机床主轴的回转误差运动测试(精)
加工中心主轴回转精度试验

加工中心主轴回转精度试验发布时间:2021-08-10T09:24:06.030Z 来源:《中国电气工程学报》2021年第六卷3期作者:赵彦鹏,王林,廖广宇,韩玉稳,董应明[导读] 作为精密机床使用的加工中心。
主轴回转运动误差主要由轴向窜动、径向跳动和角度摆动三种形式分别对加工精度造成影响。
赵彦鹏,王林,廖广宇,韩玉稳,董应明云南省机械研究设计院/云南省机电一体化应用技术重点实验室,云南昆明 650031摘要:作为精密机床使用的加工中心。
主轴回转运动误差主要由轴向窜动、径向跳动和角度摆动三种形式分别对加工精度造成影响。
对加工中心主轴回转精度进行测量,介绍测量的方法,后期数据处理并进行误差分析。
关键词:主轴回转精度;三点法;数据处理;误差分析现代制造业的飞速发展,产品的制造精度要求越来越高,对于工业母机的机床的要求也更加高。
特别是作为精密机床使用的加工中心。
主轴回转运动误差主要由轴向窜动、径向跳动和角度摆动三种形式分别对加工精度造成影响。
主轴回转精度的检测是机床设计、制造、调整和维修的重要环节,是提高机床加工精度的重要措施。
1、机床主轴回转精度的概念主轴回转误差是指主轴各瞬间的实际回转轴线相对其平均回转轴线的变动量。
产生主轴径向回转误差的主要原因有:主轴几段轴颈的同轴度误差、轴承本身的各种误差、轴承之间的同轴度误差、主轴绕度等。
因为机床的主轴传递着主要的加工运动,故其回转误差将在很大的程度上决定工件的加工质量。
2、加工中心主轴回转精度试验2.1试验内容及目的被测对象为TGK4663A加工中心主轴,采用动态测量法通常是选用一种测量传感器,利用传感器测得的位移信号进行分析处理。
2.2试验参考依据GB/T17421.7 《机床检验通则第七部分;回转轴线的几何精度》2.3测量装置及示意图2.5试验条件(1)试验的机床为按相关国家、行业等标准检验合格的产品;(2)试验前让主轴以中速(3000r/min)空运转30min;(3)试验前校正测量棒,在安装传感器位置处,使测量棒的径向跳动小于15μm;(4)试验时,传感器距主轴前定位端盘距离为180mm;(5)试验时,X轴、Y轴、Z轴及B轴不做进给运动。
主轴动态回转误差测试及分析

主轴动态回转误差测试及分析作者:沈阳机床来源:《CAD/CAM与制造业信息化》2013年第03期本文探讨了关于数控机床主轴动态回转误差的测试及分析问题,首先简要介绍了回转误差的组成、产生的原因及对加工精度的影响等,然后深入研究了回转误差的计算和分析,并编制了分析程序,提供了具体的分析实例。
一、引言机床主轴回转轴误差运动是指在回转过程中回转轴线偏离理想轴线位置而出现的附加运动,是评价机床动态性能的一项重要指标,是影响机床工作精度的主要因素。
回转轴误差运动的测量和控制,是各种精密设备及大型、高速、重载设备的重要技术问题之一。
通过对回转轴误差运动的测定,可以了解回转轴的运动状态和判断产生误差运动的原因。
机床主轴回转误差的测量方法有打表测量、单向测量和双向测量等。
造成机床回转误差的原因有主轴传动系统的几何误差、传动轴偏心、惯性力变形和热变形等误差,也包括许多随机误差。
通过径向跳动量和轴向窜动量测试实验可以有效满足对回转精度测量的要求。
二、回转误差的运动组成机床主轴的回转误差可以分为三种基本形式:①与回转轴线平行的轴向位移(纯轴向窜动);②与回转轴线平行的径向位移(纯径向跳动);③倾斜(纯角度摆动)。
如图1所示。
一般情况下,这三种基本形式的误差是同时存在的,产生的加工误差也是三种形式误差影响的叠加。
径向误差的大小取决于测量头的轴向位置,轴向误差的大小取决于测量头在测量平面上的径向位置。
因此必须说明评定时选择的轴向和径向位置。
