X射线衍射分析原理及其应用
x射线衍射的原理和应用

X射线衍射的原理和应用1. 原理介绍X射线衍射是一种利用物质对X射线的散射特性来研究物质结构的方法。
其基本原理是将X射线通过待测物质后,通过衍射现象得到衍射图样,进而分析衍射图样来揭示物质的结构和性质。
2. X射线衍射的基本过程X射线衍射的基本过程可以分为三个步骤:2.1 射线入射与散射X射线通过射线源产生,并经过准直装置使射线束成为平行束。
当平行束的X射线照射到待测物质上时,部分X射线会被物质原子散射出去。
2.2 衍射现象的产生散射出来的X射线在绕过物质颗粒或晶体的过程中,会产生衍射现象。
衍射是X射线通过物质后在特定方向上的干涉效应,产生了特定的衍射图样。
2.3 衍射图样的分析通过对衍射图样的分析,可以得到有关物质结构和性质的信息。
衍射图样可以通过半衍射球法、白色衍射法等方法进行分析。
3. X射线衍射的应用领域3.1 材料科学X射线衍射在材料科学领域中广泛应用。
通过衍射图样的分析,可以确定材料中的结晶度、晶格参数、晶体相对定位等信息,从而帮助研究人员了解材料的结构和性质。
3.2 生物学X射线衍射在生物学研究中也有重要应用。
例如,通过对蛋白质晶体的X射线衍射图样进行分析,可以确定蛋白质的三维结构,进而揭示蛋白质的功能与活性。
3.3 矿物学和地球科学X射线衍射可以帮助矿物学家确定矿物的组成和结构,从而了解地球内部的物质组成和地壳运动等过程。
此外,X射线衍射还可用于地质样品中晶体的定量分析。
3.4 药物研究X射线衍射在药物研究中的应用主要涉及药物晶体结构的分析。
通过分析药物晶体的结构,可以了解药物的药性、晶体稳定性等信息,为药物开发提供依据。
3.5 粉末衍射技术在工业中的应用粉末衍射技术是X射线衍射中的一种重要方法。
在工业生产中,粉末衍射可以应用于合金的成分分析、材料的相变研究、材料的质量控制等领域。
4. 结论X射线衍射是一种非常重要且广泛应用的研究方法。
在材料科学、生物学、矿物学和地球科学、药物研究以及工业应用中都有其独特的价值。
X射线衍射原理及应用

X射线衍射原理及应用X射线衍射是一种利用X射线与晶体相互作用产生的衍射现象研究物质结构的方法。
它是在19世纪末和20世纪初逐渐发展起来的。
在这个过程中,麦克斯·冯·劳厄和威廉·康拉德·伦琴分别做出了重要贡献。
X射线衍射的原理是基于能量很高、波长很短的X射线通过物质时,与物质中的原子或晶体晶格相互作用,形成一些衍射现象。
这些衍射现象可以由晶体的结构参数推导出来,从而获得物质结构的信息。
1.X射线的产生:通过射线管向靶发射高速电子,产生了能量很高的X射线。
2. X射线的散射:经过Fermi–Dirac分布后,X射线通过物质时,与物质中的电子和原子核相互作用。
3.X射线的衍射:在特定的角度下,经过物质散射后的X射线互相干涉,形成衍射图样。
4.衍射图样的测量:通过衍射图样的测量,可以获得物质结构的信息,如晶格常数、晶胞参数、晶体结构等。
1.确定晶体结构:X射线衍射可以确定晶体结构的各种参数,如晶胞参数、晶格常数、原子位置等,从而帮助人们了解晶体的组成和结构。
2.分析材料成分:X射线衍射可以通过衍射图样的特征峰值,来分析物质的成分和组成。
3.研究晶体缺陷:X射线衍射可以研究晶体中的缺陷,如晶体的位错和断裂等。
通过衍射图样的变化,可以推断出晶体的缺陷类型和密度。
4.相变和晶体生长研究:X射线衍射可以研究物质的相变过程和晶体的生长机制。
通过衍射图样的变化,可以观察到相变的相应信号,并得到相变的温度和压力等参数。
5.X射线衍射也可以应用于地球科学领域,如矿石的开采、火山活动的研究等。
总之,X射线衍射是一种非常重要的物质结构研究方法,通过测量衍射图样,可以了解物质的组成和结构。
