难点3力矩平衡条件及应用
利用力矩平衡条件分析不平衡物体的教案

利用力矩平衡条件分析不平衡物体的教案1.教学目标通过本节课的学习,学生们该能够掌握以下知识和能力:1)了解力矩的概念和意义;2)了解力矩平衡条件的表达式和含义;3)掌握利用力矩平衡条件分析不平衡物体的方法;4)能够应用所学知识决力矩平衡问题。
2.教学重点力矩平衡条件的表达式和含义,利用力矩平衡条件分析不平衡物体的方法。
3.教学难点利用力矩平衡条件分析不平衡物体的方法。
4.教学内容1)力矩的概念和意义力矩是描述力对物体产生的转动效应的物理量,是力产生旋转的量。
当一个力作用在物体上时,如果这个物体能绕一个轴线转动,那么这个力就会产生一个旋转的效果。
这种旋转效应就被称为力矩,通常用字母“M”来表示,单位是牛·米(N·m)。
2)力矩平衡条件的表达式和含义力矩平衡条件是指,当一个物体处于平衡状态时,所有作用在这个物体上的力矩的代数和为零,即∑iMi=0(其中“∑i”表示对所有力矩求和)。
这意味着,如果一个物体受到多个力的作用并处于平衡状态,那么这些力所产生的旋转效应必须相互抵消,否则这个物体将会旋转。
3)利用力矩平衡条件分析不平衡物体的方法当一个物体处于平衡状态时,可以通过利用力矩平衡条件来分析其是否受到了外力的作用,以及外力的大小和方向。
下面是一些分析不平衡物体的方法:①选择一个合适的参考点在力矩平衡条件中,需要选择一个参考点来计算力矩,这通常是物体最容易转动的地方。
在选择参考点时,需要考虑到物体的对称性和几何形状等因素。
②列出物体的受力情况在分析不平衡物体时,需要先列出物体所受的所有力和力的方向,可以根据图像或实验数据来确定。
这些力可以是重力、张力、摩擦力等。
③计算每个力的力臂力臂是一个力作用点到参考点的垂直距离,可以通过几何图形或实验数据计算得到。
对于一些复杂的力的作用形式,可以采用三角函数等数学方法计算力臂。
④计算每个力的力矩力矩是一个力产生的转动效应,可以通过计算力与力臂的乘积来计算。
力学力矩与力矩平衡

力学力矩与力矩平衡力矩是力学中的一个重要概念,它在物体静力学和动力学问题的分析中起着重要的作用。
力矩的概念最早由希腊数学家阿基米德提出,它描述了一个力绕某个点旋转的趋势。
力矩的平衡是力学中力的静态平衡条件的重要体现。
一、力矩的定义及计算公式力矩是一个矢量量,它的大小表示力的大小和作用点离旋转轴的距离的乘积,方向垂直于旋转轴。
根据力和力臂的关系,力矩可以通过以下公式来计算:力矩(M)=力(F) ×力臂(d)力的单位是牛顿(N),力臂的单位是米(m),力矩的单位是牛顿·米(Nm)。
二、力矩平衡的条件力矩平衡是物体处于平衡状态的一个重要条件。
在力矩平衡条件下,物体不会产生转动,而保持静止或匀速直线运动。
力矩平衡的条件是总力矩等于零,即:ΣM = 0其中,ΣM表示总力矩,它是所有力矩的代数和。
根据这个条件,可以解决静态平衡问题,如悬挂物体的平衡、桥梁的平衡等。
三、力矩平衡的应用示例1. 悬挂物体的平衡在解决悬挂物体平衡问题时,力矩平衡条件是非常有用的。
例如,一根木杆的一端悬挂着一个重物,要使木杆保持平衡,必须满足力矩平衡条件。
即使重物的质量很大,只要调整悬挂点的位置,使总力矩等于零,木杆就能够保持平衡。
2. 桥梁的平衡力矩平衡条件也可以应用于桥梁的平衡分析中。
桥梁结构中的吊索、悬浮桥等都需要满足力矩平衡条件。
通过计算各个力的力矩,并使它们的代数和等于零,可以计算出桥梁各个部分的力的大小和方向,从而保证桥梁的平衡。
四、力矩平衡的重要性力矩平衡是力学分析中重要的基本原理之一,它为解决复杂的静态平衡问题提供了依据。
通过力矩平衡条件,我们可以分析和计算物体所受力的大小和方向,也可以确定平衡状态是否存在。
