大功率超声波清洗机发生器的原理

合集下载

超声波清洗机工作原理是什么

超声波清洗机工作原理是什么

超声波清洗机工作原理是什么超声波清洗机在日常生活中很多行业都可以看见,比如玉石清洗、钟表清洗、镜片清洗等等,超声波清洗机都能将这些清洗的很干净,但是很多人都不知道为什么。

下面由小编为大家介绍超声波清洗机的原理以及用途。

现在,一起跟着小编来学习一下吧!超声波清洗机的原理以及用途超声波清洗机的原理众所周知,人们所听到的声音是频率20Hz~20000Hz的声波信号,高于20000Hz的声波称为超声波,声波的传递依照正弦曲线纵向传播,即一层强一层弱,依次传递,当弱的声波信号作用于液体中时,会对液体产生一定的负压,使液体内形成许许多多微小的气泡,而当强的声波信号作用于液体时,则会对液体产生一定的正压,因而,液体中形成的微小气泡被压碎。

经研究证明:超声波作用于液体中时,液体中每个气泡的破裂会产生能最极大的冲击波,相当于瞬间产生的高温和高达上千个大气压,这种现象被称之为“空化效应”,超声波淸洗正是应用液体中气泡破裂所产生的冲击波来达到淸洗和冲刷工件内外表面的作用。

超声波可以分为三种,即次声波、声波、超声波。

次声波的频率为20Hz以下,声波的频率为20Hz~20kHz,超声波的频率则为20kHz以上。

其中次声波和超卢波一般人耳是听不到的。

超卢波由于频率高、波长短,因而传播的方向性好、穿透能力强。

超声波淸洗机原理主要是将换能器,将功率超声频源的声能,并且要转换成机械振动,通过淸洗槽壁使之将槽子中的淸洗液辐射到超声波。

由于受到辐射的超声波,使之槽内液体中的微气泡能够在声波的作用下从而保持振动。

当声压或者声强受到压力到达一定程度时候,气泡就会迅速膨胀,然后又突然闭合。

在这段过程中,气泡闭合的瞬间产生冲击波,使气泡周围产生1012Pa~1013Pa的压力,这种超声波气化所产生的巨大压力能破坏不溶性污物而使它们分化于溶液中。

超声波一方面破坏污物与淸洗件表面的吸附,另一方面能引起污物层的疲劳破坏而被剥离,气体型气泡的振动对固体表面进行擦洗,污层一旦有缝可钻,气泡立即“钻入”振动使污层脱落,由于空化作用,两种液体在界面迅速分散而乳化,当固体粒子被油污裹着而粘附在淸洗件表面时,油被乳化,固体粒子自行脱落,超声在淸洗液中传播时会产生正负交变的声压,形成射流,冲击清洗件,同时由于非线性效应会产生声流和微声流,而超声空化在固体和液体界面会产生高速的微射流,所有这些作用,能够破坏污物,除去或削弱边界污层,增加搅拌、扩散作用,加速可溶性污物的溶解,强化化学淸洗剂的淸洗作用。

超声波清洗机工作原理

超声波清洗机工作原理

超声波清洗机工作原理
超声波清洗机是一种高科技的洗涤设备,它具有节能、环保、节约时间、节省资源、高效、便捷等优点,在各个工业领域有着广泛的应用,特别是在汽车、船舶、食品、医药、冶金等行业洗物品的洗涤以及液体的脱脂、脱油和消毒等活动。

超声波清洗机的工作原理是采用超声波发生器发出的超声波,将空气中的微粒振动成超高频波,使物体表面产生空化现象,即气膜行动过程,形成一个超声波中的气膜效应。

当物体表面水蒸气凝聚时,形成一个弱的液膜,这是一种自洁现象。

水膜在液体积气体情况下,振动次数非常快而且强度很高,所以,在液体中形成了静、动压差,进而形成一定的流体动力,采用这种原理的清洗设备深受各行各业的喜爱和认可,极大的提高了洗涤的效率、清洁度、节能效果。

超声波清洗机不仅节省了水、电、洗剂、时间等资源,还可以有效的减少安全事故,从而改善工作环境。

此外,超声波清洗机还是一种环保的洗涤设备,它没有污染排放,且有着节约资源等特点,可为行业提供更可持续的发展空间。

由于其具有成本低廉,洗涤成本节省、效率高等特点,因此受到更多企业和行业的青睐。

总而言之,超声波清洗机是一种新型的洗涤设备,它以先进的科技,以及环保、节能、节约资源的特点,优秀的出现在我们的视野中,使传统的洗涤方式得到有效的补充和优化,成为当今行业中具有普遍意义的新型设备。

