广东省惠州市惠阳区2018-2019学年九年级上学期数学期中考试试卷
广东省惠州市九年级上学期数学期中试卷

广东省惠州市九年级上学期数学期中试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)如果,那么下列比例式变形正确的是A .B .C .D .2. (2分)(2017·河北模拟) 在Rt△ABC中,∠C=90°,c为斜边,a、b为直角边,则化简的结果为()A . 3a+b﹣cB . ﹣a﹣3b+3cC . a+3b﹣3cD . 2a3. (2分)如图所示,△ABC中若DE∥BC,EF∥AB,则下列比例式正确的是()A . =B . =C . =D . =4. (2分)方程x2=4的解为()A . x=2B . x=﹣2C . x1=4,x2=﹣4D . x1=2,x2=﹣25. (2分)若二次根式在实数范围内有意义,则x的取值范围是()A . x≥﹣1B . x≠2C . x≥﹣1且x≠2D . 以上都不正确6. (2分)如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上,如果矩形与矩形OABC关于点O位似,且矩形与矩形OABC的相似比为,那么点的坐标是A .B .C . 或D . 或7. (2分)一元二次方程x2-ax-2=0,根的情况是()A . 方程有两个不相等的实数根B . 方程有两个相等的实数根C . 方程没有实数根D . 以上都不对8. (2分)如图,在△ABC中,∠BAC=90°,AD⊥BC于D,DC=4,BC=9,则AC为()A . 5B . 6C . 7D . 89. (2分) (2019九上·双台子月考) 如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数y=的图象上.若点B在反比例函数y=的图象上,则k的值为()A . 4B . ﹣4C . 8D . ﹣810. (2分) (2018九上·河南期中) 如图,△ABC 中,AD 是中线,BC=8,∠B=∠DAC,则线段 AC 的长为()A . 4B . 4C . 6D . 4二、填空题 (共5题;共5分)11. (1分) (2019九上·高邮期末) 已知m为一元二次方程x2﹣3x+5=0的一根,则代数式2m2﹣6m+2029的值为________ .12. (1分)(2019·广州模拟) 若x1、x2是一元二次方程x2﹣2x﹣=0的两根,则x12+x22的值是________.13. (1分) (2018九上·扬州期末) 如图,已知矩形纸片ABCD中,AB=1,剪去正方形ABEF,得到的矩形ECDF与矩形ABCD相似,则AD的长为________.14. (1分) (2018九上·紫金期中) 如图,某中学准备围建一个矩形面积为72m2的苗圃园,其中一边靠墙,另外三边周长为30m的篱笆围成.设这个苗圃园垂直于墙的一边长为xm,可列方程为________.15. (1分) (2020九上·普宁期末) 如图,在中,,,,则的长为________.三、解答题 (共8题;共67分)16. (10分) (2017七下·金乡期中) 阅读材料:将等式 =5反过来,可得到5= .根据这个思路,我们可以把根号外的因式“移入”根号内,用于根式的化简.例如:5 = = .请你仿照上面的方法,化简下列各式:(1) 3(2) 7(3) 8 .17. (10分) (2019九上·海珠期末) 解方程:(1) x2+5x=0;(2) x(x﹣2)=3x﹣618. (10分) (2016九上·丰台期末) 如图,D为⊙O上一点,点C在直径BA的延长线上,∠CDA=∠CBD.(1)求证:CD是⊙O的切线;(2)过点B作⊙O的切线交CD的延长线于点E,若AB=6,tan∠CDA= ,依题意补全图形并求DE的长.19. (2分) (2019九上·丹东期末) 我市某旅行社为吸引我市市民组团去长白山风景区旅游,推出了如下的收费标准:如果人数不超过25人,人均旅游费用为800元;如果人数超过25人,每增加1人,人均旅游费用降低20元,但人均旅游费用不得低于650元,某单位组织员工去长白山风景区旅游,共支付给旅行社旅游费用21000元,请问该单位这次共有多少员工去长白山风景区旅游?20. (10分)如图,正方形ABCD边长为2cm,以各边中心为圆心,1cm为半径依次作圆,将正方形分成四部分.(1)这个图形________旋转对称图形(填“是”或“不是”);若是,则旋转中心是点________,最小旋转角是________度.(2)求图形OBC的周长和面积.21. (5分)(2020·西安模拟) 西安市的大雁塔又名“慈恩寺塔”,是国家级文物保护单位,玄奘为保存由天竺经丝绸之路带回长安的经卷主持修建了大雁塔,最初五层,后加盖至九层,是西安市的标志性建筑之一,某校社会实践小组为了测量大雁塔的高度,在地面上C处垂直于地面竖立了高度为2米的标杆CD,这时地面上的点E,标杆的顶端点D,大雁塔的塔尖点B正好在同一直线上,测得EC=4米,将标杆CD向后平移到点G处,这时地面上的点F,标杆的顶端点H,大雁塔的塔尖点B正好在同一直线上(点F,点G,点E,点C与塔底处的点A在同一直线上),这时测得FG=6米,GC=53米,请你根据以上数据,计算大雁塔的高度AB.22. (5分) (2017九上·德惠期末) 如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG 分别交线段DE,BC于点F,G,且.(1)求证:△ADF∽△ACG;(2)若,求的值.23. (15分) (2019九上·西安月考) 阅读:如图1,G是四边形ABCD对角线AC上一点,过G作GE∥CD交AD于E,GF∥CB交AB于F,若EG=FG,则有BC=CD成立,同时可知四边形ABCD与四边形AFGE相似.解答问题:有一块三角形空地,如图2,△ABC,BC靠近公路,现需在此空地上修建一个正方形广场,其地为草坪,要使广场一边靠公路,且面积最大,如何设计?请你在下面的图中画出此正方形,(不写画法,保留痕迹)参考答案一、单选题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共5题;共5分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:三、解答题 (共8题;共67分)答案:16-1、答案:16-2、答案:16-3、考点:解析:答案:17-1、答案:17-2、考点:解析:答案:18-1、答案:18-2、考点:解析:答案:19-1、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、考点:解析:。
2018-2019学年度第一学期九年级数学上期中试卷

2018-2019学年度九年级数学上期中试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置.......上) 1. 下列标志中不是中心对称图形的是2. 已知反比例函数y =6x ,下列各点在该函数图象上的是A .(2,-3)B .(2,3)C .(-1,6)D .132(-,)3. 若关于x 的方程x 2-mx +6=0的一个根是2,则另一个根是A .2B .-2C .-3D .3 4. 下列说法中,正确的是A .周长相等的圆是等圆B .过任意三点可以画一个圆C .相等的圆心角所对的弧相等D .平分弦的直径垂直于弦5. 小亮是一名职业足球队员,根据以往比赛数据统计,小亮进球率为10%.他明天将参加一场比赛,下面几种说法正确的是A .小亮明天的进球率为10%B .小亮明天每射球10次必进球1次C .小亮明天有可能进球D .小亮明天肯定进球 6. 已知圆锥的母线长为5cm ,高为4cm ,则这个圆锥的侧面积为A .12π cm 2B . 15π cm 2C .20π cm 2D . 25π cm 27. 如果k b a cc a b c b a =+=+=+,且a +b +c ≠0.则k 的值为( ) A .31 B .21 C .21或-1 D .-18. 如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且CF =14CD ,下列结论:①∠BAE =30°,②△ABE ∽△AEF ,③AE ⊥EF ,④△ADF ∽△ECF .其中正确结论的个数为( ) A .1 B .2 C .3 D .4第8题 第14题 第15题 第16题 第17题9. 