力学力矩的应用非常广泛,不仅在物理学和工程学中有重要的作用,在日常生活中也大量存在。
例如,门的开关、自行车的转向原理等都涉及到力矩的平衡。
在工程领域,力矩平衡的应用更为广泛。
例如,建筑工程中的悬挂物体平衡、桥梁荷载分析、机械设备的平衡设计等都需要力学力矩的知识来进行分析和设计。
力矩的计算与平衡条件的分析

力矩的计算与平衡条件的分析力矩是物体在外力作用下发生旋转的物理量,它在物理学和工程领域中有着广泛的应用。
本文将就力矩的计算方法以及平衡条件的分析进行探讨。
通过了解力矩的基本概念和计算公式,以及如何应用平衡条件进行问题求解,读者将更好地理解并掌握力矩和平衡条件的相关知识。
一、力矩的计算方法力矩是指物体在力作用下绕某一点或轴心产生的旋转效应。
力矩的计算公式为M = F * d * sinθ,其中M表示力矩,F表示作用力的大小,d表示作用点到旋转轴的距离,θ表示作用力相对于旋转轴的夹角。
例如,一根杠杆两端分别加有作用力,但两个力的方向不同。
假设杠杆的长度为L,第一个力的大小为F1,作用点距离杠杆旋转轴的距离为d1,第二个力的大小为F2,作用点距离旋转轴的距离为d2。
根据力矩的计算公式,我们可以得到第一个力矩M1 = F1 * d1,第二个力矩M2 = F2 * d2。
若杠杆处于平衡状态,则力矩的总和必须为零,即M1+ M2 = 0。
这是基于平衡条件的分析。
二、平衡条件的分析平衡条件是判断物体是否处于平衡状态的基本依据。
平衡条件有两种形式,即力的平衡和力矩的平衡。
力的平衡是指物体受到的所有力的合力为零。
力矩的平衡是指物体受到的所有力矩的和为零。
在力的平衡条件下,物体受到的所有力的合力为零。
这意味着物体不会发生线性运动,即不会产生加速度。
当物体受到两个力的作用时,根据受力平衡的条件,两个力的大小和方向必须相等且相反。
只有当所有力的合力为零时,物体才能保持静止或以恒定速度做匀速直线运动。
在力矩的平衡条件下,物体受到的所有力矩的和为零。
这意味着物体不会产生旋转或者转动加速度。
通过力矩的计算公式,可以求解物体受到的每个力矩,并应用平衡条件判断系统是否处于平衡状态。
当所有力矩的和为零时,物体才能保持平衡。
三、力矩与平衡条件的应用举例以下是一个简单的力矩与平衡条件的应用举例。
假设有一个均匀的木板,一段固定在墙上,另一段悬挂在空中。
力矩与平衡条件

力矩与平衡条件力矩和平衡条件是物理学中重要的概念,用于描述物体的平衡状态以及力的作用情况。
在本文中,我们将详细介绍力矩和平衡条件的概念、计算方法以及相关应用。
一、力矩的定义和计算方法力矩是描述力对物体旋转影响的物理量,也可以理解为力对物体产生的转动效果。
在计算力矩时,我们首先需要确定力的作用点以及转轴的位置。
当一个力作用于物体上时,力矩的大小可以通过力的大小和力臂的长度来计算。
力矩的计算公式为:力矩 = 力 ×力臂其中,力臂是力作用点到转轴的距离,可以用直角坐标系下的几何关系来计算。
如果力和力臂的方向垂直,则力矩的计算更加简单,即:力矩 = 力 ×力臂× sinθ其中,θ表示力和力臂之间的夹角。
二、力矩的方向和性质力矩不仅有大小,还有方向。
根据力矩的方向不同,可以将力矩分为正向力矩和负向力矩。
当一个力矩的方向与物体的旋转方向一致时,称之为正向力矩;当力矩的方向与旋转方向相反时,称之为负向力矩。
正向力矩可以使物体继续旋转,而负向力矩则会减缓或者停止物体的旋转。
力矩还具有一个重要的性质,即力矩的代数和为零。
这就是说,在平衡状态下物体受到的所有力矩的代数和等于零。
这是物体能够保持平衡的必要条件。
三、平衡条件的定义和应用平衡条件是指物体处于平衡状态时所满足的条件。
在物理学中,平衡条件可分为两种情况:力的平衡条件和力矩的平衡条件。
