350MW超临界机组控制方案说明A

合集下载

FCB实验措施方案

FCB实验措施方案

-----------------------------------------------------------------------------------------~ 1 ~1350MW 超临界机组FCB 控制技术方案前 言近年来,一些发达国家和地区,包括美国、俄罗斯的莫斯科、英国伦敦、欧洲西部的意大利,法国和德国等相继发生了电网故障并导致大面积停电的严重事故,社会生活和经济等各方面损失巨大。

在我国,也发生了海南和西藏等的大面积停电事故。

事实上,在现代社会里,电力已经渗透到社会生产和生活的各个方面,一旦电力系统局部或大面积发生停电故障,其直接和间接造成的后果极其严重。

当电网出线故障时,电力系统客观上要求能在系统中保留若干必须的电源点,以利于整个电力系统的恢复过程。

机组小岛运行方式(一般意义上的FCB )就是专门为此目的而设计的运行方式。

这种方式就是当机组和电网断开后,由机组本身自带厂用电在低负荷下安全稳定地运行一段时间以等待电网故障的排除,当电网故障排除恢复正常后由该机组开始向电网供电,从而逐渐恢复其它电源点的正常运行。

由此可见,小岛运行方式时针对电网故障而在电源点采取的积极措施。

目前,国外电力市场已经成为国内电力设计业务的重要部分,而国外电厂设计大多存在具备FCB 功能的要求。

-----------------------------------------------------------------------------------------~ 2 ~2第一部分、工程概况XXXJerada 电厂1×350MW 超临界燃煤电站工程项目业主为XXX 国家电力部Office of National Electricity(ONEE)。

电厂为扩建电厂,I 期已有3×55MW 机组。

本期工程与已有电厂系统相对独立。

本期为1台350MW 超临界、空冷机组,包括1台燃煤锅炉、1台汽轮发电机组和所有必须的辅机设备及电厂BOP 。

【推荐下载】350MW超临界机组冷态启动全负荷脱硝控制策略

【推荐下载】350MW超临界机组冷态启动全负荷脱硝控制策略

350MW 超临界机组冷态启动全负荷脱硝控制策略:摘要:目前国内燃煤电厂降低氮氧化物排放普遍采用的技术方案是低氮燃烧+尾部选择性催化还原(SCR)烟气脱硝,该方案存在的主要问题是在机组启动及低负荷运行期间脱硝入口烟气温度低于脱硝允许最低喷氨温度,导致脱硝装置无法正常投运,造成锅炉氮氧化物排放超标。

本文对华能荆门热电2×350MW 超临界机组冷态启动过程全负荷脱硝可行性进行研究,对机组启动过程中各节点参数进行深入分析,以提高SCR 入口烟温为原则,通过采取提高给水温度、提高烟气温度、提高蒸汽温度及加强并网后各参数精细化调整,在不改造设备的前提下,不断地优化运行操作,成功实现了机组冷态启动全负荷脱硝。

1 引言为积极响应国家生态文明建设要求,持续实施大气污染防治行动,满足国家和地方环保政策要求,依据《火电厂大气污染物排放标准》(GB13223-2011)、《锅炉大气污染物排放标准》(GB13271-2 设备概述华能荆门热电1、2 号锅炉为东方锅炉厂生产的350MW 超临界直流锅炉,为超临界压力、一次中间再热、变压运行、单炉膛、平衡通风、采用低NOx 旋流式、前后墙对冲布置燃烧器,每台炉配置五台冷一次风正压中速直吹式制粉系统,锅炉点火方式为等离子点火。

每台机组配置一台100%B-MCR 汽动给水泵,两台机组共用一台30%B-MCR 容量的定速电动给水泵。

锅炉的启动系统为不带再循环泵的大气扩容式启动系统,机组配置容量为35%BMCR 一级大旁路系统。

锅炉尾部烟道采用双烟道结构,其中低温再热器布置于前部烟道,低温过热器、省煤器布置于后部烟道,再热汽温度采用烟气挡板辅以微量喷水作为调节手段。

脱硝系统采用选择性催化还原法(SCR)方式进行脱硝处理,脱硝催化剂设计运行温度为295~430℃。

1、2 号锅炉分别于机组启动全负荷脱硝总体控制策略为:改变锅炉各受热面吸热分配,提高SCR 入口烟温。

华能济宁热电厂350mw超临界机组集控运行规程

华能济宁热电厂350mw超临界机组集控运行规程

华能济宁热电厂350MW超临界机组集控运行规程1. 引言华能济宁热电厂是一座拥有350MW超临界机组的大型火力发电厂。

为了确保机组的安全、稳定、高效运行,需要制定相应的集控运行规程。

本文档旨在明确机组集控运行的管理与操作要求,确保运行人员的工作具有标准化、规范化。

2. 职责与义务2.1 集控运行人员的职责•负责机组的集控操作,确保机组安全、稳定运行;•阅读并熟悉机组设备运行情况和操作手册;•维护设备运行日志,并及时报告重要问题;•配合维修人员进行设备检修和维护;•参与事故应急处置,并按规定报告。

