2021年辽宁省沈阳市数学中考试卷及答案

合集下载

辽宁省沈阳市2021年中考数学试卷C卷

辽宁省沈阳市2021年中考数学试卷C卷

辽宁省沈阳市2021年中考数学试卷C卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2017·高邮模拟) 1不是﹣1的()A . 相反数B . 绝对值C . 倒数D . 平方数2. (2分) (2020七下·江阴月考) 若,,则的值为()A . 6B . 7C . 8D . 93. (2分)小明看到了“实验楼”三个字,而且能看到该楼所有的门窗,则小明看到的图是()A . 俯视图B . 左视图C . 主视图D . 都有可能4. (2分)下列说法正确的是()A . 了解飞行员视力的达标率应使用抽样调查B . 一组数据3,6,6,7,9的中位数是6C . 从2000名学生中选200名学生进行抽样调查,样本容量为2000D . 掷一枚质地均匀的硬币,正面朝上是必然事件5. (2分) (2019七下·广州期中) 如图,AB∥CD,直线l分别与AB,CD相交,若∠1=130°,则∠2=()A . 40°B . 50°C . 130°D . 140°6. (2分)(2019·福田模拟) 在一次“爱心义卖活动”中,某校9年级的六个班级捐献的义卖金额数据如下:900元,920元,960元,1000元,920元,950元.这组数据的众数和中位数分别是()A . 920元,960元B . 920元,1000元C . 1000元,935元D . 920元,935元7. (2分) (2020九上·岐山期末) 已知关于x的函数y=k(x+1)和y= (k≠0)它们在同一坐标系中的大致图象是()A .B .C .D .8. (2分)炎炎夏日,甲安装队为A小区安装66台空调,乙安装队为B小区安装60台空调,两队同时开工恰好同时完成任务,甲队比乙队每天多安装2台,则甲、乙两队每天安装的台数分别为()A . 32台,30台B . 22台,20台C . 12台,10台D . 16台,14台9. (2分) (2020九上·高平期末) 已知A4纸的宽度为21cm,如图对折后所得的两个矩形都和原来的矩形相似,则A4纸的高度约为()A .B .C .D . 无法确定10. (2分) (2019八上·常州期末) 小苏和小林在如图①所示的跑道上进行米折返跑.在整个过程中,跑步者距起跑线的距离(单位:)与跑步时间(单位:)的对应关系如图②所示.下列叙述正确的是().A . 两人从起跑线同时出发,同时到达终点B . 小苏跑全程的平均速度大于小林跑全程的平均速度C . 小苏前跑过的路程大于小林前跑过的路程D . 小林在跑最后的过程中,与小苏相遇2次二、填空题 (共8题;共8分)11. (1分) (2017八上·江门月考) 用科学记数法表示:0.0002015=________.12. (1分) (2018八上·望谟月考) 正多边形一个外角的度数是,则该正多边形的边数是________.13. (1分)(2018·苏州模拟) 小球在如图所示的地板上自由地滚动,并随机地停留在某块方砖上,那么小球最终停留在黑色区域的概率是________.14. (1分) (2016八上·宁海月考) 当,时, ________0(填“<”或“>”).15. (1分) (2016八上·桐乡期中) 如图,在△ABC中,∠A=58°,∠B=63°,则外角∠ACD=________度。

2021年辽宁省沈阳市中考数学试卷(含答案)

2021年辽宁省沈阳市中考数学试卷(含答案)