三、回转误差产生的原因机床主轴回转误差产生的原因是多种多样的,各种原因对机床主轴运动的影响也不尽相同。
一方面有机床主轴传动系统的几何误差、转动轴系质量偏心产生的误差、所受惯性力变形产生的误差及设备热变形产生的误差等系统性(确定性)误差。
如机床主轴轴系中的轴套、机床主轴轴颈及滚动体的形状误差,特别是滚动件有尺寸误差时,机床主轴将产生有规律的位移。
另一方面,机床主轴回转误差产生的原因还有许多随机误差,如工艺系统的振颤对机床主轴回转的影响等。
「背景资料 综合实验一机床主轴回转误差运动测试」

实验一机床主轴的回转误差运动测试随着科学技术的飞速发展,很多行业对回转轴差动误差的测量都极为重视,例如,有许多行业的设备都需要高精度的机械零件,它们的形状误差和表面粗糙程度往往要求在0.1~0.25μm以下。
要加工出这样高精度的机械零件,需要多方面的条件来配合才能够满足要求,其中的机床主轴的回转精度是最关键的条件之一。
而测量主轴的误差运动则可以了解机床主轴的回转状态及产生误差的原因,对机床的加工而言,它可以用来预测机床的理想加工条件下所能达到的最小形状误差,并判断产生加工误差的原因。
本实验对如何正确测量机床主轴的误差运动进行一些探讨。
一、有关的基础知识1 轴误差运动理想回转轴线——回转轴运转时,其轴心线在空间的位置稳定不变,即与空间的一条直线相重合,且无轴向的相对移动,我们就称这条固定直线为理想轴线。
但实际上,回转轴组件由于各零件的加工误差及安装误差存在,它的回转轴线在空间的位置是漂移的,并非固定不变。
那么,我们就把回转过程中实际的回转轴轴心线对理想线的相对位置的相对位移定义为回转轴的误差运动。
在实际研究中,往往根据不同的研究对象和目的,可以将理想轴线有选择地和不同的元件“固接”在一起。
例如,我们研究轴承时,可以把理想轴线和轴壳“固接”,这时的误差运动是回转过程中回转轴线对轴承壳体的相对运动,反映出轴承的回转质量,如果研究的是加工设备(如机床),对刀具回转类机床,理想轴线可以与工件“固接”;对于工件回转加工类机床,理想轴线则可与刀具“固接”;这时主轴的回转误差运动就是刀具——工件之间的相对位移,反映出来的是加工误差。
但应注意,回转误差运动是一个复杂的合成误差,它是由几个方向的误差所组成,下面来具体分析(见图1-1):总的来讲,实际回转轴线对理想轴线AB在每一个瞬间的相对运动可以分解为三类五个运动:纯轴向运动z(t),纯径向运动x(t)和y(t),倾角运动α(t)和β(t)。
从分解的五种运动的特点可看出,径向误差运动r(t)是由纯径向运动x(t) 、y(t) 和倾角运动α(t)、β(t)合成的结果。
简要叙述机床回转轴回转精度检测的实验方案

简要叙述机床回转轴回转精度检测的实验方案如何检测机床主轴回转的精度【按】由于机床回转误差可能会造成主轴传动系统的几何误差、传动轴偏心、惯性力变形、热变形等误差,也包括许多随机误差,所有机床主轴回转精度的检测,便成了评价机床动态性能的一项重要指标。
通过径向跳动量和轴向窜动量测试实验可以有效的满足对回转精度测量的要求。
检测机床主轴回转精度的方法有打表测量、单向测量、双向测量等几种。
一、机床主轴回转精度测量的理论与方法机床主轴回转精度是衡量机械系统性能的重要指标,是影响机床工作精度的主要因素。
机床主轴回转误差的测量技术对精密机械设备的发展有着重要作用。
机床主轴的回转误差包括径向误差和轴向误差。
轴向回转误差的测量相对比较简单,只需在机床主轴端面安装微位移传感器,进行一维位移量的测量即可。
因此机床主轴回转误差测量技术的研究焦点一直集中在径向误差的精确测量上。
(参阅数控机床主轴轴承的温度控制与其工作原理阐述)1)打表测量方法早期机床主轴回转精度不太高时,测量机床主轴误差的常用方法是将精密芯棒插入机床主轴锥孔,通过在芯棒的表面及端面放置千分表来进行测量。