在材料科学、结晶学、地球科学等领域都有广泛的应用前景,对于人类的科学研究和工业生产都具有重要的意义。
简述x射线衍射法的基本原理和主要应用

简述X射线衍射法的基本原理和主要应用1. 基本原理X射线衍射法是一种研究晶体结构的重要方法,它利用X射线的特性进行衍射分析。
其基本原理包括以下几个方面:•布儒斯特定律:X射线在晶体中发生衍射时,入射角、出射角和入射光波长之间满足布儒斯特定律,即$n\\lambda = 2d\\sin\\theta$,其中n为整数,$\\lambda$为X射线的波长,d为晶面间的间距,$\\theta$为入射角或出射角。
•薛定谔方程:晶体中的原子排列形成周期性结构,电子在晶格中运动的波动性质可以用薛定谔方程描述。
X射线被晶体衍射时,其波长与晶体中电子的波动性相互作用,形成了衍射波。
•动态散射理论:根据动态散射理论,晶体中的原子或离子吸收入射的X射线能量,并以球面波的形式发出,与其他原子或离子产生相互干涉,从而形成衍射图样。
2. 主要应用X射线衍射法广泛应用于材料科学、化学、地质学等领域,具有以下主要应用:•晶体结构分析:X射线衍射法可以确定晶体的晶格常数、晶胞角度和晶体中原子的位置,通过分析衍射图样的强度和位置,获得晶体结构的信息。
•材料表征:X射线衍射法可用于分析材料的相变、晶体有序度、晶格缺陷和晶体生长方向等特征。
例如,在合金研究中,可以通过X射线衍射技术鉴定合金中出现的新相和晶格畸变。
•晶体品质评估:通过分析衍射峰的尺寸和宽度,可以评估晶体的品质,包括晶格结构的完整性、晶体中的位错和晶格缺陷等。
•结晶体制备与成分分析:利用X射线衍射法可以研究物质的结晶过程,了解晶体生长的动力学和晶体取向的控制方法。
此外,还可以使用X射线衍射方法对材料中的成分进行分析。
•衍射仪器的研发与改进:X射线衍射法的应用也推动了衍射仪器的研发与改进,包括X射线源、X射线衍射仪和探测器等,提高了测量精度和分辨率。
3. 总结X射线衍射法作为一种非破坏性的分析技术,通过衍射图样的分析,可以获得晶体结构和材料特性的信息。
其基本原理包括布儒斯特定律、薛定谔方程和动态散射理论。
X射线衍射仪的原理及应用

X射线衍射仪的原理及应用一、X射线衍射仪的原理X射线衍射仪是一种常见的分析仪器,能够通过分析物质对X射线的衍射图样,从而确定晶体结构和材料的组分。
其原理主要依据下面几个方面:1.X射线的波粒二象性根据量子力学的原理,X射线既具有波动性又具有粒子性。
在X射线衍射仪中,X射线的波动性用于解析晶体的结构,而X射线的粒子性用于测量能谱。
2.布拉格衍射定律布拉格衍射定律是X射线衍射仪中最重要的原理之一,它描述了X射线在晶体中的衍射现象。
根据布拉格衍射定律,当入射X射线束与晶体晶面平行并满足一定的入射角度时,会发生相干衍射,形成衍射图样。
3.晶体的晶格结构晶体是由周期性排列的原子或离子构成的,在晶体中存在着由无限多的晶面组成的晶格结构。
晶格结构对入射X射线的衍射图样具有直接影响,通过解析衍射图样,可以推断晶体的晶格结构。
二、X射线衍射仪的应用X射线衍射仪在科学研究和工业生产中有着广泛的应用,主要体现在以下几个方面:1.材料分析X射线衍射仪可用于材料的相分析、物相定量分析、材料的晶格参数测定等。
通过对材料的衍射图样进行解析,可以确定材料的组分、相对含量以及晶格结构等信息,为材料的研究和开发提供重要依据。
2.结构表征X射线衍射仪能够对被测样品的结构进行表征,包括晶体结构、晶格缺陷和晶格畸变等。
通过分析衍射峰的形状、位置和强度,可以获取样品的晶体结构信息,对于材料的制备和性能研究具有重要意义。
3.无损检测X射线衍射仪在工业生产中被广泛应用于无损检测领域。
通过对金属零件、焊接接头等进行X射线衍射,可以检测材料的内部缺陷、晶格变形等问题,为质量控制和产品验证提供支持。