力的平衡条件要求物体受力处于平衡状态,即物体所受合力为零。
当物体受到多个力的作用时,所有作用于物体的力的代数和为零。
根据牛顿第一定律,物体在力平衡的情况下将保持静止或匀速直线运动。
力矩的平衡条件要求物体受到的力矩代数和为零。
这意味着物体受到的所有力矩的代数和相互抵消,从而使物体保持稳定的平衡状态。
根据力矩的平衡条件,我们可以计算出物体的未知力矩或者力的大小。
四、力矩和平衡条件的应用力矩和平衡条件在物理学和工程学中有着广泛的应用。
下面将介绍一些常见的应用场景。
力矩与平衡条件的应用

力矩与平衡条件的应用在物理学中,力矩是一个重要的概念,它描述了物体受到的力的效果。
力矩的基本定义是力乘以力臂的乘积,力臂是力作用点到物体固定点的距离。
力矩在平衡条件的应用中扮演了重要的角色。
一、力矩的基本概念力矩的基本概念可以通过以下公式表示:M = F × d其中,M表示力矩,F表示作用在物体上的力,d表示力作用点到物体固定点的距离。
力矩的方向由右手定则来确定,即将右手的手指伸向力臂的方向,拇指指向力的方向,手指的弯曲方向即为力矩的方向。
这个定义对于理解力矩的应用至关重要。
二、平衡条件的应用力矩在平衡条件的应用中起着关键的作用。
当一个物体处于平衡状态时,所有作用在物体上的力和力矩必须相互抵消。
根据力矩的定义,我们可以得到平衡条件的两个要点:1. 力矩的代数和为零当一个物体处于平衡状态时,其力矩的代数和必须为零。
这意味着不仅仅是力的合力为零,力矩的合为零也是平衡的必要条件。
通过计算每一个力的力矩并将其求和,我们可以确定物体是否处于平衡状态。
2. 力矩的方向相反力矩的方向也是平衡的重要条件。
当一个物体处于平衡状态时,物体受到的力矩必须相互抵消,这意味着力矩的方向必须相反。
通过使用右手定则和计算每一个力的力矩,我们可以确定力矩的方向并验证平衡条件是否满足。
三、实际应用力矩的概念和平衡条件在实际生活中有广泛的应用。
例如,我们可以使用力矩的概念解释为什么一个悬挂在墙上的画会保持平衡。
当一幅画悬挂在一根绳子上时,绳子对画施加一个向上的力,画的重力则对绳子施加一个向下的力。
这两个力矩必须相互抵消,以保持画的平衡状态。
另一个例子是平衡木运动员。
当平衡木运动员在木头上行走时,他们必须平衡自身,并且通过调节他们的身体位置,以保持力矩的平衡。
任何一个力矩的不平衡都会导致运动员失去平衡,可能摔倒。
总之,力矩在物理学中的应用十分广泛。
了解力矩的概念和平衡条件对于解释物体的平衡状态以及解决与力相关的问题至关重要。
高考物理必考难点 力矩平衡条件及应用

高考物理必考难点 力矩平衡条件及应用力矩平衡以其广泛的实用性,再次被考纲列为考查的内容,且以此知识点为素材的高考命题屡次再现于近几年高考上海卷及全国理综卷中.其难点分布于:(1)从实际背景中构建有固定转动轴的物理模型.(2)灵活恰当地选取固定转动轴.(3)将转动模型从相关系统(连结体)中隔离分析等.●难点磁场1.(★★★★)如图3-1所示,一根长为L 的轻杆OA ,可绕水平轴O 在竖直平面内自由转动,左端A 挂一质量为m 的物体,从杆上一点B 系一不可伸长的细绳,将绳跨过光滑的钉子C 与弹簧K 连接,弹簧右端固定,这时轻杆在水平位置保持平衡,弹簧处于伸长状态,已知OB =OC =32L ,弹簧伸长量恰等于BC ,由此可知,弹簧的劲度系数等于______.2.(★★★★★)(1997年上海,6)如图3-2所示是一种手控制动器,a 是一个转动着的轮子,b 是摩擦制动片,c 是杠杆,O 是其固定转动轴.手在A 点施加一个作用力F 时,b 将压紧轮子,使轮子制动.若使轮子制动所需的力矩是一定的,则下列说法正确的是A.轮a 逆时针转动时,所需的力F 较小B.