这种测量方法简单易行,但却会引入锥孔的偏心误差,不能把性质不同的误差区分开,而且不能反映主轴在工作转速下的回转误差,更不能应用于高速、高精度的主轴回转精度测量。
除此之外也有采用测量试件来评定主轴的回转误差。
2)单向测量方法单向测量法又称为单传感器测量法。
由传感器拾得“敏感方向”的误差号,经测微仪放大、处理后,送入记录仪,以待进一步数据处理。
然后以主轴回转角作为自变量,将采集的位移量按主轴回转角度展开叠加到基圆上,形成圆图像。
误差运动的敏感方向是通过加工或测试的瞬时接触点并平行于工件理想加工的表面的法线方向,非敏感方向在垂直于第三方向的直线上。
单向测量法测量的主轴回转误差运动实质上只是一维主轴回转误差运动在敏感方向的分量。
因此单向测量法只适用于具有敏感方向的主轴回转精度的测量,例如工件回转型机床。
探讨机床主轴回转生产误差测试

探讨机床主轴回转生产误差测试1 概述在机械生产的过程中,对于机床方面的加工技术中会出现多种的问题,其中包含有加工设计中出现的误差。
错误可以避免,但是误差是无法避免的,可以做到的是将误差的值调整到接近正常值的范围之内。
在机床生产中,主轴的回转方面的误差就是一项需要改进的项目。
主轴回转误差发生后,会对机械的零件加工形状和质量造成一定的影响,直接影响到机械零件表面的平滑程度。
其中主轴回转所产生的误差如下图所示:图1 主轴回转误差立体示意图主轴回转生产误差是在机床主轴运行过程中,在一瞬间回转轴线与平行轴线之间发生的水平方向和竖直方向出现的位移差,也就是通常情况下所说的误差。
其中水平轴线是在主轴运动瞬间运动趋势所得到的位移数据后,经过加权得到的平均位置。
主轴回转生产误差主要有三种具体的形式:单一水平轴向跳动、单一竖直轴向跳动和单一偏角转动。
在这三种形式当中,前两者被统一称作主轴轴向回转误差,这两者出现的误差会在机械零件加工中直接对原件后期生产造成一定的影响。
在出现主轴轴向回转误差时,纠正处理起来相对来说较为简单。
只要在主轴的端处安装有位移传感器,在机床运行过程中,主轴发生偏移就可以在传感器中现实出来,技术人员就可以根据位移误差值对机械进行调整。
同时对于机床主轴的回转生产误差值进行测试,寻找最为合适的生产模型。
下面就测试的相关技术进行研究。
2 误差分离测试技术误差分离技术是通过信息源变换或模型参数估计的方式使有用的信号分量与误差分量相分离的—种测量技术。
测量过程是:通过测量方法和测量装置的适当设计,改变误差分量与有用信号间的组合关系,并从信息源(误差分量与有用信号相混迭的信息源)的不同位置拾取信号,再根据在不同位置处拾取的信号间的联系,建立起误差分量与有用信号间的确定的函数关系,最后经相应的运算处理,使误差得以分离。
测量过程的结构模型,如下图所示:图2 误差分离技术结构模型用位移传感器进行主轴回转误差测量时,由于实际的主轴回转轴心是不可见的,不能直接对其测量,而只能通过对装在主轴上的标准件(标准球或标准棒)或主轴外围轮廓的测量来间接测得主轴轴心运动。
(精华版)国家开放大学电大专科《机械制造基础》形考任务4试题及答案

题目8
确定加工余量的方法有 (1)计算法,(2)经验估计法,(3)查表修正法。
二、 是非判断题(每题1分, 共23分)
题目9
欠定位在机械加工中是不允许的。件的六个自由度全部被限制的定位, 称为完全定位。 选择 一 项:
()
对
题目11 欠定位在 一定条件下是允许的。
()
题目4
零件的加工精度通常包括尺寸精度、 形状精度和位置精度。
题目5
机床主轴的回转运动误差有三种基本形式,分别为径向圆跳动、 轴向窜动和角度摆动。
题目6
在机械加工过程中,工件表层金属受到切削力的作用产生强烈的塑性变形,使工件表面的强度和硬度
提高, 塑性降低, 这种现象称为加工硬化, 又称冷作硬化。
