清华作业-5-1刚体定轴转动(一)
大学物理 第5章刚体定轴转动

赵 承 均
转动平面 某质点所在的圆周平面,称为转动平面。
参考线
转心 矢径
转动平面内任一过转轴的直线,如选 x 轴。
某质点所在的轨迹圆的圆心,称为转心。 某质点对其转心的位矢,称为该质点的矢径。
第一篇
力学
重 大 数 理 学 院
显然:转动刚体内所有点有相同的角量,故用角量描述刚体 的转动更方便,只需确定转动平面内任一点的角量即可。 1.角坐标— 描写刚体转动位臵的物理量。 角坐标 转动平面内刚体上任一点 P 到转轴 O 点的连线与 参考线间的夹角 。
赵 承 均
第二类问题:已知J和力矩M:求出运动情况和 b及 F 。
第三类问题:已知运动情况和力矩M,求刚体转动惯量 J 。
第一篇
力学
重 大 数 理 学 院
第一类问题:已知运动情况和 J ,确定运动学和动力学的联 系 例 :长为 l,质量为 m 的细杆,初始时的角速 度为 ωo ,由于细杆与 桌面的摩擦,经过时间 t 后杆静止,求摩擦力 矩 Mf 。
Fi cos i Fi cos i mi ain mi ri 2 法向:
e i
第一篇
力学
重 大 数 理 学 院
由于法向力的作用线穿过转轴,其力矩为零。可在切向 方程两边乘以 ri ,得到:
Fi e ri sin i Fi i r i sin i mi ri 2
4.角加速度— 描写角速度变化快慢和方向的物理量。 ⑴ 平均角加速度 t
即:刚体的角速度变化与发生变化所用的时间之比。
赵 承 均
⑵ 角加速度 ①用平均角加速度代替变化的角加速度; ②令 t 0 取极限;
d d lim 2 t 0 t dt dt
第1讲 刚体的定轴转动

y
i = 3+2+1= 6
1
对于刚体而言,当刚体受到某些限制 ——自由度减少.
2. 刚体绕定轴的转动 刚体内各点都绕同一直线(转轴)作圆周运动 转轴固定不动 — 定轴转动
_____
刚体转动
2
刚体定轴转动时虽然刚体中任意一点的到转轴的距离不同,但 在相同时间内转过的角度相同。 描述刚体绕定轴转动的角量:
Fi r i fi r i ( mi ri )
2
内力矩之和为0
转动惯量J
M J
——刚体的转动定律(刚体绕定轴转动微分方程)
15
转动定律:
M J
刚体所受的对于某一固定转动轴的合外力矩等于刚体对 此转轴的转动惯量与刚体在此合外力矩作用下所获得的 角加速度的乘积。
讨论:
一、刚体运动的描述
1.刚体: 在力作用下,大小和形状都保持不变的物体称为刚体. 特殊的质点系, 形状和体积不变化 —— 理想化模型。 在力作用下,组成物体的所有质点间的距离始终保持不变。 2. 自由度:确定物体的位置所需要的独立坐标数 z (x,y,z) O i=3 y x O z
s O
x i=1 i=2
14
二、转动定律 刚体上任一质元Δm i 受力 切线方向
Fi f i mi ai
ri
fi
Fi
Fi f i mi ai
在上式两边同乘以到 Fi ri f i ri mi ai ri mi ri ri 转轴的垂直距离 ri 对所有质元求和
(1)M 外 Fi ri ( Fi )ri 即求力矩之和,而非求力之和的矩.