2.2 机组管理部门的职责•负责机组运行管理和指导;•监督和检查集控操作人员的工作;•定期组织机组设备的例行维护和检修;•提供必要的技术培训和操作指导;•制定应急预案,并组织演练。

3. 集控操作流程3.1 机组启停操作1.启动操作流程:–检查机组各设备的运行状态,确保无异常;–按照启动顺序启动锅炉、汽轮机、发电机等设备;–启动过程中,关注设备的温度、压力等参数变化,确保在正常范围内;–启动完成后,将机组切换到正常运行状态。

2.停机操作流程:–提前通知相关部门并取得批准;–按照停机顺序进行设备停止;–关注设备运行状态,确保停机过程平稳;–停机完成后,关闭设备并做好相应记录。

3.2 设备监控与调整1.设备监控:–监测设备的运行参数,包括温度、压力、转速等;–随时关注设备运行状况,及时发现异常情况;–检查设备的冷却、润滑等系统是否正常运行;–记录设备运行状态,及时报告异常情况。

2.设备调整:–根据设备运行情况进行相应调整,确保设备在最佳状态下运行;–对温度、压力等关键参数进行调整,维持设备的标准运行;–及时处理设备故障,保障运行的连续性和稳定性;–调整过程中,记录调整参数和效果,并及时报告相关部门。

3.3 安全与应急措施1.安全管理:–遵守相关安全操作规程和操作指南;–关注设备运行过程中的安全隐患,并及时采取措施消除;–检查一线设备的安全装置、报警系统等是否正常工作;–定期进行安全培训,提高安全意识。

