高等数学(下)无穷级数.

合集下载

高等数学无穷级数知识点总结

高等数学无穷级数知识点总结

高等数学无穷级数知识点总结
无穷级数是高等数学中的一个重要内容,它涉及到很多重要的概念和定理。

以下是一些高等数学无穷级数的知识点总结:
1. 无穷级数的基本概念:无穷级数是指一个数列的项按一定规律相加而成的数列。

其中,无穷级数的定义域可以是实数集或复数集。

2. 无穷级数的分类:无穷级数可以分为数项级数和函数项级数两大类。

数项级数是指以常数项级数的形式表示的无穷级数,而函数项级数则是以函数项的形式表示的无穷级数。

3. 无穷级数的敛散性:无穷级数的敛散性是指级数是否收敛或发散。

如果一个无穷级数收敛,则称其为收敛级数,反之则称为发散级数。

4. 无穷级数的判别法:无穷级数的判别法是指判断一个无穷级数是否收敛的方法。

常用的判别法包括比较判别法、比值判别法、根值判别法和莱布尼兹判别法等。

5. 无穷级数的和应用:无穷级数在数学中有着广泛的应用,例如求和、积分、微积分等。

在实际应用中,无穷级数往往被用来求解各种问题。

6. 无穷级数的和函数:无穷级数的和函数是指级数的每一项相加得到的总和。

无穷级数的和函数具有很多重要的性质,例如连续性、可导性等。

7. 无穷级数的广义性质:无穷级数的广义性质是指关于无穷级数的一些扩展概念和定理。

例如,无穷级数的前 n 项和的广义性质、
无穷级数的广义收敛性等。

以上是高等数学无穷级数的一些重要知识点总结。

希望能对读者有所帮助。

高等数学下无穷级数习题课

高等数学下无穷级数习题课
¥ n =0
(1, 5] .
例 2(2003A)设 x 2 = å an cos nx (-p £ x £ p) ,则 a2 =
¥ ¥
。= 1。 。
(-2, å an x n 的收敛半径为 3,则 å nan (x - 1)n +1 的收敛区间为
n =1 n =1
n =1
¥
2n -1
+ a2n ) 收敛 å an 收敛
n =1
¥
åa
n =1
¥
n
u (4) lim n = l ¹ 0 则 å un 和 å vn 有相同的敛散性 n ¥ v n
åa , åb
2
例 11(2006A)将函数 f (x ) = 例 10(2006C)求幂级数 å 收敛域为 [-1,1] 。
¥ ¥
x 展成 x 的幂级数。 2 + x - x2
n -1
1 ¥ æ 1ö n ç (-1)n +1 + n ÷ ÷ å ç ÷ x , x Î (-1,1) 。 è 3 n =0 2 ø
¥
例 5(2003C)求幂级数 1 + å (-1)n
n =1
x 2n ( x < 1 )的和函数 f (x ) 及其极值。 2n
1 f (x ) = 1 - ln(1 + x 2 ) , x < 1 , f (x ) 在 x = 0 处取得极大值,且极大值为 f (0) = 1 。 2
1+x 2 ì ¥ ï (-1)n ï x arctan x , x ¹ 0 试将 f (x ) 展开成 x 的幂级数,并求 å 的和。 例 4(2001A)设 f (x ) = í 2 ï 1, x =0 n =1 1 - 4n ï ï î

高等数学-无穷级数ppt

高等数学-无穷级数ppt
级数分类
根据级数项的性质,无穷级数可分为正项级数、交错级数和任意 项级数。
收敛与发散性质பைடு நூலகம்
收敛性质
如果无穷级数的部分和数列有极限, 则称该无穷级数收敛,此时极限值称 为级数的和。
发散性质
如果无穷级数的部分和数列没有极限 ,或者极限为无穷大,则称该无穷级 数发散。
绝对收敛与条件收敛
绝对收敛
如果无穷级数的每一项的绝对值所构 成的级数收敛,则称原级数为绝对收 敛。
在量子力学中,波函数通常表示为无穷级数形式,用于 描述微观粒子的状态和行为。
电磁学中的场强计算
通过无穷级数的展开,可以计算电磁场中各点的场强分 布,进而分析电磁现象。
在工程学中的应用,如信号处理、控制系统设计等
信号处理中的滤波
在信号处理领域,利用无穷级数设计的滤波器可以对 信号进行平滑处理、降噪等操作。
要点二
洛朗级数展开
将函数f(z)在圆环域D内展开成双边幂级数形式,即f(z) = ... + a-2/z^2 + a-1/z + a0 + a1z + a2z^2 + ...,其中an是 洛朗系数,可通过计算f(z)在D内的各阶导数求得。
泰勒级数与洛朗级数的比较
适用范围不同
泰勒级数适用于在一点处展开 的情况,而洛朗级数适用于在 圆环域内展开的情况。
控制系统设计中的稳定性分析
在控制系统设计中,通过无穷级数的稳定性分析方法 ,可以判断控制系统的稳定性并进行相应的优化设计 。
THANK YOU
感谢聆听
幂级数展开
幂级数是指形如$sum_{n=0}^{infty} a_n x^n$的级数,其 中$a_n$为常数。幂级数在收敛域内可以逐项求导和逐项积 分,具有连续性和可微性。