抛物线y =x 2+bx +c (其中b ,c 是常数)过点A (2,6),且抛物线的对称轴与线段y =0(1≤x ≤3)有交点,则c 的值不可能是 A .4 B .6 C .8 D .1010.一条抛物线过P 1(-3,y 1),P 2(-1,y 2),P 3(1,y 3),P 4(3,y 4)四点,若y 3<y 2<y 4,则可能的最值情况是 A .y 3最小,y 1最大 B .y 3最小,y 4最大 C .y 1最小,y 4最大 D .y 2最小,y 4最大二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡...相应位置....上) 11.若x =1是一元二次方程x 2+2x +m =0的一个根,则m 的值为 .12.若反比例函数y =2k -1x的图象经过第二、四象限,则k 的取值范围是 .13.在平面直角坐标系中,将函数y =2x 2的图象先向右平移1个单位长度,再向上平移5个单位长度,所A BCFDE A . B . C . D .得图象的函数解析式为 .14.如图,在矩形ABCD 中,AD =3,将矩形ABCD 绕点A 逆时针旋转,得到矩形AEFG ,点B 的对应点E 落在CD 上,且DE =EF ,则AB 的长为 .15.在△ABC 中,P 是AB 上的动点(P 异于A ,B ),过点P 的一条直线截△ABC ,使截得的三角形与△ABC相似,我们不妨称这种直线为过点P 的△ABC 的相似线.如图,∠A =36°,AB =AC ,当点P 在AC 的垂直平分线上时,过点P 的△ABC 的相似线最多有_______条.16.如图,一座拱桥的轮廓是抛物线型.当拱顶离水面2 m 时,水面宽4 m .则水面下降1 m 时,水面宽17.如图,点A 、B 、E 在⊙O 上,半径OC ⊥AB 于点D ,∠CEB =22.5°,OD =2.则图中阴影部分的面(结果保留π)18.若抛物线y =x 2-1与直线y =-x 的两交点横坐标分别为p ,q ,则代数式2223p q p -+的值为 . 三、解答题(本大题共10小题,共96分.请在答题卡指定区域.......内.作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本小题满分8分)解方程:(1)x (x -1)=1-x ; (2)2x 2-3x -1=0. 20.(本小题满分8分)已知关于x 的一元二次方程x 2+2x +m =0.(1)若方程有两个相等的实数根,求m 的值; (2)当m =-3时,求方程的根. 21.(本小题满分8分)如图,在边长为1的正方形网格中,△ABC 的顶点均在格点上,点A 、B 的坐标分别是A (4,3)、B (4,1),把△ABC 绕点C 逆时针旋转90°后得到△A 1B 1C . (1)画出△A 1B 1C ,直接写出点A 1、B 1的坐标; (2)求在旋转过程中,点B 所经过的路径的长度.22.(本小题满分8分)如图,在△ABC中,CD⊥AB于点D,AD=4,DB=9,CD=6.求证:△ABC为直角三角形.23.(本小题满分8分)有6张看上去无差别的卡片,上面分别写着1,2,3,4,5,6.(1)若从中随机抽取一张,求取出的数字是偶数的概率;(2)若随机抽取一张后,放回并混在一起,再随机抽取一张,求第二次取出的数字能够整除第一次取出的数字的概率.25.(本小题满分10分)在△ABC中,∠ACB=90°,D是AC边上的任一点,CE⊥AB于点E,CF⊥BD于点F,连结EF.求证:∠BFE=∠AABC DEF26.(本小题满分10分)已知二次函数y=x2+mx+n(m,n为常数).CA D B(1)若m =-2,n =-4,求二次函数的最小值;(2)若n =3,该二次函数的图象与直线y =1只有一个公共点,求m 的值;(3)若n =m 2,且3m +4<0,当x 满足m ≤x ≤m +2时,y 有最小值13,求此时二次函数的解析式. 27.(本小题满分13分)如图1,△ABC 是边长为4 cm 的等边三角形,边AB 在射线OM 上,且OA =6 cm ,点D 从点O 出发,沿OM 的方向以1 cm/s 的速度运动,当D 不与点A 重合时,将△ACD 绕点C 逆时针方向旋转60°得到△BCE ,连接DE ,设运动时间为t s . (1)求证:△CDE 是等边三角形;(2)当6<t <10时,如图2,△BDE 周长是否存在最小值?若存在,求出△BDE 的最小周长; 若不存在,请说明理由.(3)当点D 在射线OM 上运动时,如图3,是否存在以D 、B 、E 为顶点的三角形是直角三角形? 若存在,求出此时t 的值;若不存在,请说明理由.图1 图2 图328.(本小题满分13分)在平面直角坐标系xOy 中,点P 的坐标为(a ,b ),点P 的变换点P '的坐标定义如下: 当a >b 时,点P '的坐标为(-a ,b );当a ≤b 时,点P '的坐标为(-b ,a ).(1)点A (3,1)的变换点A '的坐标是 ;点B (-4,2)的变换点为B ',连接OB ,OB ',则∠BOB '= °;(2)已知抛物线y =-(x +2)2+m 与x 轴交于点C ,D (点C 在点D 的左侧),顶点为E .点P 在抛物线y =-(x +2)2+m 上,点P 的变换点为P '.若点P '恰好在抛物线的对称轴上,且四边形ECP 'D 是菱形,求m 的值;(3)若点F 是函数y =-2x -6(-4≤x ≤-2)图象上的一点,点F 的变换点为F ',连接FF ',以FF '为直径作⊙M ,⊙M 的半径为r ,请直接写出r 的取值范围.MA CO ECEM ACB ODM2018~2019学年度九年级期中试卷 数学试题参考答案与评分标准说明:本评分标准每题给出了一种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.11.-3 12.k <1213.y =2(x -1)2+5 14.15.0.950 16.4 17.12π-1 18.8三、解答题(本大题共10小题,共96分) 19.(本小题满分8分)解:(1)x (x -1)+(x -1)=0. --------------------------------------------------------------------------------------- 1分(x -1) (x +1)=0. ------------------------------------------------------------------------------------------- 3分 所以x 1=1,x 2=-1. ------------------------------------------------------------------------------------- 4分 (2)因为a =2,b =-3,c =-1,所以b 2-4ac =(-3)2-4×2×(-1)=17>0.-------------------------------------------------------- 6分所以x 1=3+17 4,x 2=3-174. ------------------------------------------------------------------- 8分20.(本小题满分8分)解:(1)由题意得,△=0 即 4-4m =0,m =1 ------------------------------------------------------------------------------------------------ 4分(2)当m =-3时,x 2+2x -3=0,解得x 1=1,x 2=-3. ------------------------------------------------ 8分 21(1)画图. ---------------------------------------------------------------------------------- 2分A 1(-1,4),B 1(1,4). ------------------------------------------------------ 4分 (2)BC =3,∠BCB 1=90°,∴点B 所经过的路径长为:90331802ππ⨯=.-------------------------------- 8分22.