题目7 加工阶段一般可划分为粗加工阶段、 半精加工阶段和精加工阶段三个阶段。
(精华版)国家开放大学电大专科《机械制造基础》形考任务 4 试题及答案
形考任务四 一、 填空题(每空2分, 共44分)
题目1
工艺基准可分为下述几种:(1)装配基准,(2)测量基准,(3)工序基准,(4)定位基准。
题目2
夹紧装置的组成包括:力源装置、 传力机构、 夹紧元件。
题目3
生产中最常用的正确的定位方式有完全定位和不完全定位两种。
精密主轴回转误差测试的偏心分析

P随转位角 的变化关 系, 图 2所示。由于 e和 的值均较 如
为了便于研究 e和 对测量值的影响 , 将图形进行了放大。 具有 明显 的频率特性 , 而圆度和 回转误差的频率成分较多 , 因此 小 ,
so p n l e pl p i t o ts me mi a e i l n t g e c n rct , n o o e rpe y t in s i d e d e y, o n s u o s k swh l e i ai c e t i a d prp s s ap o rwa t e mi n i y o
彭万欢 赵午 云 陶继 忠 徐 刚
( 中国工程物理研究院 机械制造工艺研究所 , 绵阳 6 10 ) 2 90
Ec e tii n lss o o a in l ro a u e n fp e ii n s id e c n r t a ay i fr t t a r r cy o e me s r me to r cso p n l
t g uth cetcy B rci , ek okn j tgstsm r poe n r t a w i o o s eecnr i. ypatet nciga u i oe r r dpa i l hc cn t it c h d s n ei p a c c h m k h cetct l sta .1 ̄ Teaa s grsladteaj tgsti s ic iet i- aeteecnr i s h 0 x i y e n 5 n h l i ut n u i i f av o m n yn e h ds n e s g t n
() 1
图 1偏心的作用原理
假定从截面圆心在正向横坐标上时开始测量, 由图 I 中的几
五轴机床回转轴精度检测

五轴机床回转轴精度检测摘要:与三轴机床相比,五轴机床能加工复杂曲面,具有加工效率高、装夹方便等优点。
然而,五轴机床的结构更复杂,两个回转轴会引入额外的几何误差,从而极大地影响了机床精度。
关键词:五轴机床;误差;检测五轴数控机床是现代制造技术的关键设备,用于加工高精度、复杂的曲面零件,其精度和技术水平在一定程度上决定了当前的工业水准。
五轴数控机床以其加工精度高、可靠性高、柔性好等优点,在航空航天、航海、医疗设备、军事等先进现代制造领域取得了巨大成就,得到了广大用户的认可,为制造企业的进一步研究做好了铺垫。
一、五轴数控机床发展概况五轴加工中心是一种专门用于加工机翼、叶轮、叶片、重型发电机转子等具有复杂空间曲面零件的高科技含量、高精密度的现代数控加工中心。
其优点为:①能加工一般三轴联动机床不能加工或无法一次装夹加工完成的自由曲面,节省装夹次数和时间。
②可提髙空间曲面加工精度、效率、质量。
一直以来,国内五轴数控机床相对于国外整体水平还较低,主要原因在于机床关键功能还未实现自主研发,与国外同类产品相比,国产机床稳定性、精度等指标较差,同时,在高精度技术含量精密机床方面,国外对我国实行技术封闭和进口限制,目前国内市场上的五轴机床仍以进口机床为主。
但国家十分重视机床行业的发展,2009年初启动了“高档数控机床与基础制造装备”国家科技重大专项,重点支持高档数控机床、基础制造装备、数控系统、功能部件、工具、关键部件、共性技术等方面的研发,且在各高校及相关企业的共同努力下,我国五轴数控机床技术也得到了飞速发展,已逐渐形成为较成熟的产品。