2021年辽宁省沈阳市中考数学试卷一、选择题(下列各题的备选答案中,只有一个答案是正确的,每小题2分,共20分)1.(2分)9的相反数是()A.B.﹣C.9D.﹣9 2.(2分)如图是由6个相同的小立方块搭成的几何体,这个几何体的主视图是()A.B.C.D.3.(2分)据报道,截至2021年5月24日16时,沈阳市新冠疫苗累计接种3270000次()A.32.7×105B.0.327×107C.3.27×105D.3.27×106 4.(2分)下列计算结果正确的是()A.a4•a2=a8B.6a﹣2a=4aC.a6÷a2=a3D.(﹣a2b)2=﹣a4b25.(2分)如图,直线a,b被直线c所截,∠1=70°,则∠2的度数是()A.70°B.100°C.110°D.120°6.(2分)信息技术课上,在老师的指导下,小好同学训练打字速度(字/min),17,23,17,17,21,21,对于这组数据,下列说法正确的是()A.众数是17B.众数是15C.中位数是17D.中位数是18 7.(2分)如图,△ABC与△A1B1C1位似,位似中心是点O,若OA:OA1=1:2,则△ABC与△A1B1C1的周长比是()A.1:2B.1:3C.1:4D.1:8.(2分)一次函数y=﹣3x+1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限9.(2分)下列说法正确的是()A.任意掷一枚质地均匀的骰子,掷出的点数一定是奇数B.“从一副扑克牌中任意抽取一张,抽到大王”是必然事件C.了解一批冰箱的使用寿命,采用抽样调查的方式D.若平均数相同的甲、乙两组数据,s甲2=0.3,s乙2=0.02,则甲组数据更稳定10.(2分)如图,△ABC是⊙O的内接三角形,AB=2,连接OA,OB,则()A.B.C.πD.二、填空题(本大题共6小题,每小题3分,合计18分)11.(3分)分解因式:ax2+2ax+a=.12.(3分)不等式组的解集是.13.(3分)化简:()•(x+4)=.14.(3分)如图,平面直角坐标系中,O是坐标原点(k≠0)图象上的一点,过点A分别作AM⊥x轴于点M,则k的值是.15.(3分)某超市购进一批单价为8元的生活用品,如果按每件9元出售,那么每天可销售20件.经调查发现,其销售量相应减少4件,那么将销售价定为元时,才能使每天所获销售利润最大.16.(3分)如图,△ABC中,AC=3,AB=5.四边形ABEF是正方形,点D是直线BC上一点,且PD=DE.过点P作直线l 与BC平行,AD于点G,H,则GH的长是.三、解答题(第17小题6分,第18、19题各8分,共22分)17.(6分)计算:(π﹣2021)0﹣3tan30°+|1﹣|+()﹣2.18.(8分)如图,在菱形ABCD中,点M,DC上的点,BM=,DN=DC.连接AM,延长AN交线段BC延长线于点E.(1)求证:△ABM≌△ADN;(2)若AD=4,则ME的长是.19.(8分)某品牌免洗洗手液按剂型分为凝胶型、液体型,泡沫型三种型号(分别用A,B,C依次表示这三种型号).小辰和小安计划每人购买一瓶该品牌免洗洗手液(1)小辰随机选择一种型号是凝胶型免洗洗手液的概率是.(2)请你用列表法或画树状图法,求小辰和小安选择同一种型号免洗洗手液的概率.四、解答题(每小题8分,共16分)20.(8分)学史明理,学史增信,学史崇德,在建党100周年之际,某校对全校学生进行了一次党史知识测试,B,C,D四个等级,随机抽取了部分学生的成绩进行调查根据统计图提供的信息,解答下列问题:(1)在这次调查中一共抽取了名学生;(2)请根据以上信息直接在答题卡上补全条形统计图;(3)扇形统计图中,D等级对应的圆心角度数是度;(4)根据抽样调查的结果,请你估计该校2000学生中有多少名学生的成绩评定为C等级.21.(8分)某校团体操表演队伍有6行8列,后又增加了51人,使得团体操表演队伍增加的行、列数相同五、解答题(本题10分)22.(10分)如图,AB是⊙O的直径,AD与⊙O交于点A(点E 不与点O,A重合).连接DE交⊙O于点C,连接CA,∠ABC =∠D.(1)求证:AD是⊙O的切线;(2)若AB=13,CA=CD=5,则AD的长是.六、解答题(本题10分)23.(10分)如图,平面直角坐标系中,O是坐标原点(k≠0)经过点C(3,6),与x轴交于点A,交直线y=x于点D,AD.(1)填空:k=,点A的坐标是(,);(2)求证:四边形OADC是平行四边形;(3)动点P从点O出发,沿对角线OD以每秒1个单位长度的速度向点D运动,直到点D为止,沿对角线DO以每秒1个单位长度的速度向点O运动,直到点O为止.设两个点的运动时间均为t秒.①当t=1时,△CPQ的面积是.②当点P,Q运动至四边形CPAQ为矩形时,请直接写出此时t 的值.七、解答题(本题12分)24.(12分)在△ABC中,AB=AC,△CDE中(CE≥CA),BC =CD,∠D=α,点B,C,E不共线,且PB=PD.(1)如图1,点D在线段BC延长线上,则∠ECD=,∠ABP=(用含α的代数式表示);(2)如图2,点A,E在直线BC同侧;(3)若∠ABC=60°,BC=+1,当BP⊥DE时,直线PC交BD于点G,请直接写出GM的长.八、解答题(本题12分)25.(12分)如图,平面直角坐标系中,O是坐标原点2+bx+c与x 轴交于A、B两点(点A在点B的左侧),点B坐标是(3,0).抛物线与y轴交于点C(0,3),连接PC.(1)求抛物线的函数表达式并直接写出顶点P的坐标.(2)直线BC与抛物线对称轴交于点D,点Q为直线BC上一动点.①当△QAB的面积等于△PCD面积的2倍时,求点Q的坐标;②在①的条件下,当点Q在x轴上方时,过点Q作直线l垂直于AQ x﹣交直线l于点F x﹣上,且AG=AQ时参考答案一、选择题(下列各题的备选答案中,只有一个答案是正确的,每小题2分,共20分)1.参考答案:9的相反数是﹣9,故选:D.点拨:此题主要考查了相反数,解题的关键是掌握相反数的概念.2.参考答案:从几何体的正面看,底层是四个小正方形.故选:B.点拨:本题主要考查了简单组合体的三视图,正确把握观察的角度是解题的关键.画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.3.参考答案:3270000=3.27×106.故选:D.点拨:此题主要考查了用科学记数法表示较大的数,一般形式为a ×10n,其中1≤|a|<10,确定a与n的值是解题的关键.4.参考答案:A.a4•a2=a8,故本选项错误;B.6a﹣2a=5a;C.a6÷a2=a3,故本选项错误;D.(﹣a2b)2=a3b2,故本选项错误;故选:B.点拨:本题主要考查了同底数幂的乘法法则、合并同类项法则、同底数幂的除法法则以及积的乘方法则的运用,关键是掌握合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.5.参考答案:如图,∵a∥b,∴∠1=∠3=70°,∵∠2+∠3=180°,∴∠2=180°﹣∠8=180°﹣70°=110°.故选:C.点拨:本题主要考查了平行线的性质,熟练掌握平行线的性质进行求解是解决本题的关键.6.参考答案:以上数据重新排列为:15,15,17,18,21,23,∴众数为17、中位数为,故选:A.点拨:本题考查的是众数和中位数的概念;熟练掌握中位数、众数的概念是解题的关键.7.参考答案:∵△ABC与△A1B1C4位似,∴△ABC∽△A1B1C8,AC∥A1C1,∴△AOC∽△A6OC1,∴==,∴△ABC与△A1B1C4的周长比为1:2,故选:A.点拨:本题考查的是位似图形的概念、相似三角形的性质,掌握位似图形是相似图形、位似图形的对应边平行是解题的关键.8.参考答案:∵一次函数y=﹣3x+1,k=﹣6,∴该函数图象经过第一、二、四象限,故选:C.点拨:本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.9.参考答案:A.任意掷一枚质地均匀的骰子,故原说法错误;B.“从一副扑克牌中任意抽取一张,故原说法错误;C.了解一批冰箱的使用寿命,说法正确;D.若平均数相同的甲,s甲2=0.2,s乙2=0.02,则乙组数据更稳定,不合题意;故选:C.点拨:本题主要考查了随机事件、抽样调查以及方差的概念,方差是反映一组数据的波动大小的一个量.方差越大,则各数据与平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.10.参考答案:过点O作OD⊥AB于D,则AD=DB=AB=,由圆周角定理得:∠AOB=2∠ACB=120°,∴∠AOD=60°,∴OA===2,∴的长==,故选:D.点拨:本题考查的是三角形的外接圆与外心,掌握垂径定理、圆周角定理、弧长公式是解题的关键.二、填空题(本大题共6小题,每小题3分,合计18分)11.参考答案:ax2+2ax+a,=a(x3+2x+1)﹣﹣(提取公因式)=a(x+3)2.﹣﹣(完全平方公式)点拨:本题考查了提公因式法与公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意要分解彻底.12.参考答案:解不等式x﹣5<1,得:x<5,解不等式3x﹣5≥7,得:x≥,则不等式组的解集为≤x<6,故答案为:≤x<6.