§3-1 二氧化碳气体保护焊的原理及特点
CO2气体保护焊

CO2气体保护焊一、二氧化碳气体保护焊的原理及特点1. CO2气体保护焊的原理二氧化碳气体保护焊是以CO2为保护气体的电弧焊。
它用焊丝作电极,靠焊丝和焊件之间产生的电弧熔化焊件与焊丝,熔池凝固后成为焊缝。
焊丝的送进靠送丝机构实现。
2. CO2气体保护焊的分类按所用焊丝直径分为:细丝CO2气体保护焊;粗丝CO2气体保护焊。
按操作方式分为:CO2半自动焊;CO2自动焊。
3. CO2气体保护焊的特点(1)优点:①成本低:CO2气体及CO2焊焊丝价格便宜,焊接能耗低,只有埋弧焊及手工电弧焊的30%~50%;②生产率高:电流密度大,熔透能力强,焊缝厚度大,熔敷速度快,且焊后无需进行清渣处理,特别是多层多道焊时节省清渣时间;半自动二氧化碳焊的效率比焊条电弧焊高1~2倍,自动二氧化碳焊比焊条电弧焊高2~5倍;③焊接质量好:CO2焊对铁锈敏感性不大,抗锈能力强,焊缝中不易产生气孔;对油污不敏感,焊缝含氢量低,抗裂性能好;④焊接变形和焊接应力小:电弧热量集中,加热面积小,CO2冷却作用强,因此,焊接变形和焊接应力小,适宜薄板焊接;⑤操作性能好:明弧焊,易于实现机械化和自动化;⑥适用范围广:适用于各种位置的焊接,既可用于薄板焊接又可用于厚板焊接,也可用于磨损零件的堆焊。
(2)缺点:①大电流焊接时,焊缝表面成形差,飞溅较多;②不能焊接易氧化的有色金属材料;③很难用交流电源焊接及在有风的地方施焊;④劳动条件较差,弧光较强,二氧化碳焊弧光强度及紫外线强度分别为焊条电弧焊的2~3倍和20~40倍,而且操作环境中CO2的含量较大,对工人的健康不利。
二、二氧化碳气体保护焊的冶金特性常温下,CO2气体的化学性质呈中性,但在电弧高温下,CO2气体被分解呈很强的氧化性,能使合金元素氧化烧损,降低焊缝的力学性能,还能成为产生气孔和飞溅的根源。
因此,CO2焊的焊接冶金具有特殊性。
1、合金元素的氧化与脱氧(1)合金元素的氧化在电弧热量作用下,二氧化碳发生分解,放出氧气:2CO2⇔ 2CO + O2氧气又进一步分解为氧原子:O2 2O因此,二氧化碳电弧具有很强的氧化性,使铁及合金元素(Si、Mn、Cr、Ni、Ti、C等)发生氧化。
二氧化碳气体保护焊原理

二氧化碳气体保护焊原理
二氧化碳气体保护焊是一种常见的金属焊接方法,它利用二氧化碳气体在焊接过程中形成的保护气体来保护焊接区域,防止氧气和其他杂质进入焊接区域,从而实现高质量的焊接。
二氧化碳气体保护焊具有高效、经济、易操作等优点,因此在工业生产中得到了广泛应用。
二氧化碳气体保护焊的原理主要包括两个方面,一是保护气体的作用,二是焊接电弧的特点。
首先,保护气体的作用是二氧化碳气体保护焊的核心。
在焊接过程中,通过喷射二氧化碳气体,形成保护气体层,覆盖在焊接区域上方,阻止空气中的氧气和水蒸气进入焊接区域。
这样可以有效地防止金属氧化、氢开裂和氮气污染等问题的发生,使得焊接接头质量更加可靠。
其次,焊接电弧的特点也是二氧化碳气体保护焊的重要原理之一。
在焊接电弧中,二氧化碳气体不仅起到了保护作用,还参与了电弧的稳定和传导过程。
通过适当的电弧电流和电压控制,可以使二氧化碳气体在电弧中电离成为等离子体,从而产生高温、高能量
的电弧,使得焊接区域的金属得以熔化,实现焊接连接。