(2)与牛顿第二定律比较: M J 、 F ma
刚体的定轴转动

刚体的定轴转动一、刚体极其运动刚体——受力时不改变形状和体积的物体。
注:(1)刚体是固体物件的理想模型。
(2)刚体是一个特殊的质点系(各质点间的相对位置在运动中保持不变)。
刚体的运动分为平动和转动。
平动:刚体中所有点的运动轨迹都保持完全相同,或者说刚体内任意两点间的连线总是平行于它们的初始位置间的连线。
(用质点力学处理)转动:刚体中所有的点都绕同一直线做圆周运动. 转动又分定轴转动和非定轴转动。
二、刚体转动的角速度和角加速度刚体定轴转动时,由于各质元间的相对位置保持不变,因此描述各质元的角量是一样的。
角坐标:θ=θ(t)角位移:?θ=θ(t+?t)-θ(t) 角速度:?θdθ=?t→0?tdt角速度的方向:右手螺旋法则。
dω角加速度:α= dt定轴转动的特点:(1)每一质点均作圆周运动,圆面为转动平面;(2)任一质点运动?θ,ω,α均相同,但v,a不同;(3)运动描述仅需一个坐标。
三、匀变速转动公式匀变速转动------刚体绕定轴转动的角加速度为恒量。
刚体匀变速转动与质点匀变速直线运动公式对比匀变速转动匀变速直线运动v=v+at x=x0+v0t+at2212222v=v0+2a(x-x0)2ω=lim 匀四、角量与线量的关系v=rωaτ=rαan=rω24-2力矩转动定律转动惯量一、力矩设一质点系由n个质点组成,其中i质点受力为n-1j=1Fi外+∑fjin-1 Mi=ri?(Fi外+∑fji)现对i质点所受力的力矩:j=1对i求和,刚体所受力的力矩为n M=∑Mi=∑ri?Fi外ii=1(内力矩为零)二、刚体的转动定律组成刚体的各质点间无相对位移,所以刚体对给定轴的力矩为dω2 M=rma=(rm)α=J=Jα∑iz∑∑iiτiidtii即刚体定轴转动的转动定律:绕定轴转动的刚体的角加速度与作用于刚体上的合外力矩成正比,与刚体的转动惯量成反比。
它在定轴转动中的地位相当于牛顿第二定律在质点力学中的地位。
大学物理学(清华C5版)分章配套精品题目及答案(第五章)

第五章 刚体力学基础【例题精讲】例5-1关于刚体对轴的转动惯量,下列说法中正确的是 A. 只取决于刚体的质量,与质量的空间分布和轴的位置无关。
B. 取决于刚体的质量和质量的空间分布,与轴的位置无关。
C. 取决于刚体的质量、质量的空间分布和轴的位置。
D. 只取决于转轴的位置,与刚体的质量和质量的空间分布无关。
[ C ] 例5-2两个匀质圆盘A 和B 的密度分别为A ρ和B ρ,若ρA >ρB ,但两圆盘的质量与厚度相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为J A 和J B ,则 A. J A >J B 。
B. J B >J A 。
C. J A =J B 。
D. J A 、J B 哪个大,不能确定。
[ B ] 例5-3将细绳绕在一个具有水平光滑轴的飞轮边缘上,现在在绳端挂一质量为m 的重物,飞轮的角加速度为β.如果以拉力2mg 代替重物拉绳时,飞轮的角加速度将 A. 小于β。
B. 大于β,小于2 β。
C. 大于2 β。
D. 等于2 β。
例5-4一飞轮作匀减速转动,在5 s 内角速度由40π rad ·s -1减到10π rad ·s -1,则飞轮在这5 s 内总共转过了___________圈,飞轮再经__________的时间才能停止转动。
62.5 1.67s例5-5 均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?A .角速度从小到大,角加速度从大到小B .角速度从小到大,角加速度从小到大C .角速度从大到小,角加速度从大到小D .角速度从大到小,角加速度从小到大例5-6转动着的飞轮的转动惯量为J ,在t =0时角速度为ω 0。
此后飞轮经历制动过程,阻力矩M 的大小与角速度ω 的平方成正比,比例系数为k (k >0常量)。
当ω=ω0/3时,飞轮的角加速度β = .从开始制动到ω=ω0/3所经过的时间t = 。
大学物理一复习第四章刚体的转动-文档资料

mg FT2 ma2
FT1 FT2
R
mg FT1 r
m
a1
J
a1 r
a2 R
FT1 r R
FT1'
A
mg
β
FT2
FT2'
B
mg
mg(R r)
J mR2 mr2
a1
r
J
mgr(R r) mR2 mr2
40 半径减小角速度增加。
(2)拉力作功。请考虑合外力矩为0, 为什么拉力还作功呢?