工业超声波清洗机原理

工业超声波清洗机原理

工业超声波清洗机原理工业超声波清洗机是一种利用超声波在清洗液中产生的空化现象来实现清洗的设备。

其原理是通过将电能转换为超声波能量,使清洗液中的液体分子在超声波的作用下产生高速振动,形成微小气泡,气泡在液体中不断形成和破裂,产生的冲击波和微流动可以有效地去除工件表面的污垢和杂质。

工业超声波清洗机主要由发生器、换能器、清洗槽、加热系统、控制系统等组成。

发生器是将电能转换为超声波能量的装置,它会产生高频电信号,通过换能器将电信号转换成超声波能量。

换能器是将电能转换为机械振动能量的核心部件,它通过压电效应将电能转变为超声波振动。

清洗槽则是放置工件和清洗液的地方,通过超声波的作用,清洗液中的微小气泡会在工件表面产生冲击力,去除表面的污垢。

加热系统可以对清洗液进行加热,提高清洗效果。

控制系统则是整个设备的大脑,可以对清洗过程进行调控和监控。

工业超声波清洗机的原理是利用声波在液体中传播时会产生的空化现象。

当超声波传播到液体中时,会在液体中形成稳定的波动,液体分子会在波动的作用下产生高速振动,当振幅足够大时,液体分子之间的相互作用会变得不稳定,形成微小气泡。

这些微小气泡在液体中不断形成和破裂,产生的冲击波和微流动可以有效地清洗工件表面。

工业超声波清洗机在清洗过程中有许多优势。

首先,它可以在不使用有害化学品的情况下进行清洗,对环境友好。

其次,超声波清洗可以有效去除微小的缝隙和死角中的污垢,清洗效果非常好。

此外,超声波清洗还可以减少清洗时间和人力成本,提高清洗效率。

因此,工业超声波清洗机在各种行业的清洗领域中得到了广泛应用。

总的来说,工业超声波清洗机利用超声波在清洗液中产生的空化现象来实现清洗,具有清洗效果好、环保、高效等优点,适用于各种工件的清洗。

随着科技的不断发展,工业超声波清洗机的应用范围将越来越广泛,为工业生产带来更多便利。

超声波清洗机工作原理及使用

超声波清洗机工作原理及使用

超声波清洗机工作原理及使用一、超声波清洗机概述超声波清洗机是一种利用超声波振动作用于清洗液中产生高频液流的清洗设备,它可以清洗掉微小尘埃、油脂、氧化层等表面脏污,常用于电子、仪器、航空等行业。