除此之外,二氧化碳气体保护焊还具有局部预热、减少氢裂纹、提高焊接速度等优点。
通过在焊接过程中控制保护气体的流量和喷
射方式,可以实现对焊接区域的精确保护,确保焊接接头的质量。
总的来说,二氧化碳气体保护焊的原理是在焊接过程中利用二
氧化碳气体形成保护气体,阻止空气中的氧气和杂质进入焊接区域,同时通过电弧的作用实现金属的熔化和连接。
这种焊接方法不仅可
以提高焊接质量,还可以实现高效、经济的生产,因此在工业领域
得到了广泛的应用和推广。
二氧化碳气体保护焊原理

二氧化碳气体保护焊原理
二氧化碳气体保护焊是一种常用的焊接方法,它使用二氧化碳气体作为焊接过程中的保护气体,以保护焊接区域免受氧气和空气中其他杂质的污染和氧化。
二氧化碳气体通过形成一个保护气氛,防止焊接区域发生氧化反应,从而提供良好的焊接质量和强度。
二氧化碳气体保护焊的原理基于以下两个方面:
1. 保护氧化作用:焊接区域处于高温状态时,氧气会与熔融金属发生氧化反应,导致氧化物的生成。
这会降低焊接接头的质量和强度。
通过向焊接区域注入二氧化碳气体,可以形成一个保护气氛,将氧气与焊接区域隔绝,减少氧气的接触,从而减少氧化反应的发生。
2. 冷却效应:二氧化碳气体在喷射出来的同时,也会起到冷却的效果。
焊接区域的温度会被减低,有助于金属快速凝固和固化,从而在焊缝形成可靠的连接。
此外,二氧化碳气体的冷却效应还有助于控制焊接速度和焊接热输入,使焊后的接头具有更好的力学性能。
总之,二氧化碳气体保护焊通过提供保护气氛和冷却效应,实现了焊接区域的保护和控制,从而提高了焊接的质量和强度。
这种焊接方法被广泛应用于许多工业领域,如汽车制造、船舶建造和钢结构等。
钢结构二氧化碳气体保护焊

钢结构二氧化碳气体保护焊钢结构二氧化碳气体保护焊是一种常见的焊接技术,广泛应用于各个领域,如建筑、桥梁、船舶等。
本文将探讨钢结构二氧化碳气体保护焊的原理、特点以及应用,并提供相关的操作指南。
一、原理和特点钢结构二氧化碳气体保护焊是一种半自动焊接方法,它使用二氧化碳气体作为保护剂,并通过电弧在焊缝处产生高温来熔化工件的金属材料。
以下是这种焊接方法的原理和特点:1. 原理钢结构二氧化碳气体保护焊的原理是利用电弧在钢结构的焊缝处产生高温,使焊接材料熔化形成焊缝。
同时,通过喷射的二氧化碳气体形成保护气团,防止焊缝周围的金属与氧气接触,从而避免氧化和气孔的产生。
2. 特点(1)操作简单:钢结构二氧化碳气体保护焊是一种比较容易掌握的焊接技术,操作相对简单,适用于不同层次的焊接工人。
(2)焊接效率高:由于二氧化碳气体可以提供较高的热量,因此可实现较快的焊接速度,提高工作效率。
(3)焊缝质量好:二氧化碳气体保护焊能够产生稳定的电弧和较高的热量,从而获得较好的焊缝质量,焊接接头强度高,密封性好,外观美观。
二、操作指南钢结构二氧化碳气体保护焊的操作过程包含以下几个关键步骤,请按照以下指南进行操作:1. 准备工作(1)保证焊接区域的清洁:清除焊接区域的油污、氧化物和其他杂质,保持焊缝表面的干净。
(2)选择合适的焊接电流和电压:根据所焊接工件的材料和厚度,选择适当的焊接电流和电压。
(3)检查设备和气源:确保焊接设备和气源的正常工作,检查气瓶的气压是否足够。
2. 焊接操作(1)采取适当的焊接姿势:保持身体平衡,采取稳定的焊接姿势,使用焊接面罩和防护手套等必要的个人防护装备。