W
0
Md
在定义力矩作功 时,我们认为只 有切向力作功, 而法向力与位移 垂直不作功。
但在例题中,小 球受的拉力与位 移并不垂直,小 球的运动轨迹为 螺旋线,法向力 要作功。
o
F
r d Fn F
解得
a2
R
mgR(R r) J mR2 mr2
FT1 mg ma1
FT2 mg ma2
例2:光滑斜面倾角为 ,顶端固定一半 径为 R ,质量为 M 的定滑轮,质量为 m 的物体用一轻绳缠在定滑轮上沿斜面 下滑,求:下滑的加速度 a 。
解:物体系中先以
物体 m 研究对象,
A
分别根据牛二定律和转动定律列方程:
角量、线量关系式
解得:
a
mB g
mA mB mC 2
T1
mAmB g
mA mB mC
2
T2
(mA mC 2)mBg mA mB mC 2
如令 mC 0,可得:
大学基础教育《大学物理(一)》期中考试试题 含答案

大学基础教育《大学物理(一)》期中考试试题含答案姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
一、填空题(共10小题,每题2分,共20分)1、图示曲线为处于同一温度T时氦(原子量4)、氖(原子量20)和氩(原子量40)三种气体分子的速率分布曲线。
其中曲线(a)是________气分子的速率分布曲线;曲线(c)是________气分子的速率分布曲线。
2、一条无限长直导线载有10A的电流.在离它 0.5m远的地方它产生的磁感强度B为____________。
一条长直载流导线,在离它1cm处产生的磁感强度是T,它所载的电流为____________。
3、质量为的物体,初速极小,在外力作用下从原点起沿轴正向运动,所受外力方向沿轴正向,大小为。
物体从原点运动到坐标为点的过程中所受外力冲量的大小为_________。
4、已知质点的运动方程为,式中r的单位为m,t的单位为s。
则质点的运动轨迹方程,由t=0到t=2s内质点的位移矢量______m。
5、四根辐条的金属轮子在均匀磁场中转动,转轴与平行,轮子和辐条都是导体,辐条长为R,轮子转速为n,则轮子中心O与轮边缘b之间的感应电动势为______________,电势最高点是在______________处。
6、一个质点的运动方程为(SI),则在由0至4s的时间间隔内,质点的位移大小为___________,在由0到4s的时间间用内质点走过的路程为___________。
7、花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为,角速度为;然后将两手臂合拢,使其转动惯量变为,则转动角速度变为_______。
8、两根相互平行的“无限长”均匀带正电直线1、2,相距为d,其电荷线密度分别为和如图所示,则场强等于零的点与直线1的距离a为_____________ 。
刚体定轴转动1基本概念
r 0 .2 4 ( m s
该点的切向加速度
a r 0 .2 (
) 2 .5 ( m s
)
6
) 0 . 105 m s
2
该点的法向加速度
a n r
2
4 2 0 .2
ms 2 31 . 6
作业:P31 1- 5 1-7 (1) 作业要求: 1、习题解答要有解题步骤,若需作图的则按规定要求画图,画图必须
用铅笔和直尺,要有原始公式和数据代入过程,最后所求的物理量 要写单位。
2、布置的习题写在单行作业本的纸上,并在纸的右上角写上班级、 学号、姓名,每班的学习委员收作业时将班上同学交的作业纸
按学号顺序排好后再交给老师。
15
质点运动
转动: 刚体上所有的点都绕同一直线做圆周运动。 转动分为定轴转动和非定轴转动
刚体的定轴转动:
1、转动平面: 垂直于固定转轴的平面
转轴
转动平面
2、刚体的定轴转动的特点: ⑴.各质元都绕转轴在各自的转动平面上 做圆周运动
⑵.各质元运动的线量 v , a 不同,
但角量 , , , a 均相同
与 方向相同,为加速运动,否则为减速运动。
8
匀速转动和匀变速转动的概念 匀速转动: 0 , 为恒量, 0 t 匀变速转动: 当刚体做定轴转动的角加速度 时,刚体做匀变速转动。 为恒量
刚体匀变速转动与质点匀变速直线运动公式对比
9
补充:矢量乘法公式 点乘(标积):A B A B cos( A , B ) 叉乘(矢积): A B C 大小 方向
第5章 刚体的定轴转动 习题解答
对飞轮,由转动定律,有 式中负号表示摩擦力的力矩方向与角速度 方向相反。