浅析350MW超临界发电机组协调控制系统的控制策略

浅析350MW超临界发电机组协调控制系统的控制策略
图 1某电厂 2 ×3 5 0 MW 超 临界 机组协调 控制量( t / h ) 给水流量( t / h )
l 0 l 5 5 I 9 5 l 1 5 0 I 1 9 0 l 2 0 0 l 0 J 3 3 0 l 5 0 5 I 7 9 5 J 1 0 5 0 J 1 1 0 0
_ L r 黪
I 藏 字 技 术
数控 技 术
浅析 3 5 0 MW 超I l 界 发电机组协调控制系统的控制策略
刘 建 华
( 重庆 大唐 国际石柱发电有限责任公司 重庆 4 0 9 3 0 6 )
摘 要: 本文 以某 电厂超 临界 燃 煤机 组为 例, 对其锅 炉 主控 制 系统与 汽轮发 电机 主控 制 系统 的控 制策 略展 开 了详 尽 的探 讨 与 分析 。 关键 词 : 超 临界机 组协调 控制 系统控 制 策略 中图分类 号: T M6 2 1 . 6 文献 标识 码: A 文 章编 号: 1 0 0 7 — 9 4 1 6 ( 2 0 1 3 ) 0 8 . 0 0 0 1 . 0 2
机炉协调控制系统普遍用于大型火力 发电机组 中, 该系统对锅 制系统如 图1 所示 。 炉与汽轮发 电机实行一体化控 制, 消除锅炉控制系统 与汽轮机控制 3机炉协调控{ I 4 I 系统的控制策略分析 系统动态特征之 间的不同点 , 确保这两个系统 能够协调运行 , 锅炉与 3 . 1锅 炉主 控 制 系统 的控 制策 略 汽轮发电机满足 电网负荷变化 的要求, 最终实现机组调频、 调峰的最 机组直流炉中的液态水可一次性转化为过 热蒸汽 , 锅炉 的蒸发 佳性能 , 确保锅炉与汽轮发电机运行 的安全性 、 稳定性和经济性 。 量 由燃料量和给水流量决定 。 给水流量 、 燃料量对 电网的负荷控 制 1项 目背 景 分析 有着重要的影响 , 应 当协调控制燃料量与给水流量 。 机炉协调控制 某 电厂新建2× 3 5 0 MW燃煤 机组 , 采用超 临界空冷凝器式燃煤 系统 主要是通过控制燃料量来调节调节电网负荷和机前压力 , 通过 发 电机组 , 锅炉为超I 临界参数变压直流炉 、 单炉膛 丌型布置 、 一次 中 控制给水流量来调节微过热蒸汽温度或焓值 , 机组的系统控制要控 间再热、 前后墙 式对冲燃烧方式 , 采用 和利 时控制系统 。 锅炉侧配有 制好燃料量与给水流量 的函数 比值 关系。 该机组 的燃料量与给水流 5 台中速磨煤机 , 制粉系统布置为前墙B、 D、 C 层, 后墙A、 E 层。 汽轮机 量对 比( 简称 “ 燃水 比” ) 函数关系见表 1 。 机组直流炉的蓄热量要低于汽包炉的蓄热量 , 超临界机组直流 采用超 临界 、 一 次中间再热 、 单轴 、 双缸双排汽 、 冷凝 式汽 轮机 。 发电 机采用冷却方式为水 、 氢、 氢。 控制系统采用和 利时S M系列 分散控 炉的负荷 调节主要由锅炉来承担 , 要想提高机组负荷相应速度 , 就 制系统 , 设计S C S 、 D AS 、 MC S 、 C C S 等系统 。 协调控制系统 即CC S 作 必须 控制好锅 炉主控制系统的 回路 。 如果是直 吹式制粉 系统 , 则应 为机组最主要也是最复杂 的控制系统 , 它担负着发 电过程 中煤、 水、 当用给煤机来对锅炉 的给煤量进行控制 。 将原煤运输到输煤皮带的 风、 调 门等各 系统 的闭环调 节任务 以及整个机组 的负荷控 制任务 。 制粉过程是 比较漫长的, 从锅炉 的给煤量发生改变到煤粉燃烧 的过 cC s 能够满足机组定/ 滑压运行 、 AGC ( 自动发 电控制) 、 RUN B AC K 程中有一定的滞后性和惯性 , 纯延迟时间与惯性 时间的变化一 般无 ( 负 荷快 减) 等工 况的所 有 要求 , 保证 机组 在 不投 油稳 燃 负荷至 法测定 , 例如发生煤 受潮的情况 , 也会导致惯性时 间增加 。 因此 , 需 1 0 0 % MC R 负荷范 围内 , 控制运行参数不超过允许值 , 协调 机 、 炉及 要考虑过滤的延迟时间和惯性时间, 应当采取相应的措施来克服锅 其辅机安全 经济运行 。 炉侧 的延 迟 , 缩短惯性 时间, 最大化利用超临界机组直流炉的蓄热 来增强机组 的负荷变 化适应能力 。 2本工 程 的机 组 协调 控 制系统 ( 1 ) 锅炉主控 制系统通过主汽压力的测量值与设定值 来进行锅 机炉协调控 制系 统主 要对 锅炉 主控 制系统和汽轮发 电机主控 炉控 制器的P I D 运算 , 计算结果为锅炉主 控制指令 , 通过主汽压力 制系统实现控制 , 锅炉主控制系统和汽轮发 电机主控制系统又分布 控制器使主汽压力P t 等于设定值P s 。 锅炉主控 的调节回路对提高锅 对 各 自的子控制系统进 行控制 。 该 电厂超临界3 5 0 MW机组协调 控 炉 的负荷相应速度 , 优化主汽压力具有重要的影响 。 本机 组经过设 计、 试验和反复修改, 最终确定协调控制系统锅炉 前馈主要包括 : 负 荷指令基 准函数前馈、 负荷指令微分前馈 、 实 际压力设 定微分前馈 、 压力偏差 微分前馈 、 负荷偏差微分前馈 、 D E B 能量指令前馈 等。 弥补锅炉侧延迟时 间和惯性 的方法除了采用静态前馈之外 , 还 有动态前馈控制方法 , 动态前馈 能进行超前控制 , 提 高锅炉 的负荷 相应速度 , 提高超临界机组的负荷控制能力 。 将 最后 输出的锅 炉主 控指令B I D信号采用并行传 输的方式直接发送 到锅 炉给水主控制 系统 , B I D 信号进 行水 燃 比修正后发送到 燃料 控制系统 , 将燃料指 令进行风煤 比修 正后发送到风量控制系 统。 ( 2 ) 在蒸汽温度变化的合理范 围内, 增强锅炉给水对 负荷 的响 应。 由于燃料量 的变化速度远远超临界机组的不及负荷对于给水的