(本小题满分8分)解:设小路宽为x 米,由题意,得(32-2x )(20-x )=570. ------------------------------------------------ 4分解之得x 1=1,x 2=35. --------------------------------------------------------------------------------------- 6分 ∵32-2x >0,20-x >0 ∴0<x <16.∴x =1 -------------------------------------------------------------------------------------------------------------- 7分 答:小路的宽为1米. ------------------------------------------------------------------------------------------------ 8分 23.(本小题满分8分)解:(1)∵ON =1,MN ⊥x 轴,∴M 点横坐标为x =1, ------------------------------------------------------------------------------------------ 1分 把1x =代入到1y x =+中得:y =2, ∴M 点的坐标为(1,2), -------------------------------------------------------------------------------------- 2分把M (1,2)代入到ky x=中得到k =2,∴反比例函数的表达式为2y x=. ----------------------------------------------------------------------------- 5分(2)x >1 --------------------------------------------------------------------------------------------------------------- 8分24.(本小题满分10分)解:(1)从中随机抽取一张有6种等可能结果:1,2,3,4,5,6.其中偶数的有三种:2,4,6.所以P (偶数)=36=12.-------------------------------------------------------------- 4分(2)列表或画树形图(略) ----------------------------------------------------------------------------------------- 6分 所有可能的结果共36种,且都是等可能的,其中第二次取出的数字能够整除第一次取出的数字(记为事件A )共14种. --------------------------------------------------------------------------------------------------- 8分∴P (A )=1436=718. ----------------------------------------------------------------------------------------------- 10分25.(本小题满分10分)解:(1)直线DE 与⊙O 相切. --------------------------------------------------------------------------------- 1分(1)当m =-2,n =-4时,y =x 2-2x -4=(x -1)2-5∴当x =1时,y 最小值=-5. --------------------------------------------------------------------------------------- 3分(2)当n =3时,y =x 2+mx +3,令y =1,则x 2+mx +3=1.由题意知,x 2+mx +3=1有两个相等的实根, 则△=m 2-8=0.m = 6分 (3)由3m +4<0,可知m <43-,∴m ≤x ≤m +2<23.抛物线y =x 2+mx +m 2的对称轴为x =2m -, ∵m <43-,∴2m ->23∴对称轴为x =2m ->23. -------------------------------------------------------------------------------------- 7分∴在m ≤x ≤m +2时,y 随着x 的增大而减小.∴当x =m +2时,y 有最小值为13. ------------------------------------------------------------------------- 8分∴(m +2)2+m (m +2)+m 2=13,即m 2+2m -3=0. ------------------------------------------------------ 9分解得m =1或m =-3.而m <43-,∴m =-3.此时,y =x 2-3x +9. --------------------------------------------------------------------------------------------- 10分 27.(本小题满分13分)解:(1)证明:∵△BCE 是由△ACD 绕点C 逆时针方向旋转60°所得, ∴∠DCE =60°,DC =EC ,∴△CDE 是等边三角形. ---------------------------------------------------------- 3分 (2)存在,当6<t <10时,由旋转可知, BE =AD .C △DBE =BE +DB +DE =AB +DE =4+DE ,又由(1)可知,△CDE 是等边三角形. ∴DE =CD ,∴C △DBE =CD +4,由垂线段最短可知,当CD ⊥AB 时,△BDE 的周长最小,此时,CD =32cm ,∴△DBE 的最小周长C △DBE =CD +4=32+4(cm ). ---------------------- 7分 (3)存在,①∵当点D 与点A 重合时,D 、E 、B 不能构成三角形;当点D 与点B 重合时,显然不合题意. ∴t ≠6s ,t ≠10s , ----------------------------------------------------------------------------------------------------------- 8分 ②当0≤t <6s 时,由旋转可知∠ABE =60°,∠BDE <60°,从而∠BED =90°,由(1)可知△CDE 是等边三角形, ∴∠DEB =60°,∴∠CEB =30°, ∵∠CEB 是∠CDA 在旋转下的像, ∴∠CDA =30°,∵∠CAB =60°,∴∠ACD =∠ADC =30°, ∴DA =CA =4,∴OD =OA -DA =6-4=2,∴t =2÷1=2s , -------------------------------------------- 10分 ③当6<t <10s 时,由∠DBE =120°>90°,∴此时不存在; --------------------------------------------- 11分 ④当t >10s 时,由旋转可知∠DEB =60°,又由(1)知∠CDE =60°, ∴∠BDE =∠CDE +∠BDC =60°+∠BDC ,而∠BDC >0°, ∴∠BDE >60°, ∴只能∠BDE =90°,从而∠BCD =30°, ∴BD =BC =4,∴OD =14cm ,∴t =14÷1=14s 。
广东省惠州市惠阳区20182019学年度第一学期九年级数学期中试卷

广东省惠州市惠阳区20182019学年度第一学期九年级数学期中试卷8.9.=( )A.70°B.60°C.50°D.40°第8题 第9题 第10题10.如图,在Rt △ABC 中,CD ⊥AB ,点D 为垂足;且AD =3,AC =35,则斜边AB 的长为( ) A .63 B .15 C .95 D .3+3510.如图,若将△ABC 绕点C 顺时针旋转90°后得到△A′B′C′,则点A 的对应点A′的坐标是( )A.(-3,-2)B.(2,-2)C.(3,0) D,(2,1)二、填空题:(每小题4分,共24分)11.已知方程0272=-+x ax 的一个根是x =一2则a =_______。
12.在平面角坐标系中、点P (-20,a )与Q (b ,13)关于原点对称,则a+b 的值为________。