高等数学下册第十二章 无穷级数

高等数学下册第十二章 无穷级数

边形, 设 a0 表示
这个和逼近于圆的面积 A . 即
DMU
第一节 常数项级数
定义 给定一个数列 u1 , u2 , u3 , , un , 将各项依
次相加, 简记为 un , 即
n1
称为无穷级数, 其中第 n 项 un 叫做级数的一般项,
级数的前 n 项和
称为级数的部分和. 收敛 , 并称 S 为级数的和.
xx0
f
(x)
A
xnk
x0
(xnk
x0 )
(k )
f (xnk ) A
例如 lim n2 ((1 1)2n e2 )
n
n
(1 lim
x0
1
)
2 x
x
x2
e2
2 ln(1 1 )
ex x
lim
x0
x2
e2
e (e 2
2 ln(1 1 )2 xx
1)
lim
x0
x2
DMU
第一节 常数项级数
5)两边夹法则
n1
莱布尼茨定理: 如果交错级数 (-1)n-1un满足条件 :
n1
(1)un un1(n 1, 2,3, );
(2)lim n
un
0,
则级数收敛,且其和s u1 ,
其余项rn的绝对值 rn un1.
DMU
第三节 一般常数项级数的收敛判别法
用莱布尼茨 判别法判别下列级数的敛散性:
1) 1 1 1 1 (1)n1 1 n1 1
有和函数
它的发散域是 ( , 1 ] 及 [1, ), 或写作 x 1.
又如, 级数
所以级数的收敛域仅为
DMU
级数发散 ;

高数无穷级数知识点总结

高数无穷级数知识点总结

高数无穷级数知识点总结一、引言无穷级数是数学中一个重要的概念,它在数学和其他学科的研究中有着广泛的应用。

在高等数学中,无穷级数是一个重要的知识点。

本文将从无穷级数的基本概念、收敛性与发散性、常见的收敛判别法和应用等方面,对高数无穷级数进行总结。

二、无穷级数的基本概念无穷级数是指由一个数列的项求和而得到的数值。

具体地说,对于一个实数数列{an},其无穷级数可以表示为∑an。

其中,an表示数列的第n项,∑表示对数列的所有项进行求和。

三、收敛性与发散性1. 收敛性当无穷级数的部分和Sn在n趋于无穷大时存在有限极限L,即lim (n→∞) Sn = L时,称该无穷级数收敛,L称为该无穷级数的和。

2. 发散性当无穷级数的部分和Sn在n趋于无穷大时不存在有限极限,即lim (n→∞) Sn不存在或为无穷大时,称该无穷级数发散。

四、常见的收敛判别法1. 正项级数判别法对于无穷级数∑an,若该级数的每一项an都是非负数,并且该级数的部分和Sn有上界,则该级数收敛;若Sn没有上界,则该级数发散。

2. 比值判别法对于无穷级数∑an,若lim (n→∞) |an+1/an| = L,其中L为常数,若L<1,则该级数收敛;若L>1,则该级数发散;若L=1,则判别不出。

3. 根值判别法对于无穷级数∑an,若lim (n→∞) |an|^1/n = L,其中L为常数,若L<1,则该级数收敛;若L>1,则该级数发散;若L=1,则判别不出。