北重350MW超临界汽机主机设计说明书 (1)

北重350MW超临界汽机主机设计说明书 (1)

目录一、机组概述 (2)二、高中压模块 (4)三、低压模块 (23)四、阀门模块 (38)五、进汽管路模块 (51)六、轴承箱模块 (55)一、机组概述NC350-24.2/0.4/566/566型汽轮机是北京北重汽轮电机有限责任公司在引进ALSTOM公司330MW亚临界凝汽式汽轮机基础上,结合目前国内对超临界汽轮机的要求设计开发的机型。

机组设计采用先进的通流技术,保证具有较高的经济性;在结构设计上充分采用成熟可靠的技术,确保机组的安全可靠性,以及快速启、停及变负荷的能力。

主要的技术特点有:●通流部分采用先进的全三维设计技术;●运用有限元手段对结构的强度及刚度进行全面分析;●高效的叶片型线,保证机组的通流效率及变工况性能;●叶顶汽封采用可退让汽封,在确保安全的前提下减小叶顶间隙,除高温段外,轴封处采用蜂窝汽封,降低漏汽量,提高效率;●高中压内缸中分面螺栓设计有螺栓法兰自流冷却/加热,外缸设置法兰加热装置;●新型高、中压主汽、调节联合汽阀,压损小,结构简单;机型为:一次中间再热、单轴、双缸双排汽抽汽凝汽式汽轮机。

整机共设有25级,其中高压为1+7级、中压为7级、低压为2×5级。

机组采用3高加+1除氧+4低加、汽动给水泵的通用回热系统。

本机型充分考虑了国内电力市场对300MW等级机组供热的要求,在最大限度满足采暖抽汽的基础上,还可满足部分非调0.98Mpa.a等级工业抽汽的要求。

本设计说明书主要介绍该机组的总体设计和本体结构,有关控制及保护、汽封、疏水、润滑油系统、盘车装置、主润滑油泵的设计请参阅下列技术文件:1.控制及保护系统设计说明书2.汽封系统设计说明书3.疏水系统设计说明书4.润滑油系统说明书5.盘车装置说明书6.主润滑油泵特性说明书本文件中热力系统的压力一律采用绝对压力,真空度和负压用文字注明,本说明书采用法定计量单位,它与工程制计量单位的换算关系如下:力 1kgf=9.80665N压力 1kgf/cm2=0.0980665MPa热量 1kcal=4.1868kJ注:左、右定义为:从汽轮机朝发电机方向看去,左手侧为左,右手侧为右。

350MW超临界汽轮机技术介绍

350MW超临界汽轮机技术介绍

350MW超临界汽轮机技术介绍北京北重汽轮电机有限责任公司2009年12月目录1、前言 12、机型系列 23、机组介绍 33.1、总体方案 33.2、本体结构 43.2.1、汽缸 73.2.2、转子及动叶片 73.2.3、喷嘴组、静叶及隔板 93.2.4、高中压阀门 103.2.5、轴承及轴承箱 113.2.6、滑销系统 123.3、主要部件材质 133.4、汽轮机附属系统 143.4.1、汽封、本体疏水系统 14 3.4.2、润滑、顶轴及盘车系统 14 3.4.3、控制及保护系统 143.5、汽轮机辅助设备 153.5.1、凝汽器 153.5.2、低压加热器 154、关于超临界机组的主要问题 15 4.1、高温材料的使用 154.2、防颗粒侵蚀措施 154.3、中压第一级冷却措施 155、机组特点 165.1、机型定型合理 165.2、采用成熟可靠的设计 165.3、功率高 175.4、良好的结构设计 175.5、材料等级高 175.6、灵活快捷的中压缸启动 176、300MW-360MW汽轮机业绩表 18350MW超临界汽轮机技术介绍1、前言超临界350MW汽轮机是我公司在引进ALSTOM公司亚临界330MW凝汽式汽轮机的基础上,通过近几年与ALSTOM在600MW超临界机组方面的合作以及与其他国外公司的技术交流,结合目前国内对超临界汽轮机要求的基础上设计开发的机型。

