摩擦因数。
【典型例题分析】例1.如下图是半径分别为r和2r的两个质量不计的圆盘,共轴固定连结在一起,可以绕水平轴O无摩擦转动,大圆盘的边缘上固定有一个质量为m的质点,小圆盘上绕有细绳。
开始时圆盘静止,质点处在水平轴O的正下方位置。
现以水平恒力F拉细绳,使两圆盘转动,若恒力F=mg,两圆盘转过的角度θ=时,质点m的速度最大。
例2.有人设计了一种新型伸缩拉杆秤。
结构如下图,秤杆的一端固定一配重物并悬一挂钩,秤杆外面套有内外两个套筒,套筒左端开槽使其可以不受秤纽阻碍而移动到挂钩所在位置(设开槽后套筒的重心仍在其长度中点位置),秤杆与内层套筒上刻有质量刻度。
空载(挂钩上不挂物体,且套筒未拉出)时,用手提起秤纽,杆秤恰好平衡,当物体挂在挂钩上时,往外移动内外套筒待测物体的质量。
已知秤杆和两个套筒的长度均为16cm ,套筒可移出的最大距离为15cm ,秤纽到挂钩的距离为2cm ,两个套筒的质量均为0.1kg 。
取重力加速度g=10m/s 2。
(1)当杆秤空载平衡时,秤杆、配重物及挂钩所受重力相对秤纽的合力矩;(2)当在秤钩上挂一物体时,将内套筒向右移动5cm ,外套筒相对内套筒向右移动8cm , 杆秤达到平衡,物体的质量多大?(3)若外层套筒不慎丢失,在称某一物体时,内层套筒的左端在读数为1千克处杆秤恰好平衡,则该物体实际质量多大?例3. 一架均匀梯子,长10m ,静止地靠在光滑的竖直墙面上,下端离墙6m , 梯子重力为400N ;下端与地面静摩擦因数为μ=0.40,一人重力为800N ,缓缓登梯。
求(1)地面对梯子下端的最大静摩擦力。
(2)人沿梯子攀登5m 时, 地面对梯的静摩擦力。
(3)人最多能沿梯子攀上多少距离。
例4. 下图是用电动砂轮打磨工件的装置,砂轮的转轴过图中O 点垂直于纸面,AB 是一长度L =0.60 m ,质量kg m 50.01=的均匀刚性细杆,可绕过A 端的固定轴在竖直面(图中纸面)内无摩擦地转动。
工件C 固定在AB 杆上,其质量kg m 5.12=,工件的重心、工作与砂轮的接触点P 以及O 点都在过AB 中点的竖直线上。
P 到AB 杆的垂直距离d =0.10m ,AB 杆始终处于水平位置。
砂轮与工件之间的动摩擦因数μ=0.60。
(1)当砂轮静止时,要使工件对砂轮的压力F 0=100N ,则施于B 端竖直向下的力F B 应是多大?(2)当砂轮逆时针转动时,要使工件对砂轮的压力仍为F 0=100N ,则施于B 端竖直向下的F B '应是多大?第三讲 力矩平衡条件及应用一、力矩1.力和转动轴之间的距离,即从转动轴到力的作用线的距离,叫做力臂。
2.力矩:定 义 力F 与其力臂L 的乘积叫做力对转动轴的力矩。
用字母M 表示。
表达式 M =FL 。
二、物体平衡条件力矩的平衡条件:有固定转动轴物体的平衡条件是力矩的代数和等于零。
即M 1+M 2+M 3+ 0或者:M 合=0力矩平衡以其广泛的实用性,其难点分布于:(1)从实际背景中构建有固定转动轴的物理模型.(2)灵活恰当地选取固定转动轴.(3)将转动模型从相关系统(连结体)中隔离分析等.实际上一个物体的平衡,应同时满足F 合=0和M 合=0.共点力作用下的物体如果满足 F 合=0,同时也就满足了M 合=0,达到了平衡状态;而转动的物体只满足M 合=0就不一定能达到平衡状态,还应同时满足F 合=0方可.三、有固定转动轴物体平衡问题解题步骤1.明确研究对象,即明确绕固定转动轴转动的是哪一个物体.2.分析研究对象所受力的大小和方向,并画出力的示意图.3.依题意选取转动轴,并找出各个力对转动轴的力臂,力矩的大小和方向.4.根据平衡条件(使物体顺时针方向转动的力矩之和等于使物体逆时针方向转动的力矩之和)列方程,并求解.【解题方法指导】例1. 一个重要特例:请分析杆秤上的刻度为什么是均匀的?解析:杆秤的基本原理是利用力矩平衡条件来称量物体的质量的,其构造如图1所示,主要由秤杆、秤钩、提纽和秤砣构成。
图1设秤砣的质量为m 0,秤杆和秤钩的质量大小为M 0,重心在图2中的C 点,当秤钩上不挂任何重物,提起提纽时,秤砣置于A 点,杆秤保持水平平衡,由力矩平衡条件可得: m g OA M g OC 00×× (1)图2 所以OA =00m M OC对一确定的杆秤来说,秤杆的质量和重心的位置都是确定的,秤砣的质量也是确定的,所以A 的位置也是确定的,由于O 是秤钩上不挂任何重物时秤砣所在的位置,所以A 点是杆秤的零刻度位置,叫做定盘星。