4.药物研究X射线衍射仪在药物研究领域起到重要作用。
利用X射线衍射仪可以研究药物晶体的结构,包括药物晶型的分析、晶型转化的研究等。
这些信息对于药物的稳定性和溶解度等特性的研究具有重要意义。
三、总结X射线衍射仪作为一种分析仪器,通过利用X射线的波粒二象性和晶体的布拉格衍射定律,可以解析晶体结构和材料的组分。
X射线衍射分析原理及应用

X射线衍射分析原理及应用一、X射线衍射分析的原理X射线衍射的基本原理是当X射线入射到晶体表面时,由于晶体具有定向排列的原子或离子,X射线与晶体中的电子发生相互作用并散射,形成不同方向上的干涉条纹,通过测量和分析这些干涉条纹的位置和强度可以推断出晶体的结构特征。
具体来说,X射线衍射分析的原理可以归纳为以下几个方面:1. 布拉格法则:当入射角θ和出射角θ'满足布拉格方程nλ = 2d·sinθ,即入射的X射线与晶体晶面的倾角和衍射角满足特定的关系时,会发生衍射。
2.动态散射:在晶体中,入射的X射线会与晶格中的电子发生相互作用,散射成各个方向上的次级波,波的振动方向垂直于入射方向。
3.干涉:次级波在不同晶面的散射电子之间发生干涉,产生特定的干涉条纹。
4.衍射图样:干涉条纹的位置和形状与晶体的晶胞结构、晶面间距以及晶体取向有关,通过测量和分析衍射图样可以确定这些信息。
二、X射线衍射分析的应用1.晶体结构分析:通过在不同角度下测量样品的X射线衍射图样,可以推断出材料的晶体结构,包括晶胞参数、晶面间距、原子位置等信息。
这对于理解材料的物理、化学以及电子结构等性质非常重要。
2.晶体取向分析:X射线衍射分析可以用来确定晶体中不同晶向的取向分布,即晶体中晶面的取向。
这对于材料工艺和性能的控制具有重要意义,例如金属的冷轧、挤压等过程中,晶体的取向对材料的力学性能有很大影响。
3.晶体缺陷分析:晶体中存在着各种缺陷,如位错、晶界、析出相等。
通过观察和分析X射线衍射图样中的峰形和峰宽等信息,可以确定晶体的缺陷类型和含量,进而了解材料的机械、电学以及热学性质。
4.应力分析:在材料的变形过程中,晶体中会引入应力场。
应力会引起晶格的畸变,从而导致X射线衍射图样的形状和位置发生变化。
通过分析这些变化可以得到材料中的应力分布和大小,对于材料的力学性能的评估和优化具有重要意义。
总之,X射线衍射分析是一种非常重要的材料表征方法,可以提供丰富的关于晶体结构、晶胞参数、晶体取向以及晶体缺陷等信息。
X射线衍射分析

X射线衍射分析X射线衍射分析是一种广泛应用于材料科学和固态物理领域的实验技术。
通过照射物质样品,利用X射线在晶体中的衍射现象,可以获得有关物质结构和晶体学信息的重要数据。
本文将介绍X射线衍射分析的原理、应用和发展。
一、X射线衍射分析原理X射线衍射分析的基本原理是X射线的衍射现象。
当X射线照射到晶体上时,晶体中的原子会对X射线产生散射,形成一种有规律的衍射图样。
这个衍射图样会显示出晶体的结构信息,包括晶体的晶格常数、晶胞形状和晶体的定向等。
X射线衍射实验一般使用Laue方法或布拉格方法。
Laue方法是在一束平行的X射线照射下,观察其经过晶体后的衍射图样,通过分析该图样可以得到晶体的结构信息。
布拉格方法则是通过将一束X射线通过晶体,利用布拉格方程进行衍射角度的计算,从而确定晶体的晶格常数和定向。
二、X射线衍射分析应用X射线衍射分析被广泛应用于材料科学和固态物理领域。
它可以用来研究晶体的结构和晶体学性质,例如晶格参数、晶胞参数和晶体定向。
此外,X射线衍射还可以用于材料的质量控制和表征、相变研究、晶体缺陷分析等。
在材料科学领域,X射线衍射分析常用于矿物学、金属学和半导体学的研究。
例如,在矿物学中,通过X射线衍射分析可以确定矿石中的不同晶型矿物的比例和结构信息。