(2)开始焊接:将焊枪对准焊缝,按下电启动按钮,开始焊接。
焊接过程中保持稳定的焊接速度和均匀的焊接电弧。
(3)保持气体保护:在焊接过程中,保持二氧化碳气体喷射,形成稳定的保护气团,避免氧气进入焊缝区域。
(4)控制焊接参数:根据焊接情况,适时调整焊接电流和电压,确保焊缝的质量。
CO2(二氧化碳)气体保护焊的原理、特点及应用

CO2(二氧化碳)气体保护焊的原理、特点及应用CO2气体保护焊是一种以CO2作为保护气体的熔化极电弧焊,简称CO2焊。
CO2气体密度较大,巨受电弧加热后体积膨胀较大,所以隔离空气、保护熔池的效果较好,但CO2是一种氧化性较强的气体,在焊接过程中会使合金元素烧损,产生气孔和金属飞溅,故需用脱氧能力较强的焊丝或添加焊剂来保证焊接接头的冶金质量。
CO2焊按焊丝可分为细丝(直径小于1.6mm)、粗丝(直径大于1.6mm)和药芯焊丝CO2焊三种。
按操作方法可分为半机械化和机械化CO2焊两种。
1、CO2焊的原理CO2气体保护焊是采用CO2作为保护气体,使焊接区和金属熔池不受外界空气的侵入,依靠焊丝和工件间产生的电弧热来熔化金属的一种熔化极气体保护焊,焊丝由送丝机构通过软管经导电嘴送出,而CO2气体从喷嘴内以一定的流量喷出,这样当焊丝与焊件接触引燃电弧后,连续送给的焊丝末端和熔池被CO2气流所保护,防止了空气对熔化金属的危害作用,从而保证获得高质量的焊缝。
CO2气体保护焊焊接原理如下图所示。
▲CO2气体保护焊焊接原理1—焊丝2—喷嘴3—电弧4—CO2气流5—熔池6—焊缝7—焊件2、CO2焊的特点(1)CO2焊的优点与其他电弧焊比较,CO2焊的优点如下:①焊接熔池与大气隔绝,对油、锈敏感性较低,可以减少焊件及焊丝的清理工作。
电弧可见性良好,便于对中,操作方便,易于掌握熔池熔化和焊缝成形。
①电弧在气流的压缩下使热量集中,工件受热面积小,热影响区窄,加上CO2气体的冷却作用,因而焊件变形和残余应力较小,特别适用于薄板的焊接。
①电弧的穿透能力强,熔深较大,对接焊件可减少焊接层数。
对厚10mm左右的钢板可以开①形坡口一次焊透,角焊缝的焊脚尺寸也可以相应地减小。
①焊后无焊接熔渣,所以在多层焊时就无需中间清渣。
焊丝自动送进,容易实现机械化操作,短路过渡技术可用于全位置及其他空间焊缝的焊接,生产率高。
①抗锈能力强,抗裂性能好,焊缝中不易产生气孔,所以焊接接头的力学性能好,焊接质量高。
二氧化碳气体保护焊

二氧化碳气体保护焊随着现代工业的不断发展,焊接技术也在不断进步。
在各种焊接方法中,气体保护焊是一种常用的高效焊接方法。
而在气体保护焊中,二氧化碳气体保护焊是一种常见且有效的焊接方法。
本文将深入探讨二氧化碳气体保护焊的原理、特点和应用。
一、二氧化碳气体保护焊的原理。
二氧化碳气体保护焊是一种利用二氧化碳气体作为保护气体的焊接方法。
在进行焊接时,将二氧化碳气体通过焊枪喷嘴喷出,形成保护气体罩在焊接区域,以防止空气中的氧气和水蒸气对焊接区域的污染。
同时,二氧化碳气体还可以在焊接过程中起到冷却作用,有效控制焊接区域的温度,避免焊接区域过热。
二氧化碳气体保护焊的原理主要包括两个方面,一是保护作用,即通过喷出的二氧化碳气体形成保护气体罩,防止空气中的氧气和水蒸气对焊接区域的污染;二是冷却作用,即通过二氧化碳气体的喷出,有效控制焊接区域的温度,避免过热。