当用杆秤来称量重物P 的质量时,秤砣必须置于秤杆上的某一位置D ,才能使杆秤保持水平平衡,如图3所示,由力矩平衡条件可得:图3 Mg·OB =M 0g ·OC +m 0g·OD (2)由(1)、(2)两式可得m AD M OB 0××= 即:M m OB AD 0= 由上式可以看出:当杆秤称量重物时,秤砣到定盘星A 点的距离与重物的质量成正比,尽管秤杆的形状粗细不一,杆秤的重心不在杆秤中点,但杆秤的刻度是均匀的。
例2. 如图所示,重G 的均匀木杆可绕O 轴在竖直平面内转动,现将杆的A 端放在光滑地面上的木块上面,杆与竖直方向的夹角为30°,用水平力F =G/20匀速拉动木块,求杆和木块间的动摩擦因数。
解析:要求木块与杆间的动摩擦因数,涉及到木块与杆间的摩擦力,需将木块与杆分隔开,分别进行研究,以杆为分析对象,除O 点外,杆的受力情况如图所示,设杆长为L ,由M 合=0,得:G ·Lsin30°/2-N ·Lsin30°-f ·Lcos30°=0因f =μN,上式简化为G/4-N/2-3μ/2=0 ①再以木块为分析对象,杆的A端对木块的摩擦力水平向右,由F合=0,F-μN=0 ②依题意F=G/20 ③解①、②、③得μ=0.12小结:以上是两类平衡问题的综合,常用隔离法恰当选择隔离体后分别按单一体的解法求解,与单一体解法不同的是:要留心相关物理量的分析,如上例中,木块对杆的摩擦力与杆对木块的摩擦力的关联性,是一对作用力与反作用力。
【典型例题分析】例1.如下图是半径分别为r和2r的两个质量不计的圆盘,共轴固定连结在一起,可以绕水平轴O无摩擦转动,大圆盘的边缘上固定有一个质量为m的质点,小圆盘上绕有细绳。
开始时圆盘静止,质点处在水平轴O的正下方位置。
现以水平恒力F拉细绳,使两圆盘转动,若恒力F=mg,两圆盘转过的角度θ=时,质点m的速度最大。
解析:这是一个典型的转动问题,题目中问何时圆盘转动的角速度最大,我们应首先研究圆盘的转动规律,力矩是盘转动的原因,当盘受到的力矩不平衡时,盘转动的角速度将会改变,本题中开始时F的力矩大于m的力矩,所以盘将沿逆时针方向加速转动,m的力矩逐渐增大,当F的力矩与小球m的力矩平衡时转速达到最大,之后m的力矩将继续增大,大于F的力矩,圆盘转动的速度将减小,即:mg2r sinθ=Fr,可得θ=30°。
例 2.有人设计了一种新型伸缩拉杆秤。
结构如下图,秤杆的一端固定一配重物并悬一挂钩,秤杆外面套有内外两个套筒,套筒左端开槽使其可以不受秤纽阻碍而移动到挂钩所在位置(设开槽后套筒的重心仍在其长度中点位置),秤杆与内层套筒上刻有质量刻度。
空载(挂钩上不挂物体,且套筒未拉出)时,用手提起秤纽,杆秤恰好平衡,当物体挂在挂钩上时,往外移动内外套筒待测物体的质量。
已知秤杆和两个套筒的长度均为16cm,套筒可移出的最大距离为15cm,秤纽到挂钩的距离为2cm,两个套筒的质量均为0.1kg。
取重力加速度g =10m/s2。
(1)当杆秤空载平衡时,秤杆、配重物及挂钩所受重力相对秤纽的合力矩;(2)当在秤钩上挂一物体时,将内套筒向右移动5cm,外套筒相对内套筒向右移动8cm,杆秤达到平衡,物体的质量多大?(3)若外层套筒不慎丢失,在称某一物体时,内层套筒的左端在读数为1千克处杆秤恰好平衡,则该物体实际质量多大?解答:(1)套筒不拉出时杆秤恰好平衡,此时两套筒的重力相对秤纽的力矩与所求的合力矩相等,设套筒长度为L,合力矩)2/(2d L mg M -= ①)(12.0)02.008.0(101.02m N ⋅=-⨯⨯⨯= ②(2)力矩平衡 )(2111x x mg mgx gd m ++= ③m d x x m 2112+=∴ ④)(9.01.002.008.005.02kg =⨯+⨯=⑤ (3)正常称衡1kg 重物时,内外两个套筒可一起向外拉出x '力矩平衡 x mg gd m '='22⑥ )(1.002.01.02122m d m m x =⨯⨯='='∴ ⑦ 外层套筒丢失后称物,此时内套筒左端离秤纽距离为m d x 08.0=-'力矩平衡 )2/(2L d x mg M gd m +-'=+ ⑧gd M L d x d m m -+-'=∴)2/(2 )(2.06.0)08.008.0(02.01.0kg =-+⨯=小结:力矩平衡问题的研究方法和思想与共点力平衡问题是相似的,只不过一个研究的是力的平动效果,匀速或加速运动,一个研究的是物体的转动效果,匀速转动或加速转动。