联立解得
以 F 100 N 等代入上式,得
Fr R 2 (l1 l2 ) F J mRl1
5-1
第 5 章 刚体的定轴转动
2 0.40 (0.50 0.75) 40 100 rad s 2 60 0.25 0.50 3 t
由以上诸式求得角加速度
(2)
Rm1 rm2 g I m1 R 2 m2 r 2 0.2 2 0.1 2
1 1 10 0.202 4 0.102 2 0.202 2 0.102 2 2
9.8 6.13 rad s 2
T2 m2 r m2 g 2 0.10 6.13 2 9.8 20.8N T1 m1 g m1 R 2 9.8 2 0.2. 6.13 17.1N v 2a1h 2 Rh 2 6.13 0.2 2 2.21 m s 1
M M f J 1
t1
。移去力矩 M 后,根据转动定律,有
M f J 2
2
联立解得此转轮的转动惯量
0 t2
J
M 20 17.36 kg m 2 1 1 1 100 2 1 60 10 100 t1 t2
v0
6(2 3 3m M l J l 1M (1 2 ) (1 ) 2 ml 2 3m 12 m
(2) 由①式求得相碰时小球受到的冲量为:
I Fdt mv mv mv0
负号说明所受冲量的方向与初速度方向相反。
1刚体定轴转动定律
J z = ∫ r dm
2
z
o
y
r
dm
y
= ∫ ( x + y )dm
2 2
x
2
= ∫ y dm + ∫ x dm = Jx + J y
2
x
的圆盘, 例6、半径为 R 质量为 M 的圆盘,求绕直径轴 、 转动的转动惯量J 转动的转动惯量 y。 解:圆盘绕垂直于盘面的质心 z 轴转动的转 动惯量为: 动惯量为:
ω
r r
r
r v
∆ω d ω α = lim = ∆t → 0 ∆ t dt
r ω
刚体上任一质元的切向加速度和法向加速度表示为: 刚体上任一质元的切向加速度和法向加速度表示为: v2 dv dω = rω 2 at = =r = rα , a n = r dt dt
角加速度是矢量, 角加速度是矢量,但对于 刚体定轴转动角加速度的方 向只有两个, 向只有两个,在表示角加速 度时只用角加速度的正负数 值就可表示角加速度的方向, 值就可表示角加速度的方向, 不必用矢量表示。 不必用矢量表示。 说明: 角坐标、角位移、 说明: 角坐标、角位移、 角速度和角加速度等角量 是用来描述定轴转动刚体 的整体运动,也可用来描 的整体运动, 述质点的曲线运动; 述质点的曲线运动;
M dm = 2π rdr 2 πR
M dr r R
J = ∫ r dm
2
=∫
R
0
M r 2π rdr 2 πR
2
1 2 = MR 2
二、平行轴定理
定理表述: 定理表述:刚体绕平行于质心轴的转动惯量 J, , 等于绕质心轴的转动惯量 JC 加上刚体质量与 两轴间的距离平方的乘积: 两轴间的距离平方的乘积: J = J C + md 2
第五章 刚体的转动
0
x
2. 角速度和角加速度 d d d 2 2
dt
dt dt
3. 线量与角量的关系
y
s r
a t r
v 方向垂直 于
v r a n r 2
和 r 组成的平面
0
v r △θ
△s
x
v r
转 轴
转动的轴线可变也可不 变,若轴线固定不动, 则称定轴转动。作定轴 转动的刚体上的各点, 在运动中都绕同一转轴 作不同半径的圆周运动。 而且,刚体上各点在相 同时间内转过相同的角 度。
刚体的一般运动 可以当作由一平动和一绕瞬时轴的转动组合而成
绕轴转动 车轮绕 轴转动
转轴平动
转轴 轮轴平动
平动和转动(转轴位置变)
M
T
T m mg v0
对物体有: 对滑轮有:
T - mg = m a
①
-TR = J = M R2 /2 ② ③ ④
角量和线量的关系: a = R 运动学关系: v = v0 + at = 0
设一刚体绕定轴转动,某质元受内力 f i内 和 外力 Fi外 作用
矢量式:
m i
ri
法向式:
切向式: 以 遍乘切向式两端: 转轴
将遍乘
后的切向式求和得:
m i
刚体所受的合外力矩
ri
定义:
M J
J mi ri
2
刚体的转动惯量 转动定律
其中M为刚体所受的合外力矩
说明:(1)M, J, 均对同一轴而言,且具有瞬时性; (2)改变刚体转动状态的是力矩; (3)转动惯量是刚体转动惯性的度量。