轮a 顺时针转动时,所需的力F 较小C.无论逆时针还是顺时针转动,所需的力F 相同D.无法比较F 的大小●案例探究[例1](★★★★★)如图3-3所示,长为L 质量为m的均匀木棒,上端用绞链固定在物体上,另一端放在动摩擦因数为μ的小车平台上,小车置于光滑平面上,棒与平台的夹角为θ,当:(1)小车静止时,求棒的下端受小车的支持力;(2)小车向左运动时,求棒的下端受小车的支持力;(3)小车向右运动时,求棒的下端受小车的支持力. 命题意图:题目出示的物理情境,来考查考生受力分析能力及力矩平衡条件的应用能力.B 级要求.错解分析:对“车的不同运动状态使棒所受摩擦力大小方向的变化”理解分析不透,从而错列力矩平衡方程.解题方法与技巧:(1)取棒为研究对象.选绞链处为固定转动轴,除转动轴对棒的作用力外,棒的受力情况如图3-4所示,由力矩平衡条件知:F N 1Lc os θ=mg2L c os θF N 1=21mg图3-1 图3-2图3-3(2)小车向左运动,棒另外受到一个水平向左的摩擦力F 1作用,受力如图3-5所示,则有2N F Lc os θ=mg 2L cos θ+μ2N F L sin θ 所以2N F =)tan 1(2θμ-m g ,则2N F >1N F (3)小车向右运动时,棒受到向右的摩擦力F 2作用,受力如图3-6所示,有 3N F L cos θ+μ3N F L sin θ=mg2L cos θ 解得3N F =)tan 1(2θμ+mg 所以3N F <1N F 本题的关键点是取棒作为研究对象,由于车有不同的运动方向,故棒所受摩擦力的方向也不同,从而导致弹力的不同.[例2](★★★★★)(2002年上海卷)如图3-7所示,一自行车上连接脚踏板的连杆长R 1,由脚踏板带动半径为r 1的大齿盘,通过链条与半径为r 2的后轮齿盘连接,带动半径为R 2的后轮转动.图3—7(1)设自行车在水平路面上匀速行进时,受到的平均阻力为f ,人蹬脚踏板的平均作用力为F ,链条中的张力为T ,地面对后轮的静摩擦力为f s .通过观察,写出传动系统中有几个转动轴,分别写出对应的力矩平衡表达式;(2)设R 1=20 cm ,R 2=33 cm ,脚踏大齿盘与后轮齿盘的齿数分别为48和24,计算人蹬脚踏板的平均作用力与平均阻力之比;(3)自行车传动系统可简化为一个等效杠杆.以R 1为一力臂,在框中画出这一杠杆示意图,标出支点,力臂尺寸和作用力方向.图3—6命题意图:以生活中的自行车为背景,设立情景,考查运用力矩、力矩平衡条件解决实际问题的能力,尤其是构建物理模型的抽象、概括能力.B 级要求.错解分析:(1)尽管自行车是一种常见的交通工具,但多数考生缺少抽象概括的能力,无法构建传动系统简化的杠杆模型.(2)不能再现自行车的工作过程,无法将r 1/r 2之比与两个齿盘的齿数之比加以联系,导致中途解题受阻.解题方法与技巧:(1)自行车传动系统中的转动轴个数为2,设脚踏齿轮、后轮齿轮半径分别为r 1、r 2,链条中拉力为T .对脚踏齿盘中心的转动轴可列出:FR 1=Tr 1 对后轮的转动轴可列出:Tr 2=f s R 2(2)由FR 1=Tr 1,Tr 2=f s R 2 及f s =f (平均阻力) 可得24482121==r r R f FR s 所以1033202433481221=⨯⨯==R r R r f F =3.3 (3)如图3-8所示图3-8●锦囊妙计一、高考走势随着中学新课程方案推广与实施,“有固定转动轴物体的平衡”以其在现实生活中应用的广泛性,再次被列为高考命题考查的重要内容之一.近几年高考上海卷及2002年全国综合卷的命题实践充分证明了这一点.可以预言:以本知识点为背景的高考命题仍将再现.