二、超声波清洗机的工作原理超声波清洗机主要由振子、发生器、清洗槽和管路系统等组成。

1.振子超声波清洗机中的振子是由射频电压变成高频机械振动的机械转换器。

能够将射频电压转换成机械振动的物质称为压电晶体,因此振子中使用压电晶体并利用其达到压力与变形相互之间的转换。

2.发生器超声波清洗机中的发生器是将AC电压变成高频射频电压的装置,采用电子功率放大装置作为发生器,将低频交流电压升高到射频电压。

3.清洗槽超声波清洗机中的清洗槽通常是由不锈钢制成的,污浊物质被清理掉后,容易在清洗槽中沉淀,通过泵、管路输送回收并处理。

4.管路系统超声波清洗机中的管路系统通常包括了清洗槽、加热器、废液回收器等设备,输入的液体通过管路输送到清洗槽中,清洗的物品通过管路输送到清洗槽中清洗。

三、超声波清洗机的使用方法超声波清洗机的使用是非常方便简单的,以下是使用步骤:1.打开超声波清洗机电源,确认电源灯亮起。

2.查看清洗槽里的水位,如液面过低,需添加清洗液。

3.到目标场所,取出要清理目标物。

4.把要清洗的物品放在清洗槽中,注意不能超过液面,否则容易造成电压被烧坏或污染液体。

5.确认已将管路系统正确连接上了,按下经序排列的操作按钮,设定好清洗时间、温度等参数。

6.收集废液并回收处理。

四、注意事项在使用超声波清洗机时,需要注意以下几点:1.不能接触投影仪口、麦克风口、喇叭口等易受损的部位,避免故障发生。

2.在使用过程中,尽量避免使用过高压力清洗,以免对清洗物品造成损伤。

3.注意清洗液的浓度,过低不能很好地清洗物品,过高又会引起腐蚀等问题。

4.清洗时要注意防止把手伸进水中,以免发生触电事故。

经过以上安全措施的加持,可以确保超声波清洗机的安全、便捷、高效地进行各种清洗作业。

超声波清洗器原理

超声波清洗器原理

超声波清洗器原理
超声波清洗器是一种利用超声波的高频振动来实现清洗的装置。

它的工作原理是利用超声波在液体中产生的高频振动,通过液体中的惯性、压缩和膨胀的作用力,有效地将污垢和污染物从物体表面分离。

具体来说,超声波清洗器的工作原理包括以下几个方面:
1. 超声波传导:超声波是一种高频振动的机械波,它可以通过液体中的传导方式传递到物体表面。

超声波清洗器通常会将超声波发生器产生的高频电能转化为超声波能量,然后通过传导方式传递到液体中。

2. 液体振动:一旦超声波能量传递到液体中,它会引起液体中的震动和振荡。

这种液体振动是由超声波的压缩和膨胀作用力引起的,这些力量会在液体中形成稀疏和密集的区域。

3. 液体微流动:液体振动会引起液体中微小的流动,从而形成微小的液体流动。

这种微流动会在物体表面产生一种微观的局部振动,从而有效地剥离和分离污垢和污染物。

4. 污垢分离:液体中微流动的作用下,超声波清洗器会产生一种剥离和分离污垢的力量。

这种力量会将污垢从物体表面分离,并使其悬浮在液体中。

5. 污染物分散:剥离和分离的污垢在液体中被分散成微小颗粒。

这些微小颗粒会在液体中被扩散,从而进一步加速清洗过程。

6. 清洗效果:最终,通过超声波的持续作用,污垢和污染物会被彻底清洗和去除。

清洗后,物体表面会变得干净且无残留。

总体来说,超声波清洗器利用超声波的高频振动和液体中的微流动效应,实现了对污垢和污染物的高效清洗。

其工作原理简单而有效,适用于各种材料和物体的清洗需求。

超声波清洗机原理

超声波清洗机原理

超声波清洗机原理超声波清洗机是一种利用超声波振动产生的微小气泡和高压水流来清洗物体的设备。

它在各个领域都有广泛的应用,如工业生产、医疗保健、实验室研究等。

本文将介绍超声波清洗机的原理及其工作过程。

一、超声波清洗机的原理超声波清洗机的核心原理是利用超声波振动的机械能和声波作用力来清洗物体。

超声波是指频率高于人类听力范围(一般在20kHz至100kHz之间)的声波。

超声波波长短,能量集中,能够产生强大的清洗效果。

超声波清洗机主要包括超声发生器、水槽和清洗液。

超声发生器通过电压的高频振荡产生超声波,并将超声波传递到水槽中的清洗液中。

清洗液可以是水或其他配制的溶液,用于携带超声波,并提供清洗效果。

二、超声波清洗机的工作过程当超声波传递到清洗液中时,会产生一种称为“声波空泡”的现象。

声波空泡是由清洗液中的气体分子因为超声波振动而形成的微小的气泡。

在超声波波动的过程中,声波空泡会不断地膨胀和收缩。

声波空泡的膨胀和收缩过程会产生强大的冲击波。

当冲击波作用在物体表面时,物体表面的污垢、油脂等会被冲击打散,并被清洗液带走。

同时,声波空泡的剧烈运动还会作用于物体表面和微小孔隙内,将污垢从中排出。

超声波清洗机的清洗效果与清洗液的选择和超声波的频率有关。

清洗液的选择要根据被清洗物体的性质和清洗需求来确定。

一般情况下,水作为清洗液已经具备一定的清洗效果。

而对于一些难以清洗的物体,如金属表面的氧化层,可以配制特定的溶液来提高清洗效果。

超声波清洗机在工业生产中的应用非常广泛。