点拨:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.13.参考答案:()•(x+4)=•(x+4)=•(x+4)=5,故答案为:1.点拨:本题考查了分式的混合运算,能正确根据分式的运算法则进行化简是解此题的关键,注意运算顺序.14.参考答案:∵四边形AMON的面积为12,∴|k|=12,∵反比例函数图象在二四象限,∴k<0,∴k=﹣12,故答案为:﹣12.点拨:本题考查了反比例函数函数k的几何意义:在反比例函数y =图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.15.参考答案:设销售单价定为x元(x≥9),每天所获利润为y 元,则y=[20﹣4(x﹣3)]•(x﹣8)=﹣4x4+88x﹣448=﹣4(x﹣11)2+36,所以将销售定价定为11元时,才能使每天所获销售利润最大,故答案为11.点拨:本题考查二次函数的应用,解答本题的关键是明确题意,列出相应的函数关系式,利用二次函数的性质解答.16.参考答案:∵△ABC中,AC=3,AB=5,∴AC7+BC2=25,AB2=25,∴AC7+BC2=AB2,∴△ABC为直角三角形,①当点D位于C点左侧时,如图:设直线l交BE于点M,∵l∥BC,∴,∠MGB=∠ABC,又∵四边形ABEF是正方形,且PD1=D1E,∴BE=AB=8,∠EBA=90°,即,解得:BM=,∵∠MGB=∠ABC,∠EBA=∠ACB=90°,∴△GBM∽△BCA,∴,∴,解得:GB=,∴AG=AB﹣GB=,∵l∥BC,∴△AGH∽△ABD1,∴,∵CD1=1,∴BD8=BC﹣CD1=3,∴,解得:GH=;②当点D位于C点右侧时,如图:与①同理,此时CD8=BC+CD1=5,∴,解得:GH=,综上,GH的长为或,故答案为:或.点拨:本题考查勾股定理逆定理,相似三角形的判定和性质,理解题意,证明出△GBM∽△BCA,特别注意分类思想的运用是解题关键.三、解答题(第17小题6分,第18、19题各8分,共22分)17.参考答案:(π﹣2021)0﹣3tan30°+|5﹣|+()﹣2=1﹣6×+﹣1+4=5﹣+﹣4+4=4.点拨:此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.18.参考答案:(1)证明:∵四边形ABCD为菱形,∴AB=AD=BC=CD,∠B=∠D,∵BM=BC DC,∴BM=DN,在△ABM和△ADN中,,∴△ABM≌△ADN(SAS),(2)∵四边形ABCD为菱形,∴AD∥CE,∴∠DAN=∠CEN,∵∠AND=∠CNE,∴△AND∽△ENC,∴=,∵DN=DC,∴==,∴=,∴CE=,∵BM=BC,∴MC=BC=6,∴ME=MC+CE=,故答案为:.点拨:本题考查了菱形的性质,全等三角形的判定,相似三角形的判定和性质,通过菱形的性质得到△AND∽△ENC是关键.19.参考答案:(1)小辰随机选择一种型号是凝胶型免洗洗手液的概率是,故答案为:;(2)列表如下:A B CA(A,A)(B,A)(C,A)B(A,B)(B,B)(C,B)C(A,C)(B,C)(C,C)由表可知,共有9种等可能结果,所以小辰和小安选择同一种型号免洗洗手液的概率为=.点拨:此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.四、解答题(每小题8分,共16分)20.参考答案:(1)32÷40%=80(名),故答案为:80;(2)B等级的学生为:80×20%=16(名),补全条形图如下,(3)D等级所对应的扇形圆心角的度数为:360°×=36°;(4)2000×=600(名),答:估计该校2000学生中有600名学生的成绩评定为C等级.点拨:本题考查扇形统计图、条形统计图,理解两个统计图中数量关系是解决问题的关键.21.参考答案:设增加了x行,则增加的列数为x,根据题意,得:(6+x)(8+x)﹣7×8=51,整理,得:x2+14x﹣51=3,解得x1=3,x7=﹣17(舍),答:增加了3行3列.点拨:本题主要考查一元二次方程的应用,解题的关键是理解题意,找到题目蕴含的相等关系.五、解答题(本题10分)22.参考答案:(1)∵AB是⊙O的直径,∴∠ACB=90°,∴∠BAC+∠ABC=90°.又∵CA=CD,∴∠D=∠CAD,又∵∠ABC=∠D,∴∠CAD+∠BAC=90°,即OA⊥AD,∴AD是⊙O的切线;(2)由(1)可得∠ABC+∠BAC=90°=∠D+∠DEA,∵∠ABC=∠D,∴∠BAC=∠DEA,∴CE=CA=CD=5,∴DE=10,在Rt△ABC中,由勾股定理得,BC===12,∵∠ACB=∠DAE=90°,∠ABC=∠D,∴△ABC∽△EDA,∴=,即=,解得,AD=.点拨:本题考查切线的判定,圆周角定理以及相似三角形,掌握切线的判定方法和圆周角定理、相似三角形的判定和性质是解决问题的前提.六、解答题(本题10分)23.参考答案:(1)∵直线y=kx+15(k≠0)经过点C(3,6),∴3k+15=6,解得k=﹣5,即直线的解析式为y=﹣3x+15,当y=0时,x=7,∴A(5.0),故答案为:﹣3,5,0;(2)∵线段CD平行于x轴,∴D点的纵坐标与C点一样,又∵D点在直线y=x上,当y=6时,x=6,即D(8,6),∴CD=5﹣3=5,∵OA=4,∴OA=CD,又∵OA∥CD,∴四边形OADC是平行四边形;(3)①作CH⊥OD于H,∵H点在直线y=x上,∴设H点的坐标为(m,m),∴CH2=(m﹣6)2+(m﹣6)2,DH5=(m﹣8)2+(m﹣6)8,由勾股定理,得CH2+DH2=CD3,即(m﹣3)2+(m﹣6)2+(m﹣8)2+(m﹣6)7=52,整理得m=或8(舍去),∴CH=3,∵OD==10,∴当t=1时,PQ=OD﹣t﹣t=10﹣1﹣5=8,∴S△CPQ=PQ•CH=,故答案为:12;②∵OD=10,当4≤t≤5时,PQ=10﹣2t,当2≤t≤10时,PQ=2t﹣10,当点P,Q运动至四边形CPAQ为矩形时,∵AC==2,当0≤t≤4时,10﹣2t=2,解得t=2﹣,当5≤t≤10时,2t﹣10=2,解得t=5+,综上,当点P或5+.点拨:本题主要考查一次函数的性质,熟练掌握待定系数法求解析式,平行四边形的性质和矩形的性质是解题的关键.七、解答题(本题12分)24.【解答】(1)解:如图1中,∵CE=CD,∴∠D=∠E=α,∴∠ECD=180°﹣2α,∴∠ECB=∠E+∠D=7α,∵AB=AC,∴∠ABC=∠ACB=2α,∵PB=PD,∴∠PBD=∠D=α,∴∠ABP=∠ABC﹣∠PBD=α,故答案为:180°﹣2α,α.(2)证明:如图5中,连接BD.∵CB=CD,PB=PD,∴∠CBD=∠CDB,∠PBD=∠PDB,∴∠PBC=∠PDC=α,∵∠ABC=2α,∴∠ABP=∠PBC=α,∴PB平分∠ABC.(3)解:如图3﹣3中,设BP交AC于J.∵BP⊥PD,BP=PD,∴△PBD是等腰直角三角形,∵CB=CD,PB=PD,∴PG垂直平分线段BG,∴BG=DG,∵PM=MD,∴GM=PB,∵∠ABC=∠ACB=60°,∴∠ECD=180°﹣60°=120°,△ACB是等边三角形,∵CE=CD,∴∠CDE=30°,∴∠PBC=∠PDC=30°,∴∠BJC=90°,∴CJ=BC=CJ=,∵∠CPD=∠CPJ=45°,∴PJ=JC=,∴PB=BJ+PJ=+2,∴GM=.如图3﹣5中,设PC交BC于K,同法可证GM=.∵∠PBC=30°,∠GPB=∠PBC+∠PCB=45°,∴PCB=∠PCD=15°,∴∠KCE=120°﹣15°﹣15°=90°,∵∠E=30°,CE=CB=,∴CK==1+,∴KB=BC﹣CK=,∴PB=BK•cos30°=×=1,∴GM=PB=,综上所述,GM的长为或.点拨:本题属于几何变换综合题,考查了等腰三角形的性质,线段的垂直平分线的性质,等腰直角三角形的判定和性质,等边三角形的判定和性质,解直角三角形,三角形的中位线定理等知识,解题的关键是利用特殊三角形的性质解决问题,学会用转化的思想思考问题,属于中考压轴题.八、解答题(本题12分)25.【解答】解(1)由题意得,,∴b=2,∴y=﹣x7+2x+3=﹣((x﹣5)2+4,∴P(5,4).(2)①如图1,作CE⊥PD于E,∵C (2,3),0),∴直线BC:y=﹣x+5,∴D(1,2),8﹣a),∴CE=PE=DE,∴△PCD是等腰直角三角形,∴S△PCD=PD•CE=,∴AB•|3﹣a|=2,∴×4•|4﹣a|=2,∴a=2或a=6.∴Q(2,1)或(3.②如图2,设G(m,m﹣),由AG2=AQ2得,(m+1)4+=(7+1)2+52,化简,得5m2+2m﹣16=0,∴m5=﹣2,m2=,∴G1(﹣4,﹣3),G2(,﹣),作QH⊥AB于H,∵AQ⊥QF,∴△AHQ∽△QHM,∴QH2=AH•HM,即:14=3•HM,∴HM=,∴M(,7),设直线QM是:y=kx+b,∴,∴k=﹣8,b=7,∴y=﹣3x+5,由得,x=,y=﹣∴F(,﹣)∴G1F==,G2F==.点拨:本题考查了二次函数,一次函数图象和性质及相似三角形等知识,解决问题的关键将点的坐标化成长度,转化成图形的相似等知识.。