二、物体平衡条件实际上一个物体的平衡,应同时满足F 合=0和M 合=0.共点力作用下的物体如果满足 F 合=0,同时也就满足了M 合=0,达到了平衡状态;而转动的物体只满足M 合=0就不一定能达到平衡状态,还应同时满足F 合=0方可.三、有固定转动轴物体平衡问题解题步骤1.明确研究对象,即明确绕固定转动轴转动的是哪一个物体.2.分析研究对象所受力的大小和方向,并画出力的示意图.3.依题意选取转动轴,并找出各个力对转动轴的力臂,力矩的大小和方向.4.根据平衡条件(使物体顺时针方向转动的力矩之和等于使物体逆时针方向转动的力矩之和)列方程,并求解.●歼灭难点训练1.(★★★)(1992年全国,25)如图3-9所示 ,AO是质量为m 的均匀细杆,可绕O 轴在竖直平面内自由转动.细杆上的P 点与放在水平桌面上的圆柱体接触,圆柱体靠在竖直的挡板上而保持平衡.已知杆的倾角为θ,AP 长度是杆长的41,各处的摩擦都不计,则挡板对圆柱体的作用力等于____________.2.(★★★★)一根木料长5.65 m ,把它左端支在地上,竖直向上抬起它的右端时,用力480 N ,用相似的方法抬起它的左端时,用力650 N ,该木料重___________N.3.(★★★★)如图3-10所示,两个等重等长质料均匀直棒AC 和BC ,其各自一端分别通过转轴与墙壁绞结,其另一端相连于C 点,AC 棒与竖直墙夹角为45°,BC 棒水平放置,当两棒均处于平衡状态时,则BC 棒对AC 棒作用力方向可能处于哪一区域A.甲区域B.乙区域C.丙区域D.丁区域 4.(★★★★)如图3-11所示,长为l 的均匀横杆BC 重为100 N ,B 端用铰链与竖直的板MN 连接,在离B 点54l 处悬吊一重为50 N 的重物测出细绳AC 上的拉力为150 N ,现将板MN 在△ABC 所在平面内沿顺时针方向倾斜30°,这时AC绳对MN 板的拉力是多少?图3-9 图3-10图3-115.(★★★★★)如图3-12所示,均匀木板AB 长12 m ,重200 N ,在距A 端3 m 处有一固定转动轴O ,B 端被绳拴住,绳与AB 的夹角为30°,板AB 水平.已知绳能承受的最大拉力为200 N ,那么重为600 N 的人在该板上安全行走,离A 端的距离应在什么范围?6.(★★★★★)如图3-13所示,梯与墙之间的摩擦因数为μ1,梯与地之间的摩擦因数为μ2,梯子重心在中央,梯长为L .当梯子靠在墙上而不倾倒时,梯与地面的最小夹角θ由下式决定:tan θ=22121μμμ-,试证之.图13—3图3-12参考答案:[难点磁场]1.9mg /4L 2.A[歼灭难点训练]1.31mg sin2θ 2.1130 3.D 4.130 N 5.作出AB 板的受力图3′-1人在O 轴左端x 处,绳子拉直拉力为零.由力矩平衡可得:G 人×x -G ×CO =0x =人G CO G ⨯=6003200⨯=1 m.即离A 端2 m 处. 人在O 轴右端y 处,绳子的拉力T =200 N ,由力矩平衡得:T sin30°×BO -G 人y -G ×CO =0.y =6003200921200sin30人⨯-⨯⨯=⨯-⨯G CO G BO T =0.5 m 即离A 端3.5 m.所以人在板上安全行走距A 端的距离范围为2 m ≤x ≤3.5 m6.略图3′—1。
力矩平衡条件

力矩平衡条件
力矩平衡条件是物理学中一个非常重要的概念,它是指在一个物体上,所有的力矩之和为零的情况。
这个概念在很多领域都有应用,比如机械工程、物理学、航空航天等等。
在机械工程中,力矩平衡条件是非常重要的。
当我们设计机械设备时,需要考虑到各个部件之间的力矩平衡,以确保机械设备的正常运转。
如果一个机械设备的各个部件之间的力矩不平衡,那么这个机械设备就会出现故障,甚至会导致严重的事故。