国内著名的五轴数控机床生产厂家有沈机集团、大连机床厂、济南二机床、昆明机床厂、普什宁江机床厂等。
随着经济的发展和国防建设的需要,用户对设备需求正向柔性、生产效率、功能多样和高性能等个性化需求方向转移,由此也促进了数控机床向高速高效化、模块化、高精度和复合加工等方向发展,对带动和提升我国机床工业水平具有重要战略意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实训三机床主轴的回转误差运动测试
1.实验目的
加工高精度的机械零件,对机床主轴的回转精度有非常高的要求。
测量机床主轴的误差运动可以了解机床主轴的回转状态,分析误差产生的原因。
通过机床主轴回转误差运动测试,要求学生:
(1) 了解机床的主轴回转误差运动的测试方法。
(2) 熟悉传感器的基本工作原理。
(3) 掌握传感器的选用原则及测试系统的基本组成。
(4) 熟悉并掌握仪器的基本操作方法。
(5) 基本掌握数据处理与图像分析方法。
2.实验原理
本实验使用两种方法进行误差运动测试:
(1) 带机械消偏的单向法直角座标显示的误差运动测试,见本实验的背景材料
中的图1-9。
(2) 电气消偏单向法圆图像显示的回转轴误差运动测试,见本实验的背景材料
中的图1-13。
3.实验对象
以C6140普通车床的回转主轴为研究对象,测试其在回转情况下的误差运动。
根据测试数据,用图像分析方法表示误差运动,分析误差运动产生的原因。
4.主要实验仪器和设备
(1) C6140普通车床
(2) 回转精度测试仪
(3) 涡流测振仪
(4) 信号发生器
(5) 双踪示波器
(6) 数字式万用表
(7) 可调偏心的测量装置
5.实验步骤
1.1.1 5.1 带机械消偏的单向法直角座标显示的回转轴误差运动测试
(1) 按照仪器的操作说明,熟悉系统所用各仪器控制面板上的旋钮、按键的作
用及操作方法;
(2) 按照原理框图正确地将系统中各仪器的信号线连通;
(3) 调整标准盘1(作为补偿信号)和标准盘2(作为误差的测量信号)的偏心量,
标准盘2的偏心量e2应尽可能小,仅稍大于被测量轴回转误差值,以保证得到信号即可,偏心量一般调整到0.03mm~0.05mm;标准盘1的偏心量e1应尽可能调大,大到使被测量轴回转误差值相对于偏心量可以忽略不计,及得到一个接近于纯偏心信号的光滑曲线,但因受涡流传感器工作间隙的限制,偏心量无法无限制地加大,一般调到0.40mm~0.60mm即可,并使e1和e2相差180o;
(4) 经指导老师检查系统连接正确后,接通电源预热仪器;
(5) 按测振仪使用要求调整好涡流传感器的工作间隙;
(6) 调整好机床转速,启动机床;
(7) 调整测振仪灵敏度,使之满足下面的关系式:e1.k1传感.k1测振仪= e2.k2传感.k2测振
仪
(8) 将满足以上关系式的两路输出信号经加法器(借用回转精度测试仪后面板
上的加法器,此时应将总接口插板抽出)相加,在示波器上得到误差曲线,曲线上最高点与最低点的高度差即为圆度误差的相对值,曲线最大的垂直度即为粗糙度的相对值;
(9) 标定,方法为:用正弦信号发生器输出一标准正弦信号,使其幅值为测振
仪当前档位(如30um档)的满量程输出的电压值,将该正弦信号送入加法器输入端,在示波器上得到一幅值为A mm的正弦信号,则该测量系统的标定系数为30um/A mm;
(10) 求出绝对误差=相对误差(mm)×30um/A mm;
(11) 停机床、关仪器,并拆除仪器的所有连接线,整理现场。
1.1.2 5.2 电气消偏单向法圆图像显示的回转轴误差运动测试
(1) 按照仪器的操作说明,熟悉系统所用各仪器控制面板上的旋钮、按键的作