【九年级】沈阳市2021年中考数学试卷(含答案)

【九年级】沈阳市2021年中考数学试卷(含答案)

【九年级】沈阳市2021年中考数学试卷(含答案)考试时间:120分钟,试卷满分150分,参考公式:参考公式:抛物线的顶点坐标是.对称轴是直线,注意事项21.答题前,考生须用0. 5mm黑色字迹的签字笔在本试题卷规定位置填写自己的姓名、准考证号;2.考生须在答题卡上作答,不能在本试题卷上作答,答在本试题卷上无效;3.考试结束,将本试题卷和答题卡一并交回;.4.本试题卷包括八道大题,25道小题,共6页.如缺页、印刷不清,考生须声明,否则后果自负.一、(下列各题的备选答案中,只有一个答案是正确的,每小题3分,共24分)1.2021年第一季度,沈阳市公共财政预算收入完成196亿元(数据来源:4月16日《沈阳日报》),讲196亿用科学记数法表示为()A. B. C. D.2.右图是一个几何体的三视图,这个几何体的名称是()A.圆柱体 B.三棱锥 C.球体 D.圆锥体3.下面计算一定正确的是()A.B.C. D.4.如果,那么m的取值范围是()A. B. C. D.5.下列事件中,是不可能事件的是()A.买一张电影票,座位号是奇数 B.射击运动员射击一次,命中9环.C.明天会下雨 D.度量三角形的内角和,结果是360°6.计算的结果是( )A. B. C. D.7、在同一平面直角坐标系中,函数与函数的图象可能是()8.如图,中,AE交BC于点D,,AD=4,BC=8,BD:DC=5:3,则DE的长等于()A. B. C. D.二、题(每小题4分,共32分)9.分解因式: _________.10.一组数据2,4,x,-1的平均数为3,则x的值是 =_________.11.在平面直角坐标系中,点M(-3,2)关于原点的对称点的坐标是 _________.12.若关于x的一元二次方程有两个不相等的实数根,则a的取值方位是_________.13.如果x=1时,代数式的值是5,那么x= -1时,代数式的值 _________.14.如图,点A、B、C、D都在⊙O上,=90°,AD=3,CD=2,则⊙O 的直径的长是_________.15.有一组等式:请观察它们的构成规律,用你发现的规律写出第8个等式为_________16.已知等边三角形ABC的高为4,在这个三角形所在的平面内有一点P,若点P到AB的距离是1,点P到AC的距离是2,则点P到BC的最小距离和最大距离分别是_________三、解答题(第17、18小题各8分,第19小题10分.共26分)17.计算:18.一家食品公司将一种新研发的食品免费送给一些人品尝,并让每个人按A(不喜欢)、B(一般)、C(比较喜欢)、D(非常喜欢)四个等级对该食品进行评价,图①和图②是该公司采集数据后,绘制的两幅不完整的统计图。