在半导体学中,X射线衍射分析可以帮助研究晶体管的晶格结构和界面形态。
三、X射线衍射分析的发展X射线衍射分析作为一种实验技术,随着科学研究的深入不断发展。
在仪器设备方面,X射线源的进步使得可以获得更高分辨率的衍射图样;探测器的改进使得观测和数据分析更加准确和高效。
同时,随着计算机技术的发展,数据处理和分析的速度大大提高,使得研究人员可以更直观、更准确地分析X射线衍射图样。
此外,X射线衍射分析的理论研究也在不断深入,衍射峰的定性和定量分析方法得到了大量改进,使得X射线衍射分析在材料科学研究中的应用更加广泛。
总结:X射线衍射分析是一种重要的实验技术,在材料科学和固态物理领域具有广泛的应用价值。
简述x射线衍射的基本原理和应用

简述x射线衍射的基本原理和应用1. 基本原理x射线衍射是一种通过射线衍射现象来研究物质结构的方法。
它基于x射线与物质相互作用的原理,通过衍射现象来获取物质的结构信息。
x射线衍射的基本原理可概括为以下几点:•x射线的产生:x射线是一种电磁波,通过高速运动的电子的碰撞产生。
常用的x射线源包括x射线机和x射线管。
•入射光线的衍射:当x射线照射到物体上时,会发生衍射现象。
衍射是光线在通过物体边缘或孔隙时被波动性所限制而出现弯曲的现象。
•晶体的衍射:当x射线通过晶体时,会发生晶体的衍射现象。
晶体的结构会导致入射的x射线发生干涉和衍射,形成一系列的衍射斑点。
•衍射斑的分析:通过测量和分析衍射斑的形状、强度和分布等特征,可以推断出晶体的内部结构和晶格常数等信息。
2. 主要应用x射线衍射在物质科学和材料科学研究中有着广泛的应用。
以下列举了一些常见的应用领域:•晶体结构分析:x射线衍射可用于解析晶体的结构。
通过测量和分析衍射斑点的特征,可以确定晶格常数、晶体的对称性和原子排列等信息。
•晶体缺陷分析:x射线衍射还可以用于研究晶体中的缺陷。
缺陷会导致衍射斑的形状和强度发生变化,通过分析这些变化可以推断出晶体中的缺陷类型和密度等信息。
•材料相变研究:x射线衍射可以用于研究材料的相变过程。
不同的材料在不同的温度和压力下会发生相变,通过测量和分析衍射斑的变化,可以揭示相变的机制和性质。
•结晶体制备优化:x射线衍射还可以用于优化结晶体的制备方法。
通过观察和分析衍射斑的特征,可以评估结晶体的质量和纯度,为制备过程的优化提供指导。
•蛋白质结构研究:x射线衍射在生物学领域也有着重要的应用。
通过测量和分析蛋白质的衍射斑,可以确定蛋白质的三维结构,从而研究其功能和相互作用等。
•X射线显影:x射线衍射还广泛应用于医学影像学中的x射线显影。
通过测量x射线在人体组织中的衍射斑,可以获得有关组织的结构信息,以用于诊断和治疗。
以上只是x射线衍射的一些基本原理和应用领域的简述,实际应用中还有许多相关的技术和方法。
X射线衍射原理及应用

X射线衍射原理及应用nλ = 2d sinθ其中,n为衍射级数,λ为X射线的波长,d为晶格的间距,θ为入射角。
这个方程说明了当入射角θ和衍射级数n确定时,衍射波的波长λ会影响到衍射峰的位置。
利用X射线衍射的原理,可以得知物质的晶格参数和晶体结构信息。
1.晶体学研究:X射线衍射是研究晶体结构的重要手段。
通过对晶体的X射线衍射图案进行解析,可以确定晶体的晶格参数、原子结构和晶体对称性。
这对于理解材料的物理和化学性质、控制材料的合成过程以及发展新材料有着非常重要的意义。
2.表面分析:X射线衍射也可以用于表面分析。
通过衍射峰的位置和强度,可以得知材料的表面晶格结构、缺陷和表面形貌等信息。
这对于研究材料的附着性、表面氧化和膜层结构等具有重要意义。
3.蛋白质晶体学:X射线衍射在蛋白质晶体学中有着重要的应用。
蛋白质的晶体结构决定了其功能和相互作用方式。