用及操作方法;
(2) 按原理框图正确连接好系统,仅用误差测量信号(即标准盘2的信号),
并将回转精度测试仪的总接口板插入插座中;
(3) 经指导老师检查连线无误后,接通电源预热仪器;
(4) 调整好机床转速,启动机床;
(5) 调整基圆:
(6) 回转精度测试仪产生基圆的原理:将测振仪的输出信号接入回转精度测试仪的S输入端,由带通III从该信号选出与主轴同频的一次谐波,为了消除机床振动所引起的一次谐波的幅值变化对基圆的影响,用限幅放大器对一次谐波进行限幅,再用带通I选出稳定的一次谐波,然后将一次谐波分为两路,一路经移相器B移相90o,另一路不移相,将两路信号送示波器垂直输入端(Y端)和水平输入端(X端)叠加而产生基圆。
(7) 基圆的调整:首先根据机床转速n确定带通III和带通I所要通过的一次谐波的频率。
(8) 调节带通III的频率粗调开关,使一次谐波的频率包括在开关所指的频率范围内,如机床n=900转/分,则频率f=900/60=15Hz,粗调开关置在30位置。
调整频率微调电位器,直到示波器上出现的正弦信号的幅值为最大(将带通III的输出端与示波器的Y端相连)。
带通I的调整与带通III相同。
(9) 将示波器的X、Y端分别接回转精度测试仪的X、Y输出端,调节移相器B的移相旋钮,使输出输入端相差90o(在示波器上得到一正椭圆图形),再调整增益电位器改变其幅值,在示波器上得到一个真圆,这个圆就是基圆。
(注意:调整基圆时一定将移相器A的增益关断)
(10) 测量,将测振仪的输出信号同时接到回转精度测试仪的R输入端,调节移相器A的移相旋钮和增益电位器,使相位与R端信号相差180o,幅值等于R端信号基波的幅值,两者经加法器3相加,达到消偏的目的。
将已消偏的纯误差信号叠加到基圆上(由仪器内部完成),在示波器上得到的图形即为误差圆图像;
(11) 将所得到的圆图像用最小二乘方圆进行处理得到圆度误差的相对值(实际操作是用一同心圆模板来套曲线,这时有一内接圆和一外接圆,两圆的半径差即为误差值,但应注意这样的两同心圆与误差的接触形态应满足最小条件——即同心圆的内、外接圆至少应各有二点与曲线接触,且内外圆节点应该是相同的。
)曲线以图面中心为基准所得到的最大宽度即为粗糙度的相对值;
(12) 标定:保持基圆的状态不变(去掉R端信号,关断移相器A的增益电位器),将一标准正弦信号输入R端,该信号幅值等于测振仪当前档位(如30um 档)满量程的输出电压值,这时示波器上获得一花瓣图形,调整标定信号频率使花瓣图形稳定,则花瓣的高度A(mm)代表的就是测振仪的满量程值30um,即标定系数为30um/Amm;
(13) 求出绝对误差=相对误差(mm)×30um/A(mm);
(14) 停机床、关仪器,并拆除仪器的所有连接线,整理现场。
6.实验报告
实验报告要包括以下内容:
(1) 实验目的和意义
(1) 实验原理和方法
(2) 实验仪器及设备、耗材
(3) 实验方案(实验方案设计、实验手段,操作步骤)
(4) 实验原始记录(实验数据记录、现象记录、实验过程发现的问题)
(5) 实验数据结果
(6) 实验数据分析
a)实验数据图表处理
b)实验结果分析
c)实验中出现问题的分析
d)实验误差分析及其改进对策
e)分析误差运动产生的原因
7.预习思考题
(1) 测量传感器应该选择什么类型的传感器,为什么?传感器如何正确安装?
(2) 标准圆盘1和2如何调整,应注意什么?
(3) 图1-13(见机床主轴误差运动测试背景材料)中带通I、带通II、限幅器、
移相器A、移相器B和乘法器的作用是什么?
(4) 如何得到回转轴误差运动的真实值?如何标定,标定中应注意什么?
(5) 如何用最小二乘方园对获得的圆图像进行处理?
(6) 如果传感器安装时,没有完全垂直机床主轴,测试结果和上述结果有什么
不同,为什么?。