二、二氧化碳气体保护焊的特点。
1. 焊接成本低,二氧化碳气体是一种常见的工业气体,价格相对较低,因此二氧化碳气体保护焊的成本相对较低。
2. 适用范围广,二氧化碳气体保护焊适用于多种金属材料的焊接,如碳钢、不锈钢、铝合金等,适用范围广泛。
3. 焊接速度快,二氧化碳气体保护焊的焊接速度较快,可以提高生产效率。
4. 焊接质量好,二氧化碳气体保护焊的焊接质量较高,焊缝均匀、牢固。
5. 环保节能,二氧化碳气体保护焊过程中不会产生有害气体,对环境无污染,符合环保要求。
三、二氧化碳气体保护焊的应用。
1. 船舶制造,在船舶制造领域,二氧化碳气体保护焊被广泛应用于船体、船板的焊接,具有焊接速度快、成本低等优点。
2. 汽车制造,在汽车制造领域,二氧化碳气体保护焊被用于汽车车身、车架的焊接,能够保证焊接质量和速度。
3. 钢结构制造,在建筑领域,二氧化碳气体保护焊被广泛应用于钢结构的焊接,如桥梁、建筑物等。
4. 管道焊接,在石油、化工等行业,二氧化碳气体保护焊被广泛应用于管道的焊接,能够保证焊接质量和速度。
二氧化碳气体保护焊的特点和操作要点

二氧化碳气体保护焊的特点和操作要点二氧化碳保护焊全称二氧化碳气体保护电弧焊。
保护气体是二氧化碳(有时采用CO2+Ar的混合气体),主要用于手工焊。
由于二氧化碳气体的热物理性能的特殊影响,使用常规焊接电源时,焊丝端头熔化金属不可能形成平衡的轴向过渡,通常需要采用短路和熔滴缩颈爆断、因此,与MIG焊过渡相比,飞溅较多。
但如采用好焊机,参数选择合适,可以得到很稳定的焊接过程,使飞溅降低。
由于所用保护气体价钱低廉,采用短路过渡时焊缝成形良好,加上使用含脱氧剂的焊丝即可获得无内部缺点的质量焊接接头。
因此这种焊接方法已成为黑色金属材料尤为重要焊接方法之一。
CO2保护焊是以CO2为保护气体隔绝空气,浓度需达到95.5%,含水量小于0.05%,通电时焊丝熔化进行焊接,属于弧焊。
CO2保护焊特点1.生产效率高由于CO2焊的电流密度大,电弧热量利用率较高,焊后不需清渣,因此比手工电弧焊生产率高;2.成本低CO2气体便宜,且电能消耗少,降低了成本;3.焊接变形小CO2焊电弧热量集中,焊件受热面积小,故变形小;4.焊接质量好C O2焊的焊缝含氢量少,抗裂性好,焊缝机械性能好;5.操作简便焊接时可观察到电弧和熔池情况,不易焊偏,适宜全位置焊接,易掌握。
CO2保护焊操作要点 1.垂直或倾斜位置开坡口的接头须从下向上焊接,对不开坡口的薄板对接和立角焊可采用向下焊接;平、横、仰对接接头可采用左向焊接法。
2.室外作业在风速大于1m/s时,应采用防风措施。
3.需根据被焊工件结构,选择合理的焊接顺序。
4.对接两端应设置尺寸合适的引弧和熄弧板。
5.应经常清理软管内的污物及喷咀的飞溅。
6.有坡口的板缝,尤其是厚板的多道焊缝,焊丝摆动时在坡口两侧应稍作停留,锯齿形运条每层厚度不大于4mm,以使焊缝熔合良好。
二氧化碳气体保护焊机工作原理

第十章二氧化碳气体保护焊机工作原理第一节二氧化碳气体保护焊机的特点与一般要求一、二氧化碳气体保护焊机的一般结构图二氧化碳气体保护焊即熔化极惰性气体保护焊,指用金属熔化极作电极,惰性气体(CO2)作焊接方法,简称MIG。