13.如图,D 是等腰直角三角形ABC 内一点BC 是斜边,如果将△ABD 绕点A 按逆时针方向旋转到△ACD ′的位置,则么DAD ′的度数是_________。
14.在相同时刻,物高与影长成正比。
如果高为1.5米的标杆影长为2.5米,那么影长为30米的旗杆的高为__________。
15.如图,在半径为13的⊙O 中,OC 直弦AB 于点D ,交⊙O 于点C ,AB =24,则CD 的长是_________。
16.如图,DF ∥BG ∥BC .AD =DE=EB ,则DF 、EG 把△ABC 分成三部分的面积比S 1:S 2:S 3为____________。
三、解答题:(每小题6分,共18分)17用合适的方法解下列方程(每小题3分,共6分)(1)0322=--x x (2)())3(232+=+x x 18.如图,在四边形ABCD 中,AD ∥BC ,∠A =∠BDC ,若AB =12,AD =8,CD =15,求DB 的长。
19.如图,在平面直角坐标系中,网格中每个小正方形的边长为1,已知△ABC(1)将△ABC 绕点O 顺时针旋转90画出旋转后得到的△A 1B 1C 1;(2)画出△ABC 以坐标原点0为位似中心的位似图形△A 2B 2C 2,使△A 2B 2C 2在第二象限,与△ABC 的位似比是21。
2018-2019学年上学期期中考试九年级数学试卷及答案

九年级上册期中参考答案说明:1.如果考生的解答与本参考答案提供的解法不同,可根据提供的解法的评分标准精神进行评分.2.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定对后面给分多少,但原则上不超过后继部分应得分数之半.3.评分标准中,如无特殊说明,均为累计给分.4.评分过程中,只给整数分数.三、解答题:16.(1)解:3x (x -2)=x -2,移项得:3x (x -2)-(x -2)=0 整理得:(x -2)(3x -1)=0 x -2=0或3x -1=0 解得:x 1=2或x 2=1………………………………………………………………5分18.证明:延长AD 交⊙O 于E ,…………………2分 ∵OC ⊥AD ,∴⌒AE =2⌒AC ,AE=2AD ,………………………………4分 ∵⌒AB =2⌒AC , ∴⌒AE =⌒AB, ∴AB=AE ,∴AB=2AD . ………………………………………………………………………9分 19.解:设人行通道的宽度为x 米,依据题意得:……………………………1分 (30-3x )•(24-2x )=480,………………………………………………………4分 整理得:x 2-22x +40=0,解得:x1=2,x2=20,………………………………………………………………7分当x=20时,30-3x=-30,24-2x=-16,不符合题意,………………………8分答:人行通道的宽度为2米.………………………………………………………9分20.解:(1)当S取得最大值时,飞机停下来,则S=60t-1.5t2=-1.5(t-20)2+600,此时t=20因此t的取值范围是0≤t≤20;…………………3分(2)函数图象如图,S=60t-1.5t2=-1.5(t-20)2+600.飞机着陆后滑行600米才能停下来.…………6分(3)因为t=20,飞机着陆后滑行600米才能停下来.当t=14时,s=546,所以600-546=54(米).AD于M,∴旋转角α=360°-60°=300°.综上当α为60°或者300°时,GC=GB.…………………………………………………………10分。
惠州市九年级上学期期中数学试卷

惠州市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、填空题 (共6题;共6分)1. (1分) (2019九上·温岭月考) 平面直角坐标系内一点P(3,-1)关于原点对称的坐标为________2. (1分)(2019·广州模拟) 如图,在菱形ABCD中,AC与BD相交于O,P是AB上一点,PO=PA=3,则菱形ABCD的周长是________.3. (1分) (2017七下·延庆期末) 一种细胞的直径约为0.000 052米,将0.000 052用科学记数法表示为________.4. (1分)(2017·抚州模拟) 在函数y= 中,自变量x的取值范围是________.5. (1分)(2018·湛江模拟) 分解因式:xy2﹣4x=________.6. (1分) (2018七下·福清期中) 通过观察下列表格中的数据后再回答问题:… 3.12 3.13 3.14 3.15 3.16……9.73449.79699.85969.92259.9856…根据乘方与开方互为逆运算的关系可知: ________ (填“ ”,“ ”,“ ”)二、选择题 (共8题;共16分)7. (2分) (2018八上·长春期中) 下列运算正确的是()A . (a+1)2=a2+1B . 3ab2c÷a2b=3abC . (﹣2ab2)3=8a3b6D . x3•x=x48. (2分)如图,CD∥AB,点F在AB上,EF⊥GF,F为垂足,若∠1=48°,则∠2的度数为()A . 42°B . 45°C . 48°D . 50°9. (2分) (2017八下·萧山期中) 下列图案由正多边形拼成,其中既是轴对称图形又是中心对称图形的是()A .B .C .D .10. (2分) (2017九上·宝坻月考) 用配方法解方程时,原方程应变形为()A .B .C .D .11. (2分)从﹣4,﹣3,1,3,4这五个数中,随机抽取一个数,记为a,若数a使关于x的不等式组的解集是x<a,且使关于x的分式方程﹣ =1有整数解,那么这5个数中所有满足条件的a的值之和是()A . ﹣3B . ﹣2C . 0D . 112. (2分)已知关于x的方程(m+3)x2+x+m2+2m﹣3=0的一根为0,另一根不为0,则m的值为()A . 1B . -3C . 1或﹣3D . 以上均不对13. (2分)(2016·滨州) 如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A . 50°B . 51°C . 51.5°D . 52.5°14. (2分) (2016九上·营口期中) 如图,在同一坐标系下,一次函数y=ax+b与二次函数y=ax2+bx+4的图象大致可能是()A .B .C .D .三、解答题 (共9题;共69分)15. (5分) (2016八上·港南期中) 已知x+y=﹣4,xy=﹣12,求的值.16. (5分)△ABC为等腰直角三角形,∠ABC=90°,点D在AB边上(不与点A、B重合),以CD为腰作等腰直角△CDE,∠DCE=90°.(1)如图1,作EF⊥BC于F,求证:△DBC≌△CFE;(2)在图1中,连接AE交BC于M,求的值;(3)如图2,过点E作EH⊥CE交CB的延长线于点H,过点D作DG⊥DC,交AC于点G,连接GH.当点D在边AB上运动时,式子的值会发生变化吗?若不变,求出该值;若变化请说明理由.17. (7分) (2017八下·蒙阴期末) 某商场服装部分为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组销售额的数据,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)该商场服装营业员的人数为________,图①中m的值为________;(2)求统计的这组销售额数据的平均数、众数和中位数.18. (5分)如图,△ABC的三个顶点都在格点上,每个小方格边长均为1个单位长度.(1)请你作出△ABC关于点O成中心对称的△A1B1C1(其中A的对称点是A1 , B的对称点是B1 , C的对称点是C1);(2)直接写出点B1、C1的坐标.19. (5分)根据图中提供的信息,写出T恤衫的单价x(元/件)与驱虫剂的单价y(元/瓶)满足的二元一次方程组.20. (7分)(2017·天津模拟) 某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪念品共获得1250元,问第二周每个旅游纪念品的销售价格为多少元?解题方案:(1)设该商店第二周降低x元销售,用含x的代数式表示:①该商店第二周的销售利润为________元;②该商店对剩余纪念品清仓处理后的利润为________元.(2)按题意的要求完成解答.21. (5分) (2017八下·澧县期中) 如图,在一次数学课外活动中,小明同学在点P处测得教学楼A位于北偏东60°方向,办公楼B位于南偏东45°方向.