机组设计采用先进的通流技术,保证具有较高的经济性;在结构设计上充分采用成熟可靠的技术,确保机组的安全可靠性,以及快速启、停及变负荷的能力。

我公司从1986年开始引进ALSTOM亚临界330MW湿冷机组,在引进纯凝湿冷机组的基础上,完成了亚临界330MW汽轮机的系列化工作,机组系列在功率方面涵盖了300MW~360MW(其中空冷300MW~330MW、湿冷330MW~360MW),在冷却方式方面涵盖了湿冷、直接空冷、间接空冷,在功能方面涵盖了纯凝、单级抽汽(0.3~0.6Mpa.a、0.98~1.27Mpa.a、3.92~5.88Mpa.a)、两级抽汽(三种单抽的组合)、三级抽汽(三种单抽的组合),目前各种机型的机组已经生产80多台。

350mw超临界机组运行规程

350mw超临界机组运行规程

350MW超临界机组运行规程一、概述350MW超临界发电机组是我国自主研发的先进发电机组,具有高效率、高可靠性、低排放等特点。

为了保证机组的安全稳定运行,制定本运行规程。

二、启动前检查1、检查机组各系统是否处于正常状态,包括汽轮机、发电机、锅炉、水泵、风机等。

2、检查机组各仪表、控制装置是否正常工作。

3、检查机组各阀门是否处于正确位置。

4、检查机组润滑系统是否正常工作。

5、检查机组冷却系统是否正常工作。

三、启动过程1、启动汽轮机:- 打开汽轮机主蒸汽阀。

- 启动汽轮机循环泵。

- 启动汽轮机给水泵。

- 启动汽轮机油泵。

- 启动汽轮机转子。

2、启动发电机:- 打开发电机励磁开关。

- 启动发电机转子。

- 合闸发电机与电网。

3、启动锅炉:- 点火燃烧器。

- 启动锅炉循环泵。

- 启动锅炉给水泵。

- 启动锅炉风机。

四、运行过程1、汽轮机运行参数控制:- 蒸汽压力:保持汽轮机主蒸汽压力在规定的范围内。

- 蒸汽温度:保持汽轮机主蒸汽温度在规定的范围内。

- 给水流量:保持汽轮机给水流量在规定的范围内。

- 转速:保持汽轮机转速在规定的范围内。

2、发电机运行参数控制:- 电压:保持发电机端电压在规定的范围内。

- 电流:保持发电机电流在规定的范围内。

- 功率:保持发电机输出功率在规定的范围内。

- 频率:保持发电机输出频率与电网频率一致。

3、锅炉运行参数控制:- 蒸汽压力:保持锅炉蒸汽压力在规定的范围内。

- 蒸汽温度:保持锅炉蒸汽温度在规定的范围内。

- 给水流量:保持锅炉给水流量在规定的范围内。

- 燃烧器负荷:保持燃烧器负荷在规定的范围内。

五、停机过程1、停机前准备:- 降低锅炉负荷。

- 降低汽轮机负荷。

- 断开发电机与电网。

- 停止汽轮机转子。

- 停止发电机转子。

- 关闭汽轮机主蒸汽阀。

- 关闭汽轮机循环泵。

- 关闭汽轮机给水泵。

- 关闭汽轮机油泵。

2、停机过程:- 关闭锅炉燃烧器。

- 关闭锅炉循环泵。

- 关闭锅炉给水泵。

350MW超临界机组控制方案说明A解读

350MW超临界机组控制方案说明A解读

仁丘2×350MW超临界机组MCS系统逻辑设计说明设计:校对:审核:批准:新华控制工程有限公司2011年8月28日超临界机组控制方案说明1.超临界机组模拟量控制系统的功能要求超临界机组相对于亚临界汽包炉机组,有两点最重要的差别:一是参数提高,由亚临界提高至超临界;二是由汽包炉变为直流炉。

正是由于这种差别,使得超临界机组对其控制系统在功能上带来许多特殊要求。

也正是由于超临界机组与亚临界汽包炉机组这两个控制对象在本质上的差异,导致各自相对应的控制系统在控制策略上的考虑也存在差别。

这种差别在模拟量控制系统中表现较为突出。

此处谨将其重点部分做一概述。

1.1 超临界锅炉的控制特点(1)超临界锅炉的给水控制、燃烧控制和汽温控制不象汽包锅炉那样相对独立,而是密切关联。

(2)当负荷要求改变时,应使给水量和燃烧率(包括燃料、送风、引风)同时协调变化,以适应负荷的需要,而又应使汽温基本上维持不变;当负荷要求不变时,应保持给水量和燃烧率相对稳定,以稳定负荷和汽温。