2021辽宁省沈阳市中考数学试卷

2021辽宁省沈阳市中考数学试卷

辽宁省沈阳市中考数学试卷一.选择题(下列各题的备选答案中,只有一个答案是正确的.每小题2分,共20分)1.下列有理数中,比0小的数是()A.﹣2B.1C.2D.32.2020年5月,中科院沈阳自动化所主持研制的“海斗一号”万米海试成功,下潜深度超10900米,刷新我国潜水器最大下潜深度记录.将数据10900用科学记数法表示为()A.1.09×103B.1.09×104C.10.9×103D.0.109×105 3.如图是由四个相同的小立方块搭成的几何体,这个几何体的主视图是()A.B.C.D.4.下列运算正确的是()A.a2+a3=a5B.a2•a3=a6C.(2a)3=8a3D.a3÷a=a35.如图,直线AB∥CD,且AC⊥CB于点C,若∠BAC=35°,则∠BCD的度数为()A.65°B.55°C.45°D.35°6.不等式2x≤6的解集是()A.x≤3B.x≥3C.x<3D.x>37.下列事件中,是必然事件的是()A.从一个只有白球的盒子里摸出一个球是白球B.任意买一张电影票,座位号是3的倍数C.掷一枚质地均匀的硬币,正面向上D.汽车走过一个红绿灯路口时,前方正好是绿灯8.一元二次方程x2﹣2x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定9.一次函数y=kx+b(k≠0)的图象经过点A(﹣3,0),点B(0,2),那么该图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限10.如图,在矩形ABCD中,AB=,BC=2,以点A为圆心,AD长为半径画弧交边BC于点E,连接AE,则的长为()A.B.πC.D.二、填空题(每小题3分,共18分)11.因式分解:2x2+x=.12.二元一次方程组的解是.13.甲、乙两人在相同条件下进行射击练习,每人10次射击成绩的平均值都是7环,方差分别为S甲2=2.9,S乙2=1.2,则两人成绩比较稳定的是(填“甲”或“乙”).14.如图,在平面直角坐标系中,O是坐标原点,在△OAB中,AO =AB,AC⊥OB于点C,点A在反比例函数y=(k≠0)的图象上,若OB=4,AC=3,则k的值为.15.如图,在平行四边形ABCD中,点M为边AD上一点,AM=2MD,点E,点F分别是BM,CM中点,若EF=6,则AM的长为.16.如图,在矩形ABCD中,AB=6,BC=B,对角线AC,BD相交于点O,点P为边AD 上一动点,连接OP,以OP为折痕,将△AOP折叠,点A的对应点为点E,线段PE与OD相交于点F.若△PDF为直角三角形,则DP的长为.三、解答题(第17小题6分,第18、19小题各8分,共22分)17.计算:2sin60°+(﹣)﹣2+(π﹣2020)0+|2﹣|.18.沈阳市图书馆推出“阅读沈阳书香盛京”等一系列线上线下相融合的阅读推广活动,需要招募学生志愿者.某校甲、乙两班共有五名学生报名,甲班一名男生,一名女生;乙班一名男生,两名女生.现从甲、乙两班各随机抽取一名学生作为志愿者,请用列表法或画树状图法求抽出的两名学生性别相同的概率.(温馨提示:甲班男生用A表示,女生用B表示;乙班男生用a表示,两名女生分别用b1,b2表示).19.如图,在矩形ABCD中,对角线AC的垂直平分线分别与边AB和边CD的延长线交于点M,N,与边AD交于点E,垂足为点O.(1)求证:△AOM≌△CON;(2)若AB=3,AD=6,请直接写出AE的长为.四、(每小题8分,共16分).20.某市为了将生活垃圾合理分类,并更好地回收利用,将垃圾分为可回收物、厨余垃圾、有害垃圾和其他垃圾四类.现随机抽取该市m吨垃圾,将调查结果制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)m=,n=;(2)根据以上信息直接补全条形统计图;(3)扇形统计图中,厨余垃圾所对应的扇形圆心角的度数为度;(4)根据抽样调查的结果,请你估计该市2000吨垃圾中约有多少吨可回收物.21.某工程队准备修建一条长3000m的盲道,由于采用新的施工方式,实际每天修建盲道的长度比原计划增加25%,结果提前2天完成这一任务,原计划每天修建盲道多少米?五、(本题10分)22.如图,在△ABC中,∠ACB=90°,点O为BC边上一点,以点O为圆心,OB长为半径的圆与边AB相交于点D,连接DC,当DC为⊙O的切线时.(1)求证:DC=AC;(2)若DC=DB,⊙O的半径为1,请直接写出DC的长为.六、(本题10分)23.如图,在平面直角坐标系中,△AOB的顶点O是坐标原点,点A的坐标为(4,4),点B的坐标为(6,0),动点P从O开始以每秒1个单位长度的速度沿y轴正方向运动,设运动的时间为t秒(0<t<4),过点P作PN∥x轴,分别交AO,AB于点M,N.(1)填空:AO的长为,AB的长为;(2)当t=1时,求点N的坐标;(3)请直接写出MN的长为(用含t的代数式表示);(4)点E是线段MN上一动点(点E不与点M,N重合),△AOE和△ABE的面积分别表示为S1和S2,当t=时,请直接写出S1•S2(即S1与S2的积)的最大值为.七、(本题12分)24.在△ABC中,AB=AC,∠BAC=α,点P为线段CA延长线上一动点,连接PB,将线段PB绕点P逆时针旋转,旋转角为α,得到线段PD,连接DB,DC.(1)如图1,当α=60°时,①求证:P A=DC;②求∠DCP的度数;(2)如图2,当α=120°时,请直接写出P A和DC的数量关系.(3)当α=120°时,若AB=6,BP=,请直接写出点D到CP的距离为.八、(本题12分)25.如图1,在平面直角坐标系中,O是坐标原点,抛物线y=x2+bx+c经过点B(6,0)和点C(0,﹣3).(1)求抛物线的表达式;(2)如图2,线段OC绕原点O逆时针旋转30°得到线段OD.过点B作射线BD,点M是射线BD上一点(不与点B重合),点M关于x轴的对称点为点N,连接NM,NB.①直接写出△MBN的形状为;②设△MBN的面积为S1,△ODB的面积为是S2.当S1=S2时,求点M的坐标;(3)如图3,在(2)的结论下,过点B作BE⊥BN,交NM的延长线于点E,线段BE绕点B逆时针旋转,旋转角为α(0°<α<120°)得到线段BF,过点F作FK∥x轴,交射线BE于点K,∠KBF的角平分线和∠KFB的角平分线相交于点G,当BG=2时,请直接写出点G的坐标为.2020年辽宁省沈阳市中考数学试卷参考答案一.选择题(下列各题的备选答案中,只有一个答案是正确的.每小题2分,共20分)1.A;2.CD;3.D;4.C;5.B;6.A;7.A;8.B;9.D;10.C;二、填空题(每小题3分,共18分)11.x(2x+1);12.;13.乙;14.6;15.8;16.或1;三、解答题(第17小题6分,第18、19小题各8分,共22分)17.;18.;19.;四、(每小题8分,共16分).20.;;;21.;五、(本题10分)22.;六、(本题10分)23.;;;;七、(本题12分)24.;八、(本题12分)25.;;。

辽宁省沈阳市2021年中考数学试卷A卷

辽宁省沈阳市2021年中考数学试卷A卷

辽宁省沈阳市2021年中考数学试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)-3的相反数是()A . 3B . -3C .D . -2. (2分) (2019九上·朝阳期末) 若二次根式有意义,则x的取值范围为()A . x>2B . x<2C . x≤2D . x≥23. (2分) (2019九上·宁波期中) 下列事件是必然事件的是()A . 某人体温是100℃B . 太阳从西边下山C . a2+b2=﹣1D . 购买一张彩票,中奖4. (2分) (2020八上·东台月考) 下列图形中,是轴对称图形的是()A .B .C .D .5. (2分)如图是一个正方体被截去一角后得到的几何体,它的俯视图是()A .B .C .D .6. (2分)(2012·抚顺) 从﹣2,2,3这三个数中任取两个不同的数相乘,积为负数的概率是()A .B .C .D .7. (2分)(2020·云梦模拟) 如图所示,菱形AOBC的顶点B在y轴上,顶点A在反比例函数y=的图象上,边AC,OA分别交反比例函数y=的图象于点D,点E,边AC交x轴于点F,连接CE.已知四边形OBCE的面积为12,sin∠AOF=,则k的值为()A .B .C .D .8. (2分) (2020九下·哈尔滨月考) 一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶,设行驶的时间为x(小时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地过程中y与x之间的函数关系,已知两车相遇时快车比慢车多行驶40千米,快车到达乙地时,慢车距甲地还有()A . 70千米B . 80千米C . 90千米D . 100千米9. (2分)如图,在锐角△ABC中,∠A=60°,∠ACB=45°,以BC为弦作⊙O,交AC于点D,OD与BC交于点E,若AB与⊙O相切,则下列结论:①∠BOD=90°;②DO∥AB;③CD=AD;④△BDE∽△BCD;=.正确的有()A . ①②B . ①④⑤C . ①②④⑤D . ①②③④⑤10. (2分) (2016七上·绵阳期中) 如图,用火柴棍拼成一排由三角形组成的图形,如果图形中含有n(n 为正整数)个三角形,则需要火柴棍()A . (2n+3)根B . 2n根C . (2n+1)根D . (2n﹣1)根二、填空题 (共6题;共6分)11. (1分) (2019七下·昭平期中) 计算=________.12. (1分)一组数据:3,4,4,6,6,6的中位数是________.13. (1分)计算:=________14. (1分) (2019九下·江阴期中) 在□ABCD中,若∠A=40°,则∠C=________°.15. (1分)(2019·双牌模拟) 如图示二次函数y=ax2+bx+c的对称轴在y轴的右侧,其图象与x轴交于点A (﹣1,0)与点C(x2 , 0),且与y轴交于点B(0,﹣2),小强得到以下结论:①0<a<2;②﹣1<b<0;③c=﹣1;④当|a|=|b|时x2>﹣1;以上结论中符合题意结论的序号为________.16. (1分)(2019·通辽) 如图,在矩形中,,对角线与相交于点,,垂足为点,且平分,则的长为________.三、解答题 (共8题;共91分)17. (5分) (2020八上·恩平期末) 计算:18. (5分) (2019七下·安徽期末) 根据提示,完成推理:已知,AC⊥AB,EF⊥BC,AD⊥BC,∠1=∠2,请问AC⊥DG吗?请写出推理过程解:AC⊥DG,理由如下:∵EF⊥BC,AD⊥BC,∴AD∥EF.∴∠2=∠3.……请完成以上推理过程.19. (11分)(2019·衢州) 某校为积极响应“南孔圣地,衢州有礼”城市品牌建设,在每周五下午第三节课开展了丰富多彩的走班选课活动。