小明沿正东方向前进60米到达C处,此时测得教学楼A恰好位于正北方向,办公楼B正好位于正南方向.求教学楼A与办公楼B之间的距离(结果精确到0.1米).(供选用的数据:≈1.414,≈1.732)22. (10分) (2017八下·门头沟期末) 如图,在 ABCD中,AC⊥BC ,过点D作DE∥AC交BC的延长线于点E ,连接AE交CD于点F .(1)求证:四边形ADEC是矩形;(2)在 ABCD中,取AB的中点M,连接CM,若CM=5,且AC=8,求四边形ADEC的面积.23. (20分) (2016九下·澧县开学考) 如图,已知二次函数y=ax2+ x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+ x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请直接写出此时点N的坐标;(4)若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.参考答案一、填空题 (共6题;共6分)1-1、2-1、3-1、4-1、5-1、6-1、二、选择题 (共8题;共16分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、三、解答题 (共9题;共69分)15-1、17-1、17-2、18-1、19-1、20-1、20-2、21-1、22-1、22-2、23-1、23-2、23-3、23-4、。
2018-2019学年度九年级上期中数学试题及答案

第一学期期中阶段性诊断九年级数学试题亲爱的同学:祝贺你完成了一个阶段的学习,现在是展示你的学习成果之时,你可以尽情地发挥,祝你成功!一、选择题:本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一个选项是正确的,请把正确选项的代号填在下面的表格内。
1.一元二次方程2810x x --=配方后可变形为 A .2(4)17x +=B .2(4)15x +=C .2(4)17x -=D .2(4)15x -=2.如图是由6个同样大小的正方体摆成的几何体.将 正方体①移走后,所得几何体 A .主视图改变,左视图改变 B .俯视图不变,左视图不变 C .俯视图改变,左视图改变 D .主视图改变,左视图不变 3.已知四边形ABCD ,下列说法正确的是A .当AD=BC ,AB ∥DC 时,四边形ABCD 是平行四边形 B .当AD=BC ,AB=DC 时,四边形ABCD 是平行四边形 C .当AC=BD ,AC 平分BD 时,四边形ABCD 是矩形 D .当AC=BD ,AC ⊥BD 时,四边形ABCD 是正方形 4.如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A 处径直走到B 处,她在灯光照射下的影长l 与行走的路程S 之间的变化关系用图象刻画出来,大致图象是5.在平行四边形ABCD 中,AB=10,BC=14,E ,F 分别为边BC ,AD 上的点,若四边形AECF 为正方形,则AE 的长为A .6或8B .4或10C .5或9D .76.如图,已知直线a ∥b ∥c ,直线m ,n 与a ,b ,c 分别交于点A ,C ,E ,B ,D ,F ,若AC=4,CE=6,BD=3,则DF 的值是( ) A .6 B .5.5 C .5 D .4.5第2题图 第4题图 第9题图第8题图第6题图7.方程0413)2(2=+---x m x m 有两个实数根,则m 的取值范围 A .25>m B .25≤m 且2≠m C .3≥m D .3≤m 且2≠m 8.如图,已知某广场菱形花坛ABCD 的周长是24米,∠BAD=60°,则花坛对角线AC 的长等于A .36米B .6米C .33米D .3米9.如图,以点O 为位似中心,将△ABC 放大得到△DEF .若AD=OA ,则△ABC 与△DEF 的面积之比为A .1:2B .1:4C .1:5D .1:610.将一些相同的“○”按如图所示的规律依次摆放,观察每个“龟图”中的“○”的个数,若第n 个“龟图”中有245个“○”,则n=A .14B .15C .16D .17 11.一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是A .94 B .31 C .61D .9112.如图,已知△ABC 的面积是12,BC=6,点E 、I 分别在边AB 、AC 上,在BC 边上依次作了n 个全等的小正方形DEFG ,GFMN ,…,KHIJ ,则每个小正方形的边长为 A .1112 B .3212+n C .512D .3212-n二、填空题:本题共6小题,每小题填对得4分,共24分。
2018-2019学年九年级数学期中试卷参考答案
()22222513.02251---------12255125()-24216533()---------24165---------34455x x x x x x x x --=∴-=∴-+=+∴-=∴-=±分分分()12(1).x+1(23)0---------231,---------42x x x -=∴=-=分分()212(2).x+13(1)0---------2(1)(13)0---------31,2---------4x x x x x -+=∴++-=∴=-=分分分2019~2019年(上)九年级数学期中数学试卷参考答案(仅供参考,其它方法酌情给分)一、选择题:1.B2.C3.A4. B5.B6.B7.B8.C 二、填空题9. 4 ;362 10. x ≥-1 11. 0或2 ; 12.4 13. 5和6. 14. .316.(答案不唯一)范围不写扣1分) 三、计算题:(()17.1=-=分每个化简对均得1分分 (()3233( -a b 223b ----3b2a a ⎫=⋅⋅⎪⎪⎭=-分每个化简对均得1分分四、解方程:18 解:19.解(1) ∵043614)6(422≥-=⨯⨯--=-k k ac b ---------1分 ∴k ≤9 ---------2分(2) ∵k 是符合条件的最大整数且k ≤9 ∴k=9 ---------3分当k=9时,方程x 2-6x +9=0的根为x 1=x 2=3; ---------4分把x=3代入方程x 2+mx -1=0得9+3m-1=0 ---------5分∴m= 38----------6分 20. 解:x 1+x 2=ab-=4;x 1x 2=a c =-1---------2分(1)(x 1+1)(x 2+1) (2)2112x x x x + =x 1x 2+x 1+x 2+1---------3分 =221221x x x x +=-1+4+1 21212212)(x x x x x x -+=---------5分= 4 ---------4分 = -18 ---------6分21. 证明:(1)∵AB ∥DC ∴∠ABE=∠CEB ---------2分 又∵BE 平分∠ABC∴∠ABE=∠CBE --------4分∴∠CBE=∠CEB---------5分 ∴CB=CE---------6分 又∵CO 平分∠BCE∴∠BCO=∠ECO∴OB=OE ---------8分()2⎛ ⎝=分分22. 证明(1)∵E 是AC 的中点∴EC=12AC---------1分 又∵DB=12AC∴DB= EC---------2分 又∵DB ∥AC∴四边形DBEA 是平行四边形---------3分 ∴BC=DE ;(2)△ABC 添加BA=BC证明:同上可证四边形DBEA 是平行四边形---------4分又∵BA=BC ;BC=DE ∴AB=DE---------5分∴四边形DBEA 是矩形---------6分 (3)∠C= 45 0 ---------8分23.思考发现:四边形ABEF 为矩形-------1分;四边形ABEF 的面积是c b a )(21+-------2分实践探究:作图-------3分作图------4分联想拓展:(1)如图4过点E 作PE ∥AB 交BC 与P 交AD 的延长线于Q ,则有S 梯形ABCD =S □ ABPQ = AB ×EF =5×4=20 -------5分(2)作图-------7分取AB 的中点F ,BC 的中点G ,作直线FG 分别交AE ,CD 于点P ,Q , 则可拼成一平行四边形PQDE ------8分24.解:(1)当点P 与点N 重合时,由x 2x 24+=2,得12x 4x 6==-、(舍去)所以x 4=时点P 与点N 重合 ·························································· 2分 (2) 当点Q 与点M 重合时,由x+3x=24,得x=6----------3分此时2DN=x 3624=≥,不符合题意. 故点Q 与点M 不能重合.------ ----4分 (2)由(1)知,点Q 只能在点M 的左侧, ① 当点P 在点N 的左侧时,由224x 3x 242x+x -+=-()(),解得120()2x x ==舍去,.当x =2时四边形PQMN 是平行四边形. ········································· 6分② 当点P 在点N 的右侧时,由224x+3x)(2)24x x -=+-(,解得1233x x =-=-.当x时四边形NQMP 是平行四边形. ····································· 8分 综上:当x =2或x时,以P ,Q ,M ,N 为顶点的四边形是平行四边形.ABDCP QMN。