4. 整项判别法对于无穷级数∑an,若存在另一个级数∑bn,使得|an|≤bn,且∑bn 收敛,则∑an也收敛;若∑bn发散,则∑an也发散。

五、应用无穷级数在数学和其他学科中有广泛的应用,下面举几个例子进行说明。

1. 泰勒级数泰勒级数是一种用无穷级数表示函数的方法。

根据泰勒级数,我们可以将一个函数在某个点的邻域内展开为无穷级数的形式,从而可以近似计算函数的值。

2. 统计学中的无穷级数在统计学中,无穷级数经常用于描述随机变量的分布。

高等数学第11章 无穷级数

高等数学第11章 无穷级数

18
19
20
21
22
11.4 幂级数
幂级数是函数项级数的一种重要情形,我们首先介 绍函数项级数的几个基本概念。 11.4.1 函数项级数的一些基本概念设{un(x)} 是定义在区间I上的一个函数列,则由这函数列所构成的 表达式
23
11.4.2 幂级数的基本概念
24
25
26
27
28
48
49
50
51
52
53
54
55
56
57
58
59
60
61
35
36
37
38
39
40
41
11.6 函数幂级数展开式的应用
11.6.1 近似计算 例11.28 计算ln2的近似值,误差不超过0.0001. 解 若用展开式
42
43
44
பைடு நூலகம்
45
46
47
11.7 傅立叶级数
11.7.1 三角级数 我们常会碰到周期运动,如描述简谐振动的正弦函 数
29
30
31
32
33
34
11.5 函数展开成幂级数
前面已讨论了幂级数的性质以及求一个收敛的幂级 数的和函数.若给定一个函数,能否找一个幂级数来表示 此函数?如果能找到,函数的幂级数表示式是否唯一? 11.5.1 泰勒级数 高等数学上册讲过泰勒公式,若f(x)在点x0的某 邻域内存在n+1阶的连续导数,则
8
9
10
11
12
13
14
15
11.3 一般项级数
上节我们讨论了正项级数的敛散性,一般级数的敛 散性问题要比正项级数复杂,本节我们只讨论特殊类型 级数的敛散性问题。 11.3.1 交错级数

北京邮电大学国际学院高等数学(下)幻灯片讲义(无穷级数)-Lecture 1

北京邮电大学国际学院高等数学(下)幻灯片讲义(无穷级数)-Lecture 1

is called the partial sum of the series. The partial sum of the series form a sequence
s1 = a1 , s2 = a1 + a2 ,
, sn = ∑ ak ,
k =1 n
n approaching infinite, we say that the series converges to the sum S, and we write
1+ 1 1 1 1 + + + + 2 4 8 16
Infinite Series
∑a
n =1

n
=1 +
1 1 1 1 + + + + 2 4 8 16
Partial Sum First: Second: Third:

Value
s1 = 1
1 s2 = 1 + 2
21
2 2 1 2 1 4
The way to do so is not to try to add all the terms at once (we cannot) but rather to add the terms one at a time from the beginning and look for a pattern in how these "partial sum" grow.
k =1 n
Convergence and Divergence
Definition (Convergence and Divergence of a series) If the sequence of partial sums of a series

同济大学数学系《高等数学》(第7版)(下册)复习笔记及课后习题和考研真题详解(无穷级数)【圣才出品】

同济大学数学系《高等数学》(第7版)(下册)复习笔记及课后习题和考研真题详解(无穷级数)【圣才出品】

设 un 和 vn 都是正项级数,且 un≤vn(n=1,2,…)。若级数 vn 收敛,则级
n1
n 1
n 1
数 un 收敛;反之,若级数 un 发散,则级数 vn 发散。
n1
n1
n 1
推论:设 un 和 vn 都是正项级数,如果级数 vn 收敛,且存在正整数 N,使当
n1
n 1
n 1
x
s
0
t dt
x 0
n0
ant n
dt
n0
x 0
ant ndt
n0
an n 1
xn1
xI
逐项积分后所得到的幂级数和原级数有相同的收敛半径。
(3)幂级数 an xn 的和函数 s(x)在其收敛区间(-R,R)内可导,且有逐项求导 n0
公式
s x
n0
an xn
n≥N 时有 un≤kvn(k>0)
成立,则级数 un 收敛;如果级数 vn 发散,且当 n≥N 时有 un≥kvn(k>0)成立,则
n1
n 1
级数 un 发散。 n1
②比较审敛法的极限形式
设 un 和 vn 都是正项级数,则:
n1
n 1
a.如果
lim
n
un vn
l
0 l
,且级数 vn 收敛,则级数 un 收敛;
n 1
n1
b.如果
lim
n
un vn
l
0

lim
n
un vn
,且级数 vn
n 1
发散,则级数 un
n1
发散。
③比值审敛法(达朗贝尔判别法)