辽宁省沈阳市2021版中考数学试卷(I)卷

辽宁省沈阳市2021版中考数学试卷(I)卷

辽宁省沈阳市2021版中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)绝对值大于2且不大于4的整数有()A . 3个B . 4个C . 5个D . 6个2. (2分)若使二次根式在实数范围内有意义,则x的取值范围是()A . x≥2B . x>2C . x<2D . x≤23. (2分)下列计算正确的是()A . (2x﹣3)2=4x2+12x﹣9B . (4x+1)2=16x2+8x+1C . (a+b)(a﹣b)=a2+b2D . (2m+3)(2m﹣3)=4m2﹣34. (2分) (2016七下·滨州期中) 如图,AB∥CD,直线EF与AB,CD分别交于点M,N,过点N的直线GH 与AB交于点P,则下列结论错误的是()A . ∠EMB=∠ENDB . ∠BMN=∠MNCC . ∠CNH=∠BPGD . ∠DNG=∠AME5. (2分)(2019·大邑模拟) 关于分式方程的解,下列说法正确的是()A . 解是x=2B . 解是x=4C . 解是x=﹣4D . 无解6. (2分) (2016七上·夏津期末) 如图是由4个大小相同的正方体搭成的几何体,其主视图是()A .B .C .D .7. (2分)(2017·泸州) 如图,AB是⊙O的直径,弦CD⊥AB于点E.若AB=8,AE=1,则弦CD的长是()A .B . 2C . 6D . 88. (2分)小明周末去爬山,从家出发到山下开始爬山,到达山顶后在原地休息了一会,再原路返回下山到家,那么小明离家的距离S(单位:千米)与离家的时间t(单位:时)之间的函数关系图象大致是()A .B .C .D .二、填空题 (共8题;共8分)9. (1分) (2019·淮安) 分解因式: ________.10. (1分)(2011·徐州) 某班40名同学的年龄情况如下表,则这40名同学的年龄的中位数是________岁.年齡/岁14151617人数41618211. (1分) (2017九上·西城期中) ⊙O中,AB为⊙O的弦,∠AOB=140°,则弦AB所对的圆周角为________度.12. (1分) (2019八下·桐乡期中) 设α、β是方程两个实数根,则的值为________.13. (1分)(2017·凉州模拟) 现有一个圆心角为90°,半径为8cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计).该圆锥底面圆的半径为________cm.14. (1分)周长为16的矩形的面积y与它的一条边长x之间的函数关系式为y=________ .(不需要写出定义域)15. (1分)某学校去年对实验器材的投资为2万元,预计今年和明年的投资总额为12万元,求该学校这两年在实验器材投资上的平均增长率是________ 。

2021年辽宁省沈阳市中考数学试卷(含答案解析版)

2021年辽宁省沈阳市中考数学试卷(含答案解析版)