2018-2019学年第一学期九年级数学期中检测试卷(附答案)
学校 班级 姓名 考号 ………………………………………密……………………………………封……………………………………线………………………………………2018-2019学年第一学期期中检测试卷九年级 数学一、选择题(每小题3分,共30分)1.下面四个标志是中心对称图形的是( )2.在下列方程中,一元二次方程是( )A .x 2﹣2xy +y 2=0B .x (x +3)=x 2﹣1C .x 2﹣2x =3D .x +=0 3.方程02=+x x 的解是( ) A .x =±1B .x =0C .1x 0x 21-==,D .x =14.抛物线3)2(2+-=x y 的顶点坐标是( )A .(2,3)B .(-2,3)C .(2,-3)D .(-2,-3) 5. 把一元二次方程2x 2-3x +1=0转化为 (x +a )2=b 的形式,正确的是( )A . 23162x ⎛⎫-= ⎪⎝⎭ B .2312416x ⎛⎫-= ⎪⎝⎭ C . 231416x ⎛⎫-= ⎪⎝⎭ D .以上都不对 6.不解方程判断下列方程中无实数根的是( )A .-x 2=2x -1 B .4x 2+4x +54=0 C 20x -= D .(x +2)(x -3)=-57. 关于x 的方程ax 2-3x +3=0是一元二次方程,则a 的取值范围是( ) A .a>0 B .a ≠0 C .a =1 D .a ≥08.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每 月增长率为x,则由题意列方程应为( )A .200(1+x )2=1000B .200+200×2x =1000C .200+200×3x =1000D .200[1+(1+x )+(1+x )2]=1000 9.已知一个直角三角形的两条直角边的长恰好是方程07822=+-x x 的两个根,则这个直角三角形的斜边长是( )A B .3 C .6 D .910.已知二次函数2y ax bx c =++(0a ≠)的图象如图所示,有下列四个结论:20040b c b ac <>->①②③④0a b c -+<A .1个B .2个C .3个D .4个二、填空题(每小题3分,共24分)11.把一元二次方(x -3)2 = 4化为一般形式是________________,其中二次项为______,一次项系数为______,常数项为_____.12.把抛物线2y x =-向左平移1个单位,然后向上平移3个单位,则平移后的抛物线解析式为 。
广东省惠州市九年级上学期数学期中考试试卷
广东省惠州市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)如图,有四张不透明的卡片除正面的算式不同外,其余完全相同,将它们背面朝上洗匀后,从中随机抽取一张,则抽到得卡片上算式正确的概率是()A .B .C .D . 12. (2分)如图,抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于C点,若∠OBC=45°,则下列各式成立的是()A . b+c﹣1=0B . b+c+1=0C . b﹣c+1=0D . b﹣c﹣1=03. (2分) (2019八上·南浔月考) 如图,∠MON=30°,点在射线ON上,点在射线OM上, ...均为等边三角形,依此类推,若的边长为()A . 2016B . 4032C .D .5. (2分) (2017九上·杭州月考) 已知抛物线y=ax2+bx+c的顶点为(-3,-6),有以下结论:①当a>0时,b2>4ac;②当a>0时,ax2+bx+c≥-6;③若点(-2,m) ,(-5,n) 在抛物线上,则m<n;④若关于 x 的一元二次方程ax2+bx+c=-4的一根为-5,则另一根为-1.其中正确的是()A . ①②B . ①③C . ②③④D . ①②④6. (2分)如图,把边长为3的正三角形绕着它的中心旋转180°后,重叠部分的面积为A .B .C .D .7. (2分) (2019九上·阳新期末) 如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A . (-1,)B . (- ,1)C . (-2,1)D . (-1,2)8. (2分) (2017九上·西湖期中) 已知坐标平面上有两个二次函数,的图形,其中、为整数.判断将二次函数的图形依下列哪一种方式平移后,会使得此两图形的对称轴重叠().A . 向左平移单位B . 向右平移单位C . 向左平移单位D . 向右平移单位9. (2分)(2015·义乌) 如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠B=135°,则的长()A . 2πB . πC .D .10. (2分)(2018·万全模拟) 已知一次函数y=ax+b的图象过点(﹣2,1),则关于抛物线y=ax2﹣bx+3的三条叙述:其中所有正确叙述的个数是()①过点(2,1),②对称轴可以是x=1,③当a<0时,其顶点的纵坐标的最小值为3.A . 0B . 1C . 2D . 3二、填空题 (共5题;共5分)11. (1分) (2016九上·苏州期末) 已知抛物线( <0)过A(,0)、O(0,0)、B (,)、C(3,)四点.则 ________ (用“<”,“>”或“=”填空).12. (1分)(2018·苏州) 如图,在Rt△ABC中,∠B=90°,AB=2 ,BC= .将△ABC绕点A按逆时针方向旋转90°得到△AB'C′,连接B'C,则sin∠ACB′=________.13. (1分)(2019·乌鲁木齐模拟) 在一个袋子中装有大小相同的4个小球,其中1个蓝色,3个红色,从袋中随机摸出个,则摸到的是蓝色小球的概率为________14. (1分) (2019八下·淮安月考) 若连续抛掷一枚质地均匀的骰子两次得到的点数分别为、,则最大值是________;15. (1分) (2020九上·嘉陵期末) 将抛物线y=-x2-4x(-4≤x≤0)沿y轴折叠后得另一条抛物线,若直线y=x+b与这两条抛物线共有3个公共点,则b的取值范围为________。
2018——2019学年度初三上数学期中考试卷(解析版)