通过对蛋白质晶体的X射线衍射图案进行解析,可以得到蛋白质的三维结构信息,从而揭示其功能和相互作用的机制。
这对于药物设计和疾病治疗研究具有重要意义。
4.粉末衍射:粉末衍射是指用X射线照射粉末样品,通过衍射图案确定材料的结晶性质。
由于能够快速、非破坏性地分析材料的晶体结构,粉末衍射在材料科学研究中得到了广泛应用。
例如,可以用粉末衍射来研究材料的相变行为、晶体生长过程以及材料的应力和缺陷等。
总之,X射线衍射作为一种高度灵敏的分析方法,已经成为材料科学、化学、生物学等领域中不可或缺的手段。
随着技术的不断发展,X射线衍射将继续为我们揭示材料的微观结构和材料性质之间的关系提供重要的帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
X射线衍射分析原理及其应用X射线及XRD1.1 X射线是由高能电子的减速运动或原子内层轨道电子的跃迁产生的短波电磁辐射。
X射线的波长在10-6~10nm,在X射线光谱法中常用波长在0.01~2.5nm范围内。
1.2 X射线的产生途径有四种1)高能电子束轰击金属靶即在一个X射线管中,固体阴极被加热产生大量电子,这些电子在高达100KV的电压下被加速,向金属阳极轰击,在碰撞过程中,电子束的一部分能量转化为X射线;2)将物质用初级X射线照射以产生二级射线—X射线荧光;3)利用放射性同位素衰败过程产生的发射,人工放射性同位素为为某些分析应用提供了非常方便的单能量辐射源;4)从同步加速器辐射源获得。
1.3 X射线的吸收当一束X射线穿过有一定厚度的物质时,其光强和能量会因吸收和散射而显著减小。
物质的原子序数越大,它对X射线的阻挡能力越大,X射线波长越长,即能量越低,越容易被吸收[1] 。
1.4 XRDX射线衍射分析(XRD)是利用晶体形成的X射线衍射,对物质进行内部原子在空间分布状况的结构分析方法。
将具有一定波长的X射线照射到结晶性物质上时,X射线因在结晶内遇到规则排列的原子或离子而发生散射,散射的X射线在某些方向上相位得到加强,从而显示与结晶结构相对应的特有的衍射现象。
X射线衍射法是目前测定晶体结构的重要手段,应用极其广泛。
在实际的应用中将该分析方法分3为多晶粉末法和单晶衍射法。
多晶粉末法常用来测定立方晶系的晶体结构点阵形式、晶胞参数及简单结构的原子坐标,还可以对固体式样进行物相分析等。
衍射X射线满足布拉格(W.L.Bragg)方程:2dsinθ=nλ式中:λ是X射线的长;θ是衍射角;d是结晶面间隔;n是整数。
X射线束入射到样品表面后产生衍射,检测器收集衍射X射线信息。
当入射波长λ、样品与X射线束夹角θ及样品晶面间距d满足布拉格公式时,检测器可以检测到最强的信息。
因此采集入射和衍射X射线的角度信息及强度分布,可以获得晶面点阵类型、点阵常数、晶体取向、缺陷和应力等一系列有关材料结构信息[2],确定点阵参数的主要方法是多晶X射线衍射法[3]。
二、X射线衍射仪的结构分析物质X射线衍射的仪器,形式多种多样,用途各异,但仪器构成皆如下图所示,其硬件主要有X射线光源、衍射信号检测系统及数据处理和打印图谱系统等几部分构成。
图1.X射线衍射仪图2.衍射仪主要构成图上图为X射线衍射仪的基本构造原理图,主要部件包括4部分。
2.1 高稳定度X射线源提供测量所需的X射线, 改变X射线管阳极靶材质可改变X射线的波长,调节阳极电压可控制X射线源的强度。
常用的X射线管按其结构设计的特点可分为三种类型:可拆式管、密封式管、转靶式管。
最常用的是密封式管,其结构示意图如下.图3.密封式X射线管结构示意图图4.衍射仪中的光路布置2.2 样品及样品位置取向的调整机构系统样品须是单晶、粉末、多晶或微晶的固体块。
图5.测角仪2.3 X射线衍射信号检测系统X射线衍射仪可用的辐射探测器有正比计数器、闪烁计数器、Si(Li)半导体探测器,其中常用的是正比计数器和闪烁计数器。