2021年辽宁省沈阳市中考数学试卷一、选择题〔每题只有一个正确选项,此题共10小题,每题2分,共20分〕1.〔分〕〔2021•沈阳〕以下各数中是有理数的是〔〕A.πB.0 C.D.2.〔分〕〔2021•沈阳〕辽宁男蓝夺冠后,从4月21日至24日各类媒体体关于“辽篮CBA夺冠〞的相关文章到达81000篇,将数据81000用科学记数法表示为〔〕A.×104B.×106C.×104D.×1063.〔分〕〔2021•沈阳〕如图是由五个一样的小立方块搭成的几何体,这个几何体的左视图是〔〕A.B.C.D.4.〔分〕〔2021•沈阳〕在平面直角坐标系中,点B的坐标是〔4,﹣1〕,点A与点B关于x轴对称,那么点A的坐标是〔〕A.〔4,1〕 B.〔﹣1,4〕C.〔﹣4,﹣1〕D.〔﹣1,﹣4〕5.〔分〕〔2021•沈阳〕以下运算错误的选项是〔〕A.〔m2〕3=m6B.a10÷a9=a C.x3•x5=x8D.a4+a3=a76.〔分〕〔2021•沈阳〕如图,AB∥CD,EF∥GH,∠1=60°,那么∠2补角的度数是〔〕A.60°B.100°C.110° D.120°7.〔分〕〔2021•沈阳〕以下事件中,是必然事件的是〔〕A.任意买一张电影票,座位号是2的倍数B.13个人中至少有两个人生肖一样C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨8.〔分〕〔2021•沈阳〕在平面直角坐标系中,一次函数y=kx+b的图象如下图,那么k和b的取值范围是〔〕A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<09.〔分〕〔2021•沈阳〕点A〔﹣3,2〕在反比例函数y=〔k≠0〕的图象上,那么k的值是〔〕A.﹣6 B.﹣C.﹣1 D.610.〔分〕〔2021•沈阳〕如图,正方形ABCD内接于⊙O,AB=2,那么的长是〔〕A.πB.πC.2πD.π二、细心填一填〔本大题共6小题,每题3分,总分值18分,请把答案填在答題卷相应题号的横线上〕11.〔分〕〔2021•沈阳〕因式分解:3x3﹣12x=.12.〔分〕〔2021•沈阳〕一组数3,4,7,4,3,4,5,6,5的众数是.13.〔分〕〔2021•沈阳〕化简:﹣=.14.〔分〕〔2021•沈阳〕不等式组的解集是.15.〔分〕〔2021•沈阳〕如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF分开.篱笆的总长为900m〔篱笆的厚度忽略不计〕,当AB= m时,矩形土地ABCD的面积最大.16.〔分〕〔2021•沈阳〕如图,△ABC是等边三角形,AB=,点D是边BC上一点,点H是线段AD上一点,连接BH、CH.当∠BHD=60°,∠AHC=90°时,DH=.三、解答题题〔17题6分,18-19题各8分,请认真读题〕17.〔分〕〔2021•沈阳〕计算:2tan45°﹣|﹣3|+〔〕﹣2﹣〔4﹣π〕0.18.〔分〕〔2021•沈阳〕如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.〔1〕求证:四边形OCED是矩形;〔2〕假设CE=1,DE=2,ABCD的面积是.19.〔分〕〔2021•沈阳〕经过校园某路口的行人,可能左转,也可能直行或右转.假设这三种可能性一样,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率.四、解答题〔每题8分,请认真读题〕20.〔分〕〔2021•沈阳〕九年三班的小雨同学想理解本校九年级学生对哪门课程感兴趣,随机抽取了局部九年级学生进展调查〔每名学生必只能选择一门课程〕.将获得的数据整理绘制如下两幅不完好的统计图.据统计图提供的信息,解答以下问题:〔1〕在这次调查中一共抽取了名学生,m的值是.〔2〕请根据据以上信息直在答题卡上补全条形统计图;〔3〕扇形统计图中,“数学〞所对应的圆心角度数是度;〔4〕假设该校九年级共有1000名学生,根据抽样调查的结果,请你估计该校九年级学生中有多少名学生对数学感兴趣.21.〔分〕〔2021•沈阳〕某公司今年1月份的消费本钱是400万元,由于改良技术,消费本钱逐月下降,3月份的消费本钱是361万元.假设该公司2、3、4月每个月消费本钱的下降率都一样.〔1〕求每个月消费本钱的下降率;〔2〕请你预测4月份该公司的消费本钱.五、解答题〔此题10〕22.〔分〕〔2021•沈阳〕如图,BE是O的直径,点A和点D是⊙O上的两点,过点A作⊙O的切线交BE延长线于点.〔1〕假设∠ADE=25°,求∠C的度数;〔2〕假设AB=AC,CE=2,求⊙O半径的长.六、解答题〔此题10分〕23.〔分〕〔2021•沈阳〕如图,在平面直角坐标系中,点F的坐标为〔0,10〕.点E的坐标为〔20,0〕,直线l1经过点F和点E,直线l1与直线l2 、y=x相交于点P.〔1〕求直线l1的表达式和点P的坐标;〔2〕矩形ABCD的边AB在y轴的正半轴上,点A与点F重合,点B在线段OF 上,边AD平行于x 轴,且AB=6,AD=9,将矩形ABCD沿射线FE的方向平移,边AD始终与x 轴平行.矩形ABCD以每秒个单位的速度匀速挪动〔点A挪动到点E时止挪动〕,设挪动时间为t秒〔t>0〕.①矩形ABCD在挪动过程中,B、C、D三点中有且只有一个顶点落在直线l1或l2上,请直接写出此时t的值;②假设矩形ABCD在挪动的过程中,直线CD交直线l1于点N,交直线l2于点M.当△PMN的面积等于18时,请直接写出此时t的值.七、解答题〔此题12分〕24.〔分〕〔2021•沈阳〕:△ABC是等腰三角形,CA=CB,0°<∠ACB≤90°.点M 在边AC上,点N在边BC上〔点M、点N不与所在线段端点重合〕,BN=AM,连接AN,BM,射线AG∥BC,延长BM交射线AG于点D,点E在直线AN上,且AE=DE.〔1〕如图,当∠ACB=90°时①求证:△BCM≌△ACN;②求∠BDE的度数;〔2〕当∠ACB=α,其它多件不变时,∠BDE的度数是〔用含α的代数式表示〕〔3〕假设△ABC是等边三角形,AB=3,点N是BC边上的三等分点,直线ED 与直线BC交于点F,请直接写出线段CF的长.八、解答题〔此题12分〕25.〔分〕〔2021•沈阳〕如图,在平面角坐标系中,抛物线C1:y=ax2+bx﹣1经过点A〔﹣2,1〕和点B〔﹣1,﹣1〕,抛物线C2:y=2x2+x+1,动直线x=t与抛物线C1交于点N,与抛物线C2交于点M.〔1〕求抛物线C1的表达式;〔2〕直接用含t的代数式表示线段MN的长;〔3〕当△AMN是以MN为直角边的等腰直角三角形时,求t的值;〔4〕在〔3〕的条件下,设抛物线C1与y轴交于点P,点M在y轴右侧的抛物线C2上,连接AM交y轴于点k,连接KN,在平面内有一点Q,连接KQ和QN,当KQ=1且∠KNQ=∠BNP时,请直接写出点Q的坐标.2021年辽宁省沈阳市中考数学试卷参考答案与试题解析一、选择题〔每题只有一个正确选项,此题共10小题,每题2分,共20分〕1.〔分〕〔2021•沈阳〕以下各数中是有理数的是〔〕A.πB.0 C.D.【考点】27:实数.【专题】511:实数.【分析】根据有理数是有限小数或无限循环小,可得答案.【解答】解:A、π是无限不循环小数,属于无理数,故本选项错误;B、0是有理数,故本选项正确;C、是无理数,故本选项错误;D、无理数,故本选项错误;应选:B.【点评】此题考察了有理数,有限小数或无限循环小数是有理数.2.〔分〕〔2021•沈阳〕辽宁男蓝夺冠后,从4月21日至24日各类媒体体关于“辽篮CBA夺冠〞的相关文章到达81000篇,将数据81000用科学记数法表示为〔〕A.×104B.×106C.×104D.×106【考点】1I:科学记数法—表示较大的数.【专题】1 :常规题型.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点挪动了多少位,n的绝对值与小数点挪动的位数一样.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将81000用科学记数法表示为:×104.应选:C.【点评】此题考察科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.〔分〕〔2021•沈阳〕如图是由五个一样的小立方块搭成的几何体,这个几何体的左视图是〔〕A.B.C.D.【考点】U2:简单组合体的三视图.【专题】55:几何图形.【分析】细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形断定那么可.【解答】解:从左边看,从左往右小正方形的个数依次为:2,1.