它可以用来清洗零部件、模具、印刷电路板等。

超声波清洗机还可以应用于医疗领域,如清洗外科手术器械、牙科器械等。

在实验室研究中,超声波清洗机也是常用设备,用于清洗实验仪器、试管等。

总结:超声波清洗机是一种利用超声波振动的机械能和声波作用力来清洗物体的设备。

它通过产生声波空泡的现象,利用空泡的冲击力和剧烈运动来清洗物体表面和微小孔隙。

超声波清洗机可以根据不同的需求选择适当的清洗液来提高清洗效果。

超声波清洗机的工作原理

超声波清洗机的工作原理

超声波清洗机的工作原理超声波清洗机是一种利用超声波振动原理进行清洗的设备,它在各种行业中被广泛应用,如电子、光学、制药、汽车等。

本文将详细介绍超声波清洗机的工作原理。

一、超声波清洗机的原理超声波清洗机的工作原理基于超声波振动。

超声波是指频率超过20kHz的声波,其振动频率高于人类听觉范围。

超声波清洗机通过产生频率高达数十kHz至上百kHz的超声波,将能量传递到液体中,从而产生强大的清洗效果。

二、超声波清洗机的组成超声波清洗机通常由发生器、换能器、超声波震源和清洗槽等组成。

发生器是产生超声波的核心部件,它将电能转化为超声波振动能。

换能器则接收发生器输出的电能,并将其转化为超声波震源。

超声波震源将机械振动能传输到液体中,实现清洗效果。

清洗槽则是容纳被清洗物体和清洗剂的容器。

三、超声波清洗的过程1. 发生超声波:发生器产生高频电能,在换能器的作用下,电能被转化为机械振动能,形成超声波。

2. 超声波传递:超声波震源将超声波振动能传输到液体中,形成强大的声波能量区域。

3. 超声波作用:液体中的超声波声波能量产生强大的应力作用,并产生一个由声波节点和反声波节构成的复杂声场。

4. 清洗效果:在复杂声场的作用下,液体中的微小气泡扩大、破裂,释放出巨大的冲击能量,冲击力和高速液体流动共同作用下,将附着于被清洗物体表面的污垢分解并剥离。

四、超声波清洗机的优势1. 清洗效果显著:超声波能够产生高频的冲击和剥离力,能够清洗到被清洗物体表面的微小裂隙和细小孔隙。

2. 清洗速度快:超声波的高频振动使得清洗液体的流动加快,加速了清洗效果的实现。

3. 环境友好:超声波清洗机使用水或者环保型清洗剂,无需使用有机溶剂,对环境无污染。

4. 清洗全面:由于超声波的迷造除颤作用,它可以清洗到一些难以到达的角落和密集区域,实现全面清洗。

五、超声波清洗机的应用领域超声波清洗机在多个行业中被广泛应用。

在电子行业,它可用于清洗电路板和电子元件表面的焊渣和污垢;在光学行业,可以用于清洗镜片和透镜;在制药行业,可用于清洗器械和容器等。

超声波清洗机的工作原理

超声波清洗机的工作原理

超声波清洗机的工作原理超声波清洗机是一种利用超声波作用进行清洗的设备。

超声波,即超声振动波,是频率高于人类听觉范围(20kHz)的机械振动波。

在清洗过程中,超声波的振动不仅能够产生细小颗粒的高速运动,还可以在液体中形成高能量区域,从而加速和增强清洗过程。

超声波清洗机的工作原理主要包括超声发生器、超声换能器和清洗槽等关键部件。

首先,超声发生器通过电能转化为超声电能。

它内部包含了电源、振荡器和功率放大器等组成部分。

电源提供所需的电能,振荡器将电能转化为高频振动信号,功率放大器放大振荡器产生的信号以及频率调节。

其次,超声换能器是将超声电能转化为机械振动能的装置。

它由压电陶瓷片和金属震盘组成。

压电陶瓷片在电场作用下变形,使金属震盘发生伸缩变形,产生机械振动,这种振动即为超声波。

最后,清洗槽是放置待清洗物品和清洗溶液的容器。

当超声波通过液体时,它会形成稀疏区和密集区,即产生声压波,使液体分子间的距离不断变化,产生高频振动。

这种高频振动能够破坏液体表面张力,从而使污垢与物体表面分离。

超声波清洗机的工作原理主要有以下几点:1. 液体中的超声波功率密度不再均匀,因为超声波周围的固体振动会引起液体中的局部退相干,从而形成液体中的定向流动。

这种微小的动微量层对污垢的清洗非常有效。

2. 超声波振动能够产生涡流和空化现象。

涡流是指液体在超声波的振动作用下形成的微小涡旋流动。

这种流动对于去除物体表面和微孔中的污垢非常有效。

空化现象是指液体中形成的气泡爆破所产生的剧烈振动。

空化效应能够增大清洗液中的物理作用力和化学作用力,使其更容易清除污垢。

3. 超声波振动还能加速物质的扩散和弥散。

由于超声波振动的高能量,液体中的分子会发生大范围的位移和相互碰撞,加速物质在液体中的扩散和弥散过程。

这种扩散和弥散能够充分溶解和分解污垢,提高清洗效果。

4. 超声波还可使溶液中的颗粒产生径向舞动和微射流。

当溶液中的颗粒受到超声波振动的作用时,会产生径向舞动和微射流。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大功率超声波清洗机发生器的原理
众所周知,超声波清洗机由两部分组成:一是超声波发生器,二是以换能器为核心的
超声波清洗缸。