检测衍射强度或同时检测衍射方向, 通过仪器测量记录系统或计算机处理系统可以得到多晶衍射图谱数据。
图6.正比计数管的结构2.4 衍射图的处理分析系统现代X射线衍射仪都附带安装有专用衍射图处理分析软件的计算机系统,它们的特点是自动化和智能化。
数字化的X射线衍射仪的运行控制以及衍射数据的采集分析等过程都可以通过计算机系统控制完成。
计算机主要具有三大模块:a.衍射仪控制操作系统:主要完成粉末衍射数据的采集等任务;b.衍射数据处理分析系统:主要完成图谱处理、自动检索、图谱打印等任务;c.各种X射线衍射分析应用程序:(1)X射线衍射物相定性分析,(2)X射线衍射物相定量分析,(3)峰形分析,(4) 晶粒大小测量,(5)晶胞参数的精密修正,(6)指标化,(7)径向分布函数分析等。
三、X射线衍射仪的原理3.1 X射线衍射原理当X射线沿某方向入射某一晶体的时候,晶体中每个原子的核外电子产生的相干波彼此发生干涉。
当每两个相邻波源在某一方向的光程差等于波长λ的整数倍时,它们的波峰与波峰将互相叠加而得到最大限度的加强,这种波的加强叫做衍射,相应的方向叫做衍射方向,在衍射方向前进的波叫做衍射波。
光程差为0的衍射叫零级衍射,光程差为λ的衍射叫一级衍射,光程差为nλ的衍射叫n级衍射。
n不同,衍射方向的也不同。
由于常用的X射线波长约在2.5A~0.5A之间,与晶体中的原子间距(1A)数量级相同,因此可以用晶体作为X射线的衍射光栅,这就使得用X射线衍射进行晶体结构分析成为可能。
在晶体的点阵结构中,具有周期性排列的原子或电子散射的次生X射线间相互干涉的结果,决定了X射线在晶体中衍射的方向,所以通过对衍射方向的测定,可以得到晶体的点阵结构、晶胞大小和形状等信息。
晶体结构=点阵+结构基元,点阵又包括直线点阵,平面点阵和空间点阵。
在x射线作用下晶体的散射线来自若干层原子面,除同一层原子面的散射线互相干涉外,各原子面的散射线之间还要互相干涉。
图.7光栅衍射当光程差(BD+BF)=2dsinθ等于波长的整数倍nλ时,相邻原子面散射波干涉加强,即干涉加强条件为:2dsinθ=nλ.3.2 X射线图谱[4]图8.X射线图谱1).X射线图谱的内容:1.纵坐标为衍射强度,用I表示。
单位是CPS,计数每秒2.横坐标为衍射角,用2θ表示,单位度。
3.峰顶标值为晶面间距,用d表示,可根据峰顶对应的2θ值求出。
4.基线BL 上图中虚线5.背景B 虚线与横坐标间距,单位是CPS。
6.半高宽单位是度。
2)衍射强度的表示方法a.峰高P 常用于定性分析,也用于某些定量分析。
b.峰面积A 代表积分强度,单位是记数。
比如:粘土矿物的定量分析采用峰面积计算强度。
根据Alexande:关系式,某物相的某衍射峰的衍射强度与物相在样品中的百分含量成正比,故衍射峰的积分强度直接反映了物相在化合物中的百分含量[5]。
单个X射线衍射峰是由相互独立的、各自具有一定物理学意义的5个基本要素组成。
衍射峰位置P是布拉格衍射角的图形表示,衍射峰的半高宽度是scherrer粒度大小的反映,衍射峰的形态是粒度大小和晶格位错的综合反映,衍射峰的强度是物相对X射线吸收强弱和在混合物中含量多少的反映,不对称性是样品、仪器几何条件和衍射角度、而网散射综合作用的结果[6]。
晶体X射线衍射现象的成功发现,一方面揭示了X射线的本质,另一方面证实了晶体构造的点阵理论,更重要的是劳厄、布拉格等人的发现打开了进入物质微观世界的大门,提供了直接分析晶体微观结构的有效工具,开辟了晶体结构X射线分析的新领域。
奠定了X射线衍射学的基础。
四、X射线衍射法4.1 多晶粉末法1. 物相分析X射线物相分析是以晶体结构为基础,通过比较晶体衍射花样来进行分析的。