(3)湿态工况下的给水控制——分离器水位控制,疏水。

(4)干态工况下的给水控制-用中间点焓对燃水比进行修正,同时对过热汽温进行粗调。

(5)汽温控制采用类似汽包锅炉结构,但应为燃水比+喷水的控制原理,给水对汽温的影响大;给水流量和燃烧率保持不变,汽温就基本上保持不变。

1.2 超临界锅炉的控制重点超临界机组由于水变成过热蒸汽是一次完成的,锅炉的蒸发量不仅决定于燃料量,同时也决定于给水流量。

因此,超临界机组的负荷控制是与给水控制和燃料量控制密切相关的;而维持燃水比又是保证过热汽温的基本手段;因此保持燃/水比是超临界机组的控制重点。

本公司采用以下措施来保持燃/水比:(1)微过热蒸汽焓值修正对于超临界直流炉,给水控制的主要目的是保证燃/水比,同时实现过热汽温的粗调,用分离器出口微过热蒸汽焓对燃/水比进行修正,控制给水流量可以有效对过热汽温进行粗调。

(2) 中间点温度本工程采用中间点温度(即分离器出口温度)对微过热蒸汽焓定值进行修正。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

仁丘2×350MW超临界机组MCS系统逻辑设计说明设计:校对:审核:批准:新华控制工程有限公司2011年8月28日超临界机组控制方案说明1.超临界机组模拟量控制系统的功能要求超临界机组相对于亚临界汽包炉机组,有两点最重要的差别:一是参数提高,由亚临界提高至超临界;二是由汽包炉变为直流炉。

正是由于这种差别,使得超临界机组对其控制系统在功能上带来许多特殊要求。

也正是由于超临界机组与亚临界汽包炉机组这两个控制对象在本质上的差异,导致各自相对应的控制系统在控制策略上的考虑也存在差别。

这种差别在模拟量控制系统中表现较为突出。

此处谨将其重点部分做一概述。

1.1 超临界锅炉的控制特点(1)超临界锅炉的给水控制、燃烧控制和汽温控制不象汽包锅炉那样相对独立,而是密切关联。

(2)当负荷要求改变时,应使给水量和燃烧率(包括燃料、送风、引风)同时协调变化,以适应负荷的需要,而又应使汽温基本上维持不变;当负荷要求不变时,应保持给水量和燃烧率相对稳定,以稳定负荷和汽温。

(3)湿态工况下的给水控制——分离器水位控制,疏水。

(4)干态工况下的给水控制-用中间点焓对燃水比进行修正,同时对过热汽温进行粗调。

(5)汽温控制采用类似汽包锅炉结构,但应为燃水比+喷水的控制原理,给水对汽温的影响大;给水流量和燃烧率保持不变,汽温就基本上保持不变。

1.2 超临界锅炉的控制重点超临界机组由于水变成过热蒸汽是一次完成的,锅炉的蒸发量不仅决定于燃料量,同时也决定于给水流量。

因此,超临界机组的负荷控制是与给水控制和燃料量控制密切相关的;而维持燃水比又是保证过热汽温的基本手段;因此保持燃/水比是超临界机组的控制重点。

本公司采用以下措施来保持燃/水比:(1)微过热蒸汽焓值修正对于超临界直流炉,给水控制的主要目的是保证燃/水比,同时实现过热汽温的粗调,用分离器出口微过热蒸汽焓对燃/水比进行修正,控制给水流量可以有效对过热汽温进行粗调。

(2) 中间点温度本工程采用中间点温度(即分离器出口温度)对微过热蒸汽焓定值进行修正。

当中间点温度过高,微过热蒸汽焓定值立即切到最低焓,快速修改燃/水比、增加给水量。

当中间点温度低与过热度,表明分离器处于湿态运行,此时焓值修整切为手动。

(3) 喷/水比(过热器喷水与总给水流量比)在超临界机组如果喷/水比过大(或过小),即流过水冷壁的给水量过小(或过大),用喷/水比修正微过热蒸汽焓定值(即修正燃/水比),改变给水流量,使过热减温喷水处于良好的控制范围内。