超声波清洗机的现状是技术陈旧落后,清洗效率不理想,故障率高。

目前
仿制美国必能信公司的超声波发生器,单板功率 300 W,频率固定为 25 kHz(自激式半
桥输出电路)晶体管放大电路占有比较大的市场份额。

但该电路很难调整在超声换能器最
佳的频率谐振点上,输出功率不可能达到理想的效果。

我们应用 PWM(脉宽调制)技术以及 IGBT功率模块研制成输出功率达1800 W的超声发生器,该发生器具有功耗低、效率高、体积小、重量轻、可靠性好等特点。

1 、超声发生器的组成框图
本超声发生器主要由信号发生器、功率放大器、阻抗匹配和反馈环节等部分组成,如
图 1 所示。

信号发生器形成脉宽调制信号,经过功率放大器后需经过阻抗匹配,使得输出的阻抗
与换能器匹配,推动换能器将电信号转换为机器振动。

该发生器有两个反馈信号:第一是
提供频率跟踪信号,当换能器由于工作老化引起频率的漂移时,频率跟踪信号可以控制信
号发生器,使信号发生器的频率在一定范围内跟踪换能器的谐振频率点,让发生器工作在
最佳状态;第二提供过载保护功能。

2、信号发生器
信号发生器主要由 AC/DC变换线路和脉宽调制电路组成。

脉宽调制控制电路采用了模拟集成电路 TL494 来实现。

TL494 是一个固定频率的脉冲宽度调制电路,内置了线性锯
齿波振荡器,振荡频率可通过外部的一个电阻和一个电容进行调节,其振荡频率为:
fosc=1.1/RTCT。

输出脉冲的宽度是通过电容 CT上的正极锯齿波电压与另外两个控制信号进行比较来实现。

功率输出管 Q1 和 Q2 受控于或非门。

当双稳态触发器的时钟信号为低
电平时才会被选通,即只有在锯齿波电压大于控制信号期间才能被选通。

当控制信号增大,输出脉冲的宽度将减少。

TL494 电原理和脉冲调制电路构成如图2、图 3 所示。

在本电路中只用到了TL494 的误差放大器 I,故将误差放大器 II 的 IN+(16 脚)
接地、IN-(15脚)接高电平。

为保护 TL494 的输出三极管,经R3 和 R4 分压,在 4
脚加接近 0.3 V 的间歇调整电压。

R1、R2 和 C1 组成了相位校正和增益控制网络。

工作时,当反馈信号大于设定值时,通过 TL494 的脉宽调制作用,其 9 脚、10 脚
输出信号的脉宽减小,经驱动电路放大整形以驱动功率器件 IGBT,使其导通占空比减小,电流减小,从而形成过流保护,再进而通过传感器使反馈信号降低,形成单回路闭环控制;当反馈信号小于设定值时,上述控制过程相反。

3 、功率放大器
由于采用晶体管模拟放大器的OTL、OCL 电路理论效率只有 78%,实际效率会更低,功耗大。

同时,由于单个功率管输出的功率受到限制,要输出较大的功率就需要更多的功率管,所以体积比较大;而隔离珊双极管 IGBT,在开关瞬间功耗大,但时间很短,在截
止或导通时的功耗都很小,时间较长,所以总功耗小,最高效率达到 90%以上。

所以我们选用 IGBT做为功率开关器件。

IGBT 的开关作用是通过加正向栅极电压形成沟道,给 PNP 晶体管提供基极电流,使 IGBT 导通。

反之,加反向门极电压消除沟道,流过反向基极电流,使 IGBT 关闭。

4 、阻抗匹配
匹配电路虽然结构简单(通常只有一个匹配电感),却具有重要的作用。

超声波清洗机的匹配除了要解决变阻问题(即变换负载的阻值,使与发生器的最佳负载值相等)外,还要解决调谐问题,即用匹配电感的感抗抵消换能器的容抗使换能器呈纯阻性。

在实际运用中换能器都呈容性,虽不消耗功率,但会分走一部分电压,导致功率减小。

解决的办法是给换能器串联一个匹配电感,使负载在工作频率上表现为一纯电阻 R0,此时发生器输
出电压U0(基波的有效值)全部加在 R 上,得到的电功率为 P=U2/R。

如果 P 不满足实际要求(或发生器发热严重等)则需要用变压器来进行变阻以使换能器得到合适的功率使发生器稳定的工作。

5、结论
经试验,该超声发生器输出为标准正弦波,工作频率 22~28 kHz 可调,输出电流为
7 A 左右,功率达到 1800 W 左右。

在长时间大功率连续工作中稳定可靠,清洗效果大幅提高,各项技术指标均达到了预期的设计目标。

更多关于大功率超声波清洗机发生器的原理,请下载附件:。

相关文档
最新文档