4页A 23B13C12D167某种商品的原价为36元/盒,经过连续两次降价后的售价为25元/盒设平均每次降价的百分率为x,根据题意所列方程正确的是(C)A 36(1-x)2=36-25B 36(1-2x)=25C 36(1-x)2=25D 36(1-x2)=258若实数x,y满足(x2+y2+1)(x2+y2-2)=0,则x2+y2的值是(B)A 1B 2C 2或-1D -2或-19关于x的一元二次方程kx2+2x+1=0有两个实根,则实数k的取值范围是(C)A k≤1B k<1C k≤1且k≠0D k<1且k≠010如图,在菱形ABCD中,点E是AB边上一点,且∠A=∠EDF=60°,有下列结论:①AE=BF;②△DEF是等边三角形;③△BEF是等腰三角形;④∠ADE=∠BEF其中结论正确的个数是(A)A 3个B 4个C 1个D 2个二填空题(每小题3分,共18分)11关于x的方程x2+mx-6=0有一根为2,则另一根是__-3__,m=__1__ 12在一个不透明的口袋中装有仅颜色不同的红白两种小球,其中红球3个,白球n个,若从袋中任取一个球,摸出白球的概率是45,则n=__12__13如图,在矩形ABCD中,AB=12AC,BC=3,则OB=__1__第2页,共4页14 如图,某小区规划在一个长30 m ,宽20 m 的长方形ABCD 上修建三条同样宽的通道,使其中两条与AB 平行,另一条与AD 平行,其余部分种花草 要使每一块花草的面积都为78 m 2,那么通道的宽应设计成多少m ?设通道的宽为x m ,由题意列得方程__(30-2x )(20-x )=6×78__第13题图 第14题图 第15题图15 如图,是一个菱形衣挂的平面示意图,每个菱形的边长为16 cm ,当锐角∠CAD =60°时,把这个衣挂固定在墙上,两个钉子CE 之间的距离是cm (结果保留根号)16 在一个口袋中有4个完全相同的小球,把它们分别标号1,2,3,4,随机地摸出一个小球然后放回,再随机地摸出一个小球,则两次摸出的小球的标号之和等于4的概率是__316__三 解答题(共72分)17 (10分)解方程:(1)-12x 2-3x +6=0; (2)x +5=x 2-25x 1=-3+21,x 2=-3-21 x 1=-5,x 2=618 (10分)如图所示,可以自由转动的转盘被3等分,指针落在每个扇形内的机会均等 小明和小华利用这个转盘做游戏,若采用下列游戏规则,你认为对双方公平吗?请用列表或画树状图的方法说明理由列表略 所有等可能的情况有9种,其中两数之积为偶数的情况有5种,两数之积为奇数的情况有4种,∴P (小明获胜)=59,P (小华获胜)=49 ∵59>49,∴该游戏不公平19 (10分)现有5个质地 大小完全相同的小球上分别标有数字-1,-2,1,2,3 先将标有数字-2,1,3的小球放在第一个不透明的盒子里,再将其余小球放在第二个不透明的盒子里 现分别从这两个盒子里各随机取出一个小球(1)请利用列表或画树状图的方法表示取出的两个小球上的数字之和所有可能的结果;(2)求取出两个小球上的数字之和等于0的概率(1)树状图如图所示:(2)由树状图可知所有可能出现的结果共有6种,∴P (和为0)=26=1320 (10分)如图,四边形ABCD 是矩形,把矩形沿AC 折叠,点B 落在点E第3页,共4页处,AE 与DC 的交点为O ,连接DE(1)求证:△ADE ≌△CED ; (2)求证:DE ∥AC(1)∵ 四边形ABCD 是矩形,∴AD =BC ,AB =CD 又∵AC 是折痕,∴BC =CE =AD ,AB =AE =CD 又DE =ED ,∴△ADE ≌△CED (2)∵△ADE ≌△CED ,∴∠EDC =∠DEA 又∵△ACE 与△ACB 关于AC 所在直线对称,∴∠OAC =∠CAB 又∵∠OCA =∠CAB ,∴∠OAC =∠OCA ∵∠DOE =∠AOC ,∴2∠OAC =2∠DEA ,∴∠OAC=∠DEA ,∴DE ∥AC21 (10分)在矩形ABCD 中,AB =6 cm ,BC =12 cm ,点P 从点A 开始沿AB 边向点B 以1 cm /s 的速度运动,同时点Q 从点B 开始沿BC 边向点C 以2 cm /s 的速度运动,P ,Q 两点分别到达B ,C 两点后停止移动,那么几秒后△PBQ 的面积是5 cm 2?设x 秒后△PBQ 的面积为5 cm 2,则12(6-x )·2x =5,解得x 1=1,x 2=5 答:1秒或5秒后,△PBQ 的面积是5 cm 222 (10分)某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售,一个月能售出500 kg ,销售单价每涨价1元,月销售量就减少10 kg 针对这种水产品的销售情况,请回答以下问题:(1)当销售单价定为每千克55元时,计算月销售量和销售利润; (2)商店想在月销售成本不超过10 000元的情况下,使月销售利润达到8 000元,销售单价应定为多少?(1)450 kg 6 750元 (2)设销售单价为x 元,则(x -40)[500-10(x -50)]=8 000,解得x 1=60,x 2=80,当x =60时,月销售成本超过了10 000元,应舍去 因此,销售单价为每千克80元23 (12分)猜想与证明:如图①摆放矩形纸片ABCD 与矩形纸片ECGF,使B ,C ,G 三点在一条直线上,CE 在边CD 上,连接AF ,若点M 为AF 的中点,连接DM ,ME ,试猜想DM 与ME 的关系,并证明你的结论拓展与延伸:(1)若将“猜想与证明”中的纸片换成正方形纸片ABCD 与正方形纸片ECGF ,其他条件不变,则DM 和ME 的关系为__DM =ME __;(2)如图②摆放正方形纸片ABCD 与正方形纸片ECGF ,使点F 在边CD 上,点M 仍为AF 的中点,试证明(1)中的结论仍然成立第4页,共4页证明:如图①,延长EM 交AD 于点H ,∵四边形ABCD 和ECGF 是矩形,∴AD ∥EF ,∴∠EFM =∠HAM ,又∵∠FME=∠AMH ,FM =AM ,∴在△FME 和△AMH中,⎩⎨⎧∠EFM =∠HAM ,FM =AM ,∠FME =∠AMH ,∴△FME ≌△AMH (ASA )∴HM =EM 在Rt △HDE 中,HM =EM ,∴DM =HM =ME ,∴DM =ME (1)DM =ME (2)如图②,连接AE ,∵四边形ABCD 和ECGF 是正方形,∴∠FCE =45°,∠FCA =45°,∴AE 和EC 在同一条直线上,在Rt △ADF 中,AM =MF ,∴DM =AM =MF ,在Rt △AEF 中,AM =MF ,∴AM =M F =ME ,∴DM =ME。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1页,总24页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………广东省惠州市惠阳区2018-2019学年九年级上学期数学期中考试试卷考试时间:**分钟 满分:**分姓名:____________班级:____________学号:___________题号 一 二 三 总分 核分人 得分注意事项:1、填写答题卡的内容用2B铅笔填写2、提前 15 分钟收取答题卡第Ⅰ卷 客观题第Ⅰ卷的注释评卷人 得分一、单选题(共10题)1. 下列方程中,一元二次方程有()①3x 2+x=20;②2x 2﹣3xy+4=0;③ ;④x 2=1;⑤A . 2个B . 3个C . 4个D . 5个2. 如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC 相似的是( )A .B .C .D .答案第2页,总24页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………3. 观察下列图案,既是轴对称图形又是中心对称图形的是( ) A . B .C .D .4. 二次函数的图象的顶点坐标是( )A . (1,3)B . (,3) C . (1,) D . (,)5. 如图,△1=△2,则下列各式不能说明△ABC △△ADE 的是( )A . △D =△B B . △E =△C C .D .6. 将抛物线y=3x 2向左平移2个单位,再向下平移1个单位,所得抛物线为( )A . y=3(x+2)2﹣1B . y=3(x ﹣2)2+1C . y=3(x ﹣2)2﹣1D . y=3(x+2)2+17. 抛物线y =kx 2﹣7x ﹣7的图象和x 轴有交点,则k 的取值范围是( ) A . k >﹣ B . k ≥﹣ 且k ≠0 C . k ≥﹣ D . k >﹣ 且k ≠08. 如图,AB 是△O 的直径,点C 、D 在△O 上,△BOC =100°,AD △OC , 则△AOD =( )第3页,总24页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………A . 20°B . 60°C . 50°D . 40°9. 如图,在Rt△ABC 中,△ACB =Rt △,CD △AB , D 为垂足,且AD =3,AC =3,则斜边AB 的长为( )A . 3B . 15C . 9D . 3+310. 如图,若将△ABC 绕点C 顺时针旋转90°后得到△A ′B ′C ′,则A 点的对应点A ′的坐标是( )A . (﹣3,﹣2)B . (2,2)C . (3,0)D . (2,1)第Ⅱ卷 主观题第Ⅱ卷的注释评卷人 得分一、填空题(共6题)1. 在平面直角坐标系中,点P (﹣20,a )与点Q (b ,13)关于原点对称,则a+b 的值为 .2. 已知方程ax 2+7x ﹣2=0的一个根是﹣2,则a 的值是 .3. 