(4) 燃水指令的交叉限制回路本工程给水最小流量限制、燃/水交叉限制,主要目的是在各种工况下防止燃料与给水比的失调。

燃料指令由锅炉指令加变负荷超调量前馈,经给水指令增、减闭锁限制(中间点温度正常范围内);给水指令经燃料指令增、减闭锁限制(中间点温度正常范围内)。

(5)高加解列超调前馈高加解列,给水温度偏低,通过超调前馈快速减少给水量(超调量与负荷成比例关系),以确保燃/水比调整使过热汽温在正常范围内。

注:高加解列超调量只受最小流量限制,不受其他条件影响。

1.3 超临界锅炉的给水控制超临界锅炉给水控制要完成了多重控制任务:控制燃/水比、实现过热汽温的粗调、满足负荷的响应。

1)给水指令组成给水指令由燃料指令经f(x)对应的总给水量减去过热器喷水量、通过燃/水比修正,加变负荷超调量前馈,经燃料指令增、减闭锁限制(中间点温度正常范围内),加高加解列前馈。

具体分析如下:(1)给水指令的前馈给水指令的前馈包括:静态前馈和动态前馈二部分组成。

①静态前馈这是给水指令的主导部分,由燃料指令折算出锅炉需要的给水总量,扣除减温水量后,作为直流炉的给水指令,通过这部分的静态前馈,基本保证了燃/水之比。

由于燃料、给水对过热汽温反应存在时差,因此给水指令要经惯性环节延迟。

②变负荷超调量动态前馈变负荷超过5MW时对燃料、给水指令超调前馈,主要是为了提高机组的负荷响应速度。

③高加解列超调前馈高加解列,给水温度偏低,通过超调前馈快速减少给水量(超调量与负荷成比例关系),以确保燃/水比调整使过热汽温在正常范围内。

(2)给水指令的反馈修正静态前馈部分基本上确定了燃料与给水流量之间的关系,在实际运行中,这一关系还应根据实际情况作必要的修正,使分离器出口焓维持在定值附近。

反馈修正的思路为:当过分离器出口焓大于设定值时,适当逐步加大给水指令;反之,则减少给水指令。

焓定值的确定可分为二种情况,一种是正常情况下焓定值的确定;另一种是当分离器出口超温时的焓定值计算。

①正常情况下分离器出口焓定值的计算在正常情况下,分离器出口焓定值由二部分组成:一是基准的焓设定值;二是由实际运行情况确定的定值修改量。

a.基准的焓设定值基准的焓设定值是分离器出口压力的函数,f(x) 代表了不同负荷对分离器出口蒸汽保证一定的过热度的控制要求。

b. 焓设定值的修正焓控设定值修正是指根据分离器出口温度或减温水流量在一定范围内修正焓控设定值。

当分离器出口温度大于定值3℃(初设),经过焓设定积分器将焓设定值适当减少,相应增加给水流量指令;反之相反。

用喷/水比(过热器喷水量/总给水量比值)对焓控定值进行修正,其因是直流锅炉的给水流量控制与减温水总量的控制之间存在着必然的联系,比如当过热喷水量增加,就说明前面的水冷壁的给水流量偏小,即可以通过减小焓控定值,增加给水流量而使过热喷水恢复到原来的值。

注:焓定值修正范围:中间点温度过热度在超过热、欠过热范围内,即焓控设定值必须保证在Hmax和Hmin之间。

②分离器出口超温时的焓定值计算给水控制系统还必须实现防止水冷壁管出口温度的越限,当分离器出口温度偏差大于3℃时,按上节方法减小焓设定值;当分离器出口温度大于限值(超过热)时,控制回路将焓设定值迅速切至最低限Hmin,从而快速增加给水流量,防止水冷壁出口温度进一步上升;当水冷壁出口温度超过其对应负荷下的温度保护定值,则发生MFT,这是直流锅炉为防止水冷壁管超温而设置的一个重要保护。

2)湿态运行方式(1)当分离器出口温度低于欠热度(分离器出口压力函数),即为湿态方式。

(2)湿态方式燃/水比切手动,用上述给水指令与给水流量的偏差的PI调节控制给水调门或电动给水泵。

(3)锅炉处于非直流运行方式,焓控制器处于跟踪状态,给水控制保持32% BMCR流量指令,由于分离器处于湿态运行, 分离器中的水位由分离器至除氧器以及分离器至扩容器的组合控制阀进行调节,给水系统处于循环工作方式;在机组燃烧率大于32%BMCR后,锅炉逐步进入直流运行状态,焓控制器开始工作。