在物理学中,力矩平衡条件也是非常重要的。
在物理学中,我们经常需要计算物体的运动状态,比如物体的加速度、速度、位移等等。
在这些计算中,力矩平衡条件是非常重要的,因为它可以帮助我们计算物体的运动状态。
在航空航天领域中,力矩平衡条件也是非常重要的。
在航空航天领域中,我们需要设计各种航空器和宇宙飞船,这些航空器和宇宙飞船需要在各种复杂的环境中运行。
在这些环境中,航空器和宇宙飞船需要保持力矩平衡,以确保它们的正常运行。
力矩平衡条件是一个非常重要的概念,它在很多领域都有应用。
在机械工程、物理学、航空航天等领域中,我们需要考虑到力矩平衡条件,以确保各种设备和系统的正常运行。
因此,我们需要深入理解力矩平衡条件的概念和应用,以便更好地应用它们。
力与平衡:理解力矩和力的平衡

力与平衡:理解力矩和力的平衡力矩和力的平衡是物理学中重要的概念,通过它们我们可以理解物体受力的情况及其相应的平衡状态。
本文将详细介绍力矩和力的平衡的概念、原理和实际应用。
一、力矩的概念与原理力矩是物体受到的力在一个参考点周围产生的转动效应。
当一个力施加在一个物体上时,该力会引起物体的转动。
而力矩则是用来描述这种转动效应的物理量。
力矩的大小等于力的大小与力臂的乘积,力臂是参考点到力的作用线的垂直距离。
力矩的方向则由参考点、力的作用线和力的方向确定。
根据右手定则,当用右手拇指指向力的方向,四指垂直于拇指指向的方向,则手指的方向所指即为力矩的方向。
在平衡条件下,物体所受的合力和合力矩均为零。
即ΣF=0和Στ=0,其中Σ表示矢量和,F表示力,τ表示力矩。
这是因为在平衡状态下,物体受力和受力矩的效果互相抵消,使得物体不发生平动和转动。
二、力的平衡的概念与原理力的平衡是指物体所受的合力为零的状态。
当物体所受的合力为零时,物体处于力的平衡状态,即物体不发生平动。
力的平衡可以分为平行力的平衡和非平行力的平衡两种情况。
1. 平行力的平衡平行力的平衡是指物体所受的平行力的合力为零的状态。
当若干个平行力作用在同一个物体上,且它们的合力为零时,物体将处于平行力的平衡状态。
在这种情况下,物体不会产生平动,但可能会产生转动。
平行力的平衡条件可以通过力的合成和分解来说明。
根据乌尔萨法则,若干个平行力的合力等于这些平行力的代数和,即|ΣF|=|F1|+|F2|+...+|Fn|。
当合力为零时,即ΣF=0,物体处于平行力的平衡状态。
2. 非平行力的平衡非平行力的平衡是指物体所受的非平行力的合力为零的状态。
当若干个非平行力作用在同一个物体上,且它们的合力为零时,物体将处于非平行力的平衡状态。
在这种情况下,物体既不会产生平动,也不会产生转动。
非平行力的平衡条件可以通过力矩的平衡来说明。
根据力矩的平衡条件Στ=0,若干个力产生的力矩之和为零。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
难点3: 力矩平衡条件及应用
力矩平衡以其广泛的实用性,再次被考纲列为考查的内容,且以此知识点为素材的高考命题屡次再现于近几年高考上海卷及全国理综卷中.其难点分布于:(1)从实际背景中构建有固定转动轴的物理模型.(2)灵活恰当地选取固定转动轴.(3)将转动模型从相关系统(连结体)中隔离分析等。
●难点考场
1.(★★★★)如图3-1所示,一根长为L 的轻杆OA ,可绕水平轴O 在竖直平面内自由转动,左端A 挂一质量为m 的物体,从杆上一点B 系一不可伸长的细绳,将绳跨过光滑的钉子C 与弹簧K 连接,弹簧右端固定,这时轻杆在水平位置保持平衡,弹簧处于伸长状态,已知OB =OC =
3
2
L ,弹簧伸长量恰等于BC ,由此可知,弹簧的劲度系数等于______.