如图,D 是等腰直角三角形ABC 内一点,BC 是斜边,如果将△ABD 绕点A 按逆时针方向旋转到△ACD ′的位置,则△DAD ′的度数是 .答案第4页,总24页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………4. 在相同时刻物高与影长成比例,如果高为1.5 m 的测竿的影长为2.5m , 那么影长为30m 的旗杆的高度是 m .5. 如图,在半径为13的△O 中,OC 垂直弦AB 于点B ,交△O 于点C ,AB=24,则CD 的长是 .6. 如图,DF △EG △BC . AD =DE =EB , 则DF 、EG 把△ABC 分成三部分的面积比S 1:S 2:S 3为 .评卷人得分二、综合题(共9题)7. 如图,Rt△ABC 中,△ACB =90°,AC =6cm ,BC =8cm .动点M 从点B 出发,在BA 边上以每秒3cm 的速度向定点A 运动,同时动点N 从点C 出发,在CB 边上以每秒2cm 的速度向点B 运动,且MG△BC ,运动时间为t 秒(0<t <),连接MN .(1)用含t 的式子表示MG ;(2)当t 为何值时,四边形ACNM 的面积最小?并求出最小面积;第5页,总24页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(3)若△BMN 与△ABC 相似,求t 的值. 8. 解下列方程:(1) ; (2)9. 如图,在四边形ABCD 中,AD △BC , △A =△BDC .(1)求证:△ABD △△DCB ;(2)若AB =12,AD =8,CD =15,求DB 的长.10. 如图,在平面直角坐标系中,网格中每个小正方形的边长为1,已知△ABC(1)将△ABC 绕点O 顺时针旋转90画出旋转后得到的△A 1B 1C 1;(2)画出△ABC 以坐标原点O 为位似中心的位似图形△A 2B 2C 2 , 使△A 2B 2C 2在第二象限,与△ABC 的位似比是 .11. 如图,四边形ABCD 是正方形,△ADF 绕着点A 顺时旋转90°得到△ABE , 若AF =4,AB =7.答案第6页,总24页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)求DE 的长度;(2)指出BE 与DF 的关系如何?并说明由. 12. 某水果批发商场销售一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下.若每千克涨价1元,日销售量将减少20千克.(1)现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?(2)每千克水果涨价多少元时,商场每天获得的利润最大?获得的最大利润是多少元?13. 已知:m , n 是方程x 2﹣6x +5=0的两个实数根,且m <n , 抛物线y =﹣x 2+bx +c 的图象经过点A (m , 0),B (0,n ).(1)求这个抛物线的解析式;(2)设(1)中的抛物线与x 轴的另一交点为C , 抛物线的顶点为D , 试求出点C , D 的坐标和△BCD 的面积.14. 如图,在△ABCD 中,AB △AC , AB =1,BC = ,对角线AC , BD 交于O 点,将直线AC 绕点O 顺时针旋转,分别交于BC , AD 于点E , F .第7页,总24页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)证明:当旋转角为90°时,四边形ABEF 是平行四边形;(2)试说明在旋转过程中,线段AF 与EC 总保持相等;(3)在旋转过程中,四边形BEDF 可能是菱形吗?如果不可能,请说明理由;如果可能,说明理由并求出此时AC 绕点O 顺时针旋转的度数.15. 如图,抛物线y=ax 2+bx+3与x 轴相交于点A (﹣1,0)、B (3,0),与y 轴相交于点C ,点P 为线段OB 上的动点(不与O 、B 重合),过点P 垂直于x 轴的直线与抛物线及线段BC 分别交于点E 、F ,点D 在y 轴正半轴上,OD=2,连接DE 、OF .(1)求抛物线的解析式;(2)当四边形ODEF 是平行四边形时,求点P 的坐标;(3)过点A 的直线将(2)中的平行四边形ODEF 分成面积相等的两部分,求这条直线的解析式.(不必说明平分平行四边形面积的理由)答案第8页,总24页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………参数答案1.【答案】:【解释】:2.【答案】:【解释】:3.【答案】:第9页,总24页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】: 4.【答案】:【解释】: 5.【答案】: 【解释】: 6.【答案】:【解释】:答案第10页,总24页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………7.【答案】:【解释】:8.【答案】:【解释】:9.【答案】:○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________○…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】: 10.【答案】:【解释】: 【答案】: 【解释】: 【答案】:○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※○…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:【答案】:【解释】:【答案】:【解释】:【答案】:○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________○…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:【答案】: 【解释】:○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)【答案】:(2)【答案】:○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________○…………内…………○…………装…………○…………订…………○…………线…………○…………(3)【答案】:【解释】:(1)【答案】:○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※○…………内…………○…………装…………○…………订…………○…………线…………○…………(2)【答案】:【解释】:(1)【答案】:(2)【答案】:【解释】:(1)【答案】:○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________○…………内…………○…………装…………○…………订…………○…………线…………○…………(2)【答案】:【解释】: (1)【答案】: (2)【答案】:○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※○…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:(1)【答案】:(2)【答案】:【解释】:○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)【答案】:(2)【答案】:○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※○…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:(1)【答案】:(2)【答案】:…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………(3)【答案】:【解释】:(1)【答案】:…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………内…………○…………装…………○…………订…………○…………线…………○…………(2)【答案】:(3)【答案】:…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………内…………○…………装…………○…………订…………○…………线…………○…………。