3)干态运行方式用给水指令与给水流量的偏差的PI调节控制用电泵或汽泵转速,即控制给水量。

干态方式用分离器出口焓对燃/水比进行修正。

4)RB给水指令RB时经燃料指令折算的给水指令缩短延迟时间,60秒后用过热器入口焓对燃/水比进行修正(在RB过程,喷/水比不参与),确保过热汽温在可控范围内。

5)给水控制系统采用二台50%汽泵、主给水调门,二台机组共用一台30%电泵。

正常工况二台汽泵运行,主给水调门或主给水电动门全开,控制汽泵转速来调节负荷。

给水控制系统属单回路控制,汽泵控制一拖二,不采用平衡算法,原因是给水回路是快速跟随系统,控制系统变参数由控制内部变结构完成(一台汽泵或二台汽泵投入自动,对不采用平衡算法其控制增益要调整的),即分单泵、双泵调节。

1.4 改善超临界机组协调控制调节品质为了提高机组负荷响应的能力,主要方法为:①采用机组指令并行前馈到机、炉主控,即要充分利用机组的蓄热,也要提速燃烧指令;②加快锅炉侧的快速响应尤其是给水的快速响应,对给水和给煤应有合理的、经智能化处理的超调量,加快整个机组的动态响应速度。

1.4.1变负荷时,燃水指令的超调①当增负荷幅度5MW,同时实际负荷变化率大于0.1MW/min(这是二次确认,即按下《GO》。

),启动增负荷超调指令。

③超调持续时间的判断逻辑当增负荷幅度差值2MW、机组实际负荷指令与实发功率偏差小于1.5MW,上述任一条件成立,增负荷超调结束。

③超调量超调量与变负荷速率、实际负荷指令有关。

变负荷速率越快,超调的量也越大;负荷指令越高,超调的量也越大。

④当遇到加负荷后随即又减负荷的工况,则加负荷超调立刻结束,同时触发减负荷超调。

反之亦然。

注:减负荷超调类同。

1.4.2增加一次风量的前馈一次风压设定值是机组指令的正比函数,通过改变一次风压来提高锅炉变负荷速率;利用锅炉主控指令的前馈信号同时改变一次风量,充分利用磨煤机内的蓄粉来快速响应负荷需要。

2.本公司超临界机组协调控制策略协调控制系统设计原则是将汽机、锅炉作为整体考虑。

在综合控制策略基础上,通过预测提前量来提高机组负荷响应能力、抑制动态偏差;与各种非线性、方向闭锁等控制机理的有机结合,协调处理燃料与给水匹配,使过热蒸汽温基本稳定,协调控制机组功率与机前压力,协调处理负荷要求与实际能力的平衡。

在保证机组具备快速负荷响应能力的同时,维持机组主要运行参数的稳定。

图一350MW超临界机组负荷控制中心2.1 机组指令处理回路机组指令处理回路是机组控制的前置部分,它接受操作员指令、AGC指令、一次调频指令和机组运行状态信号。

根据机组运行状态和调节任务,对负荷指令进行处理使之与运行状态和负荷能力相适应。

2.1.1 AGC指令AGC指令由省调远方给定,4~20mA对应150MW~350MW。

当机组发生RUNUP/RUNDOWN、RUNBACK,退出AGC控制。

2.1.2一次调频指令一次调频指令为频率对应功率关系,频率调节死区范围为±0.033HZ(3000±2r/min),频率调节范围确定为50±0.2 HZ,即49.8~50.2 HZ(对应于汽轮机转速控制范围为3000±12r/min),对应±20MW。

当负荷达到上限350MW或下限160MW对一次调频信号进行方向闭锁,当机组发生RUNUP/RUNDOWN、RUNBACK时退出一次调频控制。

2.1.3机组指令的实际能力识别限幅功能机组指令的实际能力识别限幅是根据机组运行参数的偏差、辅机运行状况,识别机组的实时能力,使机组在其辅机或子控制回路局部故障或受限制情况下的机组实际负荷指令与机组稳态、动态调节能力相符合。

保持机组/电网,锅炉/汽机和机组各子控制回路间需要/可能的协调,及输入/输出的能量平衡。

机组指令的实际能力识别限幅功能,反映了协调控制系统一种重要设计思想——控制系统自适应能力:1)正常工况——“按需要控制”,实际负荷指令等于目标指令;2)异常工况——“按可能控制”,目标指令跟踪实际负荷指令。

机组指令的实时能力识别限幅功能主要有:1)方向性闭锁2)迫升/迫降(Run Up/Run Down)3)辅机故障快速减负荷(Runback)所有机组实时能力识别限幅功能,均设计有超驰优先级秩序,并具备明了的CRT显示。

相关文档
最新文档