对于晶体物质中来说,各种物质都有自己特定的结构参数(点阵类型、晶胞大小、晶胞中原子或分子的数目、位置等),结构参数不同则X射线衍射花样也就各不相同,所以通过比较X射线衍射花样可区分出不同的物质。
定性判断结晶与取向:1)由照片判断:非晶无取向弥散环非晶取向赤道线上的弥散斑结晶无取向有系列同心锐环结晶取向有系列对称弧结晶高度取向对称斑点2)由XRD图像判断:“宽隆”弥散的X射线衍射峰:表明非晶态“尖锐”X射线衍射峰表明:结晶态图9 药物样品粉末X射线衍射图谱研究有机物晶态与非晶态时对根据图谱判断晶态与非晶态物质[4],可有效地鉴别样品的存在状态。
图10.焙烧后的褐铁矿与标准Fe2O3的峰的比较某地褐铁矿焙烧后样品所含铁的存在形式与Fe2O3的标准峰基本吻合[7]。
2 晶胞参数的测定[8]X射线测定晶胞参数是一种间接方法,它直接测量的是某一衍射线条对应的θ角,然后通过晶面间距公式、布拉格公式计算出晶胞参数。
以立方晶体为例,其晶胞参数a与晶面间距d公式为:()222a LKHd++=布拉格方程2dsin θ=λ,则有:()θλsin 2222L K H a ++=如此则可以求出立方晶系晶胞参数a 。
3 晶体粒度大小的测定[9]微晶尺寸在0-1000nm 时,可以用Scherrer 公式计算晶粒 D=Kλ/βCOSθD :所规定晶面族发向方向的晶粒尺寸 β:为该晶面衍射峰的半峰高的宽度K :为常数取决于结晶形状,通常取1 θ:为衍射角 晶粒越小,衍射线就越宽图.11影响衍射峰宽度的因素很多,如光源、平板试样、轴向发散、吸收、接受狭缝和非准直性、入射X 射线的非单色性(K α1、K α2、K β)等。
应该指出,当小晶体的尺寸和形状基本一致时,计算结果比较可靠。
射线衍射物相定量分析方有:内标法[10]、外标法[11]、绝热法[12]、增量法[13]、无标样法[14,15]、基体冲洗法[16] 和全谱拟合法[17]等常规分析方法。
等用该方法对微波烧结的牙科全瓷材料晶粒度[18]进行测定,用XRD 测定CuO 纳米多功能材料[19],根据Scherrer 公式以(111)晶面计算样品A 、B 、C 、D 的平均粒度分别为6nm 、14nm 、9nm 、9nm 。
讨论了 X 射线衍射分析技术在材料分析方法中的重要作用[20]。
2.单晶衍射法若将一束单色X 射线射到一粒静止的单晶体上,入射线与晶粒内的各晶面族都有一定的交角,只有很少数的晶面能符合布拉格公式而发生衍射。
目前常用的收集单晶体衍射数据的方法,一为回摆法,二为四圆衍射仪法。
器主要用途:1)X-ray单晶衍射仪可对物质结构及组成进行分析,在不破坏样品的情况下,能够准确地测定分子的单晶结构。
2)单晶衍射技术可以确定晶体内部原子(分子、离子)的空间排布及结构对称性,测定原子间的键长、键角、电荷分布,探讨物质的微观结构与宏观性能的关系。
可以探测某些生物大分子结构[21]。
图12 β-间苯二酚的键长于键角3)矿物学中曾有不少矿物的元素构成很接近,但它们的性质相差很远(如石墨和金刚石都是碳,还如一些硅酸盐),而有的矿物其物理或化学性质相近,但其元素组成又很不相同(如云母类矿物等),使人困惑。
晶体结构的测定使性的异同从结构上得到了合理的解释。
如石墨因是层状结构,层间结合力差,故较软而金刚石为共价键形成的骨架结构,故结合力强,无薄弱环节,成为最硬的材料。
单晶衍射法的面向学科:X射线单晶分析装置用以测定新化合物(晶态)分子的准确三维空间(包括键长、键角、构型、构象乃至成键电子密度)及分子在晶格中的实际排列状况;可以提供晶体的晶胞参数、所属空间群、晶体分子结构、分子间氢键和弱作用的信息以及分子的构型及构象等结构信息。
它广泛用于化学晶体学、分子生物学、药物学、矿物学和材料科学等方面的分析研究[22]。