相对于其它弧焊机,MIG焊机添加了送丝结构及相应的送丝控制电路,在焊接过程中实现了半自动化,不但提高了效率,也减少了损耗。
焊接过程中使用廉价的CO2气体作保护,使得起弧容易,焊接成本低而效果好。
而且,送丝速度、输出电压可调节,可使两者达到良好匹配,提高了焊接质量,适用于各类焊接。
MIG机的送丝方式一般有三种:推丝式、拉丝式、推拉结合式,不同的送丝方式对送丝的软管要求各不相同。
对于推丝式送丝软管一般在2.5米左右,而推拉结合式的送丝软管可达15米,为了保正送丝稳定,相应的送丝电机和送丝控制电路都要求严格。
二、MIG焊的特点1、工作效率高:CO2的电弧穿透力强、熔深池大、焊丝熔化率高、熔敷速度快、,工作效率比手工弧焊高1~3倍;2、焊接成本低:CO2气体是工厂的副产品,来源广、价格低。
其成本只有埋弧焊和手工焊的40%~50%左右。
3、能耗低:相同条件下,MIG焊与手弧焊相比,前者消耗的电能约为后者的40%~70%。
4、适用范围广:MIG焊能焊接任何位置,薄板可焊致电1mm,最厚几乎不受限制。
而且焊接薄板时,较氩气焊速度快、变形小。
5、抗锈能力强:焊缝含氩量低,抗裂性好。
6、焊后无需清渣,因是阴弧,便于监视和控制,便于实现自动化。
三、MIG焊机的一般要求1、MIG焊机的焊接过程①起始时,焊丝由送丝机送出,接触工件;②焊丝与工件短路,产生大电流,使得焊丝顶端熔化;③焊丝与工件间形成电弧;④焊丝送出,电弧变短;⑤焊丝再次接触工件。
如此周而复始。
2、MIG焊机的一般要求在焊接过程中,电弧不断地燃弧、短路、重新引弧,燃弧如此周而复始,从而使得弧焊电源经常在负载短路,空截三态间转换,因此,要获得良好的引弧,燃弧和熔滴过渡状态,必须对电源的动特性提出如下要求:①焊接电压可调,以适应不同焊接需求;②最大电流限制,即有截流功能,避免因短路、干扰而引起的大电流损坏机器,而电流正常后,又能正常工作;③适合的电流上升、下降速度,以保证电源负载状态变化,而不影响电源稳定和焊接质量;④满足送丝电机的供电需求;⑤平稳可调的送丝速度,以满足不同焊接需求,保证焊接质量;⑥满足其它焊接要求,如手开关控制,焊接电流、电压显示,2T/4T功能,反烧时间调节,焊丝选择,完善的指示与保护系统等等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河南经济贸易高级技工学校
授课教案
由于它成本低,二氧化碳气体易生产,广泛应用于各大小企业。
由于二氧化碳气体的热物理性能的特殊影响,使用常规焊接电源时,焊丝端头熔化金属不可能形成平衡的轴向自由过渡,通常需要采用短路和熔滴缩颈爆断,因此,与MIG焊自由过渡相比,飞溅较多。
但如采用优质焊机,参数选择合适,可以得到很稳定的焊接过程,使飞溅降低到最小的程度。
由于所用保护气体价格低廉,采用短路过渡时焊缝成形良好,加上使用含脱氧剂的焊丝即可获得无内部缺陷的高质量焊接接头。
因此这种焊接方法目前已成为黑色金属材料最重要焊接方法之一。
焊接原理示意图
二、CO2气体保护焊的特点
1、优点:
①生产效率高和节省能量。
②焊接成本低。
③焊接变形小。
④对油、锈的敏感度较低。
⑤焊缝中含氢量少,提高了低合金高强度钢抗冷裂纹的能力。
⑥电弧可见性好,短路过渡可用于全位置焊接。
2、缺点:
①焊接过程中金属飞溅较多,焊缝外形较为粗糙,特别是当焊接参数匹配不当时飞溅就更严重。