2.(★★★★★)(1997年上海,6)如图3-2所示是一种手控制动器,a 是一个转动着的轮子,b 是摩擦制动片,c 是杠杆,O 是其固定转动轴.手在A 点施加一个作用力F 时,b 将压紧轮子,使轮子制动.若使轮子制动所需的力矩是一定的,则下列说法正确的是
A.轮a 逆时针转动时,所需的力F 较小
B.轮a 顺时针转动时,所需的力F 较小
C.无论逆时针还是顺时针转动,所需的力F 相同
D.无法比较F 的大小 ●案例探究 [例1](★★★★★)如图3-3所示,长为L 质量为m 的均匀木棒,上端用绞链固定在物体上,另一端放在动摩擦因数为μ的小车平台上,小车置于光滑平面上,棒与平台的夹角为θ,当:
(1)小车静止时,求棒的下端受小车的支持力; (2)小车向左运动时,求棒的下端受小车的支持力; (3)小车向右运动时,求棒的下端受小车的支持力. 命题意图:题目出示的物理情境,来考查考生受力分析能力及力矩平衡条件的应用能力.B 级要求.
错解分析:对“车的不同运动状态使棒所受摩擦力大小方向的变化”理解分析不透,从而错列力矩平衡方程.
解题方法与技巧:(1)取棒为研究对象.选绞链处为固定转动轴,除转动轴对棒的作用力外,棒的受力情况如图3-4所示,由力矩平衡条件知:
F N 1Lc os θ=mg
2
L
c os θF N 1=21mg
图3—4 图3—5
(2)小车向左运动,棒另外受到一个水平向左的摩擦力F 1作用,受力如图3-5所示,则有2N F Lc os θ=mg
2
L
cos θ+μ2N F L sin θ 所以2N F =
)
tan 1(2θμ-mg
,则2N F >1N F
(3)小车向右运动时,棒受到向右的摩擦力F 2作用,受力如图3-6所示,有
3N F L cos θ+μ3N F L sin θ=mg
2
L
cos θ 解得3N F =
)
tan 1(2θμ+mg
所以3N F <1N F
本题的关键点是取棒作为研究对象,由于车有不同的运动方向,故棒所受摩擦力的方向也不同,从而导致弹力的不同.
[例2](★★★★★)(2002年上海卷)如图3-7所示,一自行车上连接脚踏板的连杆长R 1,由脚踏板带动半径为r 1的大齿盘,通过链条与半径为r 2的后轮齿盘连接,带动半径为R 2的后轮转动.
图3-1
图3-2 图3-3 图3—6
图3—7
(1)设自行车在水平路面上匀速行进时,受到的平均阻力为f ,人蹬脚踏板的平均作用力为F ,链条中的张力为T ,地面对后轮的静摩擦力为f s .通过观察,写出传动系统中有几个转动轴,分别写出对应的力矩平衡表达式;
(2)设R 1=20 cm ,R 2=33 cm ,脚踏大齿盘与后轮齿盘的齿数分别为48和24,计算人蹬脚踏板的平均作用力与平均阻力之比;
(3)自行车传动系统可简化为一个等效杠杆.以R 1为一力臂,在框中画出这一杠杆示意图,标出支点,力臂尺寸和作用力方向.
命题意图:以生活中的自行车为背景,设立情景,考查运用力矩、力矩平衡条件解决实际问题的能力,尤其是构建物理模型的抽象、概括能力.B 级要求.
错解分析:(1)尽管自行车是一种常见的交通工具,但多数考生缺少抽象概括的能力,无法构建传动系统简化的杠杆模型.(2)不能再现自行车的工作过程,无法将r 1/r 2之比与两个齿盘的齿数之比加以联系,导致中途解题受阻.
解题方法与技巧:(1)自行车传动系统中的转动轴个数为2,设脚踏齿轮、后轮齿轮半径分别为r 1、r 2,链条中拉力为T .