un
n1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一章 无穷级数
数项级数 无穷级数 幂级数
傅氏级数(数一)
第十一章
第一节 常数项级数的概念和性质
一、常数项级数的概念 二、无穷级数的基本性质
三、级数收敛的必要条件
一、常数项级数的概念
引例 用圆内接正多边形面积逼近圆面积.
依次作圆内接正
内接正三角形面积, ak 表示边数 增加时增加的面积, 则圆内接正
(ln 2 ln1) (ln 3 ln 2) ln(n 1) ln n
ln(n 1) ( n )
所以级数 (1) 发散 ;
技巧: 利用 “拆项相消” 求 和
1 1 1 1 (2) S n 1 2 2 3 3 4 n (n 1)
1 1 1 1 1 1 1 1 2 2 3 3 4 n n 1
1 1 ( n ) 1 n 1 所以级数 (2) 收敛, 其和为 1 .
技巧:
利用 “拆项相消” 求 和
n
因此级数发散 .
2). 若
则 因此级数发散 ; 级数成为
因此
a, Sn 0,
n 为奇数 n 为偶数
从而
不存在 , 因此级数发散.
综合 1)、2)可知, q 1 时, 等比级数收敛 ;
q 1 时, 等比级数发散 .
例2. 判别下列级数的敛散性:
解: (1)
2 4 n 1 3 S n ln ln ln ln 1 3 n 2
二、无穷级数的基本性质
性质1. 若级数 乘以常数 c 所得级数
收敛于 S , 即 S u n , 则各项
n 1

也收敛 , 其和为 c S .
说明: 级数各项乘以非零常数后其敛散性不变 . 性质2. 设有两个收敛级数
S

则级数
n 1
( un vn )也收敛, 其和为 S .
收敛 , 并称 S 为级数的和, 记作
则称无穷级数发散 . 当级数收敛时, 称差值
为级数的余项. 显然
例1. 讨论等比级数 (又称几何级数)
( q 称为公比 ) 的敛散性.
解: 1) 若 则部分和

a ; 因此级数收敛 , 其和为 1 q
a a q n 1 q
从而 lim S n a 1 q n 从而 lim S n ,
矛盾! 所以假设不真 .
第十一章
第二节 常数项级数的审敛法
一、正项级数及其审敛法
二、交错级数及其审敛法 三、绝对收敛与条件收敛
一、正项级数及其审敛法
若 un 0 , 则称 u n 为正项级数 .
n 1
定理 1. 正项级数
收敛
部分和序列
有界 .
定理2 (比较审敛法) 设 且存在 对一切 有
性质3. 在级数前面加上或去掉有限项, 不会影响级数 的敛散性. 性质4. 收敛级数加括弧后所成的级数仍收敛于原级数 的和. 推论: 若加括弧后的级数发散, 则原级数必发散. 注意: 收敛级数去括弧后所成的级数不一定收敛. 例如, (1 1) (1 1) 0 , 但
发散.
三、级数收敛的必要条件
性质5、设收敛级数 则必有
可见: 若级数的一般项不趋于0 , 则级数必发散 . 例如, 其一般项为
不趋于0, 因此这个级数发散.
注意:
n
lim u n 0 并非级数收敛的充分条件.
例如, 调和级数 虽然 但此级数发散 .
事实上 , 假设调和级数收敛于 S , 则
1 1 1 1 1 n 但 S 2n S n n 1 n 2 n 3 2n 2 n 2
1 1 时, p p , 故 n x
1 1 1 1 1 1 1 考虑强级数 的部分和 1 p 1 p 1 p 1 p 1 p 1 p 1 p 1 (n 13 ) 2 n 22 n (n 1) n
n 1
un ,


n 1
vn

说明: (1) 性质2 表明收敛级数可逐项相加或减 .
(2) 若两级数中一个收敛一个发散 , 则 ( u n vn )
必发散 .
n 1

但若二级数都发散 ,
不一定发散.
例如, 取 un (1) 2 n , vn (1) 2 n 1 ,
例2. 证明级数 证: 因为
发散 .
1 n (n 1)
而级数
1 (n 1)

2
1 发散 k 2 k
边形,设 a0 表示

这个和逼近于圆的面积 A .

给定一个数列 u1 , u2 , u3 , , un , 将各项依 定义: 次相加, 简记为 u n , 即
n 1
称上式为无穷级数, 其中第 n 项 u n 叫做级数的一般项, 级数的前 n 项和
称为级数的部分和.
则称无穷级数
是两个正项级数, (常数 k > 0 ), 也收敛 ;
则有 (1) 若强级数 (2) 若弱级数
收敛 , 则弱级数 发散 , 则强级数
也发散 .
1 1 1 例1. 讨论 p 级数1 p p p (常数 p > 0) 2 3 n 的敛散性.
解: 1) 若 p 1, 因为对一切

1 1 1 n n p 1 1 1 p 1 p 1 (k 1) (n 1) k 1 k
故强级数收敛 , 由比较审敛法知 p 级数收敛 . Nhomakorabean
调和级数与 p 级数是两个常用的比较级数. 若存在 N Z , 对一切 n N ,
1 n
1 而调和级数 发散 , 由比较审敛法可知 p 级数 n 1 n
发散 .

2) 若 p 1, 因为当 n 1 1 dx p p n 1 n n n 1 1 1 1 p 1 dx p p 1 n 1 x p 1 (n 1) n
相关文档
最新文档