对脚踏齿盘中心的转动轴可列出:FR 1=Tr 1 对后轮的转动轴可列出:Tr 2=f s R 2 (2)由FR 1=Tr 1,Tr 2=f s R 2 及f s =f (平均阻力)
可得
24
48
2121==r r R f FR s 所以10
33
202433481221=⨯⨯=
=R r R r f F =3.3 (3)如图3-8所示
图3-8
●锦囊妙计 一、高考走势
随着中学新课程方案推广与实施,“有固定转动轴物体的平衡”以其在现实生活中应用的广泛性,再次被列为高考命题考查的重要内容之一.近几年高考上海卷及2002年全国综合卷的命题实践充分证明了这一点.可以预言:以本知识点为背景的高考命题仍将再现.
二、物体平衡条件
实际上一个物体的平衡,应同时满足F 合=0和M 合=0.共点力作用下的物体如果满足 F 合=0,同时也就满足了M 合=0,达到了平衡状态;而转动的物体只满足M 合=0就不一定能达到平衡状态,还应同时满足F 合=0方可.
三、有固定转动轴物体平衡问题解题步骤
1.明确研究对象,即明确绕固定转动轴转动的是哪一个物体.
2.分析研究对象所受力的大小和方向,并画出力的示意图.
3.依题意选取转动轴,并找出各个力对转动轴的力臂,力矩的大小和方向.
4.根据平衡条件(使物体顺时针方向转动的力矩之和等于使物体逆时针方向转动的力矩之和)列方程,并求解.
●歼灭难点训练 1.(★★★)(1992年全国,25)如图3-9所示 ,AO 是质量为m 的均匀细杆,可绕O 轴在竖直平面内自由转动.细杆上的P 点与放在水平桌面上的圆柱体接触,圆柱体靠在竖直的挡板上而保持平衡.已知杆的倾角为θ,AP 长度是杆长的
4
1
,各处的摩擦都不计,则挡板对圆柱体的作用力等于____________.
2.(★★★★)一根木料长5.65 m ,把它左端支在地上,竖直向上抬起它的右端时,
图3-9
用力480 N ,用相似的方法抬起它的左端时,用力650 N ,该木料重___________N.
3.(★★★★)如图3-10所示,两个等重等长质料均匀直棒AC 和BC ,其各自一端分别通过转轴与墙壁绞结,其另一端相连于C 点,AC 棒与竖直墙夹角为45°,BC 棒水平放置,当两棒均处于平衡状态时,则BC 棒对AC 棒作用力方向可能处于哪一区域
A.甲区域
B.乙区域
C.丙区域
D.丁区域 4.(★★★★)如图3-11所示,长为l 的均匀横杆BC 重
为100 N ,B 端用铰链与竖直的板MN 连接,在离B
点5
4l
处
悬吊一重为50 N 的重物测出细绳AC 上的拉力为150 N ,现将板MN 在△ABC 所在平面内沿顺时针方向倾斜30°,这时AC 绳对MN 板的拉力是多少?
5.(★★★★★)如图3-12所示,均匀木板AB 长12 m ,重200 N ,在距A 端3 m 处有一固定转动轴O ,B 端被绳拴住,绳与AB 的夹角为30°,板AB 水平.已知绳能承受的最大拉力为200 N ,那么重为600 N 的人在该板上安全行走,离A 端的距离应在什么范围?
6.(★★★★★)如图3-13所示,梯与墙之间的摩擦因数为μ1,梯与地之间的摩擦因数为μ2,梯子重心在中央,梯长为L .当梯子靠在墙上而不倾倒时,梯与地面的最小夹角θ由下式决
定:tan θ=2
2
121μμμ-,试证之.
图13—3
参考答案: [难点磁场]
1.9mg /4L
2.A [歼灭难点训练] 1.
3
1
mg sin2θ 2.1130 3.D 4.130 N 5.作出AB 板的受力图3′-1 人在O 轴左端x 处,绳子拉直拉力为零.由力矩平衡可得: G 人×x -G ×CO =0
x =
人
G CO G ⨯=6003
200⨯=1 m.即离A 端2 m 处.
人在O 轴右端y 处,绳子的拉力T =200 N ,由力矩平衡得:T sin30°×BO -G 人y -G ×
CO =0.
y =600
3
200921
200sin30人⨯-⨯⨯=⨯-⨯G CO G BO T ο
=0.5 m
即离A 端3.5 m.
所以人在板上安全行走距A 端的距离范围为 2 m ≤x ≤3.5 m 6.略
图3′—1
图3-10 图3-11
图3-12。