左视图如下:应选:D.【点评】此题主要考察了几何体的三种视图和学生的空间想象才能,视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.4.〔分〕〔2021•沈阳〕在平面直角坐标系中,点B的坐标是〔4,﹣1〕,点A与点B关于x轴对称,那么点A的坐标是〔〕A.〔4,1〕 B.〔﹣1,4〕C.〔﹣4,﹣1〕D.〔﹣1,﹣4〕【考点】P5:关于x轴、y轴对称的点的坐标.【专题】1 :常规题型.【分析】直接利用关于x轴对称点的性质,横坐标不变纵坐标改变符号进而得出答案.【解答】解:∵点B的坐标是〔4,﹣1〕,点A与点B关于x轴对称,∴点A的坐标是:〔4,1〕.应选:A.【点评】此题主要考察了关于x轴对称点的性质,正确把握横纵坐标的关系是解题关键.5.〔分〕〔2021•沈阳〕以下运算错误的选项是〔〕A.〔m2〕3=m6B.a10÷a9=a C.x3•x5=x8D.a4+a3=a7【考点】35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方;48:同底数幂的除法.【专题】11 :计算题.【分析】直接利用合并同类项法那么以及单项式乘以单项式运算法那么和同底数幂的除法运算法那么化简求出即可.【解答】解:A、〔m2〕3=m6,正确;B、a10÷a9=a,正确;C、x3•x5=x8,正确;D、a4+a3=a4+a3,错误;应选:D.【点评】此题主要考察了合并同类项法那么以及单项式乘以单项式运算法那么和同底数幂的除法运算法那么等知识,正确掌握运算法那么是解题关键.6.〔分〕〔2021•沈阳〕如图,AB∥CD,EF∥GH,∠1=60°,那么∠2补角的度数是〔〕A.60°B.100°C.110° D.120°【考点】IL:余角和补角;JA:平行线的性质.【专题】551:线段、角、相交线与平行线.【分析】根据平行线的性质比拟多定义求解即可;【解答】解:∵AB∥CD,∴∠1=∠EFH,∵EF∥GH,∴∠2=∠EFH,∴∠2=∠1=60°,∴∠2的补角为120°,应选:D.【点评】此题考察平行线的性质、补角和余角等知识,解题的关键是纯熟掌握根本知识,属于中考常考题型.7.〔分〕〔2021•沈阳〕以下事件中,是必然事件的是〔〕A.任意买一张电影票,座位号是2的倍数B.13个人中至少有两个人生肖一样C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨【考点】X1:随机事件.【专题】543:概率及其应用.【分析】必然事件就是一定发生的事件,根据定义即可判断.【解答】解:A、“任意买一张电影票,座位号是2的倍数〞是随机事件,故此选项错误;B、“13个人中至少有两个人生肖一样〞是必然事件,故此选项正确;C、“车辆随机到达一个路口,遇到红灯〞是随机事件,故此选项错误;D、“明天一定会下雨〞是随机事件,故此选项错误;应选:B.【点评】考察了随机事件.解决此题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8.〔分〕〔2021•沈阳〕在平面直角坐标系中,一次函数y=kx+b的图象如下图,那么k和b的取值范围是〔〕A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0【考点】F7:一次函数图象与系数的关系.【专题】53:函数及其图象.【分析】根据一次函数的图象与系数的关系进展解答即可.【解答】解:∵一次函数y=kx+b的图象经过一、二、四象限,∴k<0,b>0.应选:C.【点评】此题考察的是一次函数的图象与系数的关系,即一次函数y=kx+b〔k≠0〕中,当k<0,b>0时图象在一、二、四象限.9.〔分〕〔2021•沈阳〕点A〔﹣3,2〕在反比例函数y=〔k≠0〕的图象上,那么k的值是〔〕A.﹣6 B.﹣C.﹣1 D.6【考点】G6:反比例函数图象上点的坐标特征.【专题】33 :函数思想.【分析】根据点A的坐标,利用反比例函数图象上点的坐标特征求出k值,此题得解.【解答】解:∵A〔﹣3,2〕在反比例函数y=〔k≠0〕的图象上,∴k=〔﹣3〕×2=﹣6.应选:A.【点评】此题考察了反比例函数图象上点的坐标特征,反比例函数图象上所有点的坐标均满足该函数的解析式.10.〔分〕〔2021•沈阳〕如图,正方形ABCD内接于⊙O,AB=2,那么的长是〔〕A.πB.πC.2πD.π【考点】LE:正方形的性质;MN:弧长的计算.【专题】1 :常规题型.【分析】连接OA、OB,求出∠AOB=90°,根据勾股定理求出AO,根据弧长公式求出即可.【解答】解:连接OA、OB,∵正方形ABCD内接于⊙O,∴AB=BC=DC=AD,∴===,∴∠AOB=×360°=90°,在Rt△AOB中,由勾股定理得:2AO2=〔2〕2,解得:AO=2,∴的长为=π,应选:A.【点评】此题考察了弧长公式和正方形的性质,能求出∠AOB的度数和OA的长是解此题的关键.二、细心填一填〔本大题共6小题,每题3分,总分值18分,请把答案填在答題卷相应题号的横线上〕11.〔分〕〔2021•沈阳〕因式分解:3x3﹣12x=3x〔x+2〕〔x﹣2〕.【考点】55:提公因式法与公式法的综合运用.【分析】首先提公因式3x,然后利用平方差公式即可分解.【解答】解:3x3﹣12x=3x〔x2﹣4〕=3x〔x+2〕〔x﹣2〕故答案是:3x〔x+2〕〔x﹣2〕.【点评】此题考察了提公因式法与公式法分解因式,要求灵敏使用各种方法对多项式进展因式分解,一般来说,假如可以先提取公因式的要先提取公因式,再考虑运用公式法分解.12.〔分〕〔2021•沈阳〕一组数3,4,7,4,3,4,5,6,5的众数是4.【考点】W5:众数.【专题】1 :常规题型;542:统计的应用.【分析】根据众数的定义求解可得.【解答】解:在这组数据中4出现次数最多,有3次,所以这组数据的众数为4,故答案为:4.【点评】此题主要考察众数,解题的关键是掌握求一组数据的众数的方法:找出频数最多的那个数据,假设几个数据频数都是最多且一样,此时众数就是这多个数据.13.〔分〕〔2021•沈阳〕化简:﹣=.【考点】6B:分式的加减法.【专题】11 :计算题;513:分式.【分析】原式通分并利用同分母分式的减法法那么计算,约分即可得到结果.【解答】解:原式=﹣==,故答案为:【点评】此题考察了分式的加减法,纯熟掌握运算法那么是解此题的关键.14.〔分〕〔2021•沈阳〕不等式组的解集是﹣2≤x<2.【考点】CB:解一元一次不等式组.【专题】11 :计算题;524:一元一次不等式(组)及应用.【分析】先求出两个不等式的解集,再求不等式组的公共解.【解答】解:解不等式x﹣2<0,得:x<2,解不等式3x+6≥0,得:x≥﹣2,那么不等式组的解集为﹣2≤x<2,故答案为:﹣2≤x<2.【点评】此题考察理解一元一次不等式组,遵循以下原那么:同大取较大,同小取较小,小大大小中间找,大大小小解不了.15.〔分〕〔2021•沈阳〕如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF分开.篱笆的总长为900m〔篱笆的厚度忽略不计〕,当AB= 150m时,矩形土地ABCD的面积最大.【考点】HE:二次函数的应用.【专题】12 :应用题.【分析】根据题意可以用相应的代数式表示出矩形绿地的面积;即可解答此题.【解答】解:〔1〕设AB=xm,那么BC=〔900﹣3x〕,由题意可得,S=AB×BC=x×〔900﹣3x〕=﹣〔x2﹣300x〕=﹣〔x﹣150〕2+33750∴当x=150时,S获得最大值,此时,S=33750,∴AB=150m,故答案为:150.【点评】此题考察二次函数的应用,解答此题的关键是明确题意,列出相应的函数关系式,利用二次函数的顶点式求函数的最值.16.〔分〕〔2021•沈阳〕如图,△ABC是等边三角形,AB=,点D是边BC上一点,点H是线段AD上一点,连接BH、CH.当∠BHD=60°,∠AHC=90°时,DH=.【考点】KD:全等三角形的断定与性质;KK:等边三角形的性质;S9:相似三角形的断定与性质.【专题】11 :计算题.【分析】作AE⊥BH于E,BF⊥AH于F,如图,利用等边三角形的性质得AB=AC,∠BAC=60°,再证明∠ABH=∠CAH,那么可根据“AAS〞证明△ABE≌△CAH,所以BE=AH,AE=CH,在Rt△AHE中利用含30度的直角三角形三边的关系得到HE=AH,AE=AH,那么CH=AH,于是在Rt△AHC中利用勾股定理可计算出AH=2,从而得到BE=2,HE=1,AE=CH=,BH=1,接下来在Rt△BFH中计算出HF=,BF=,然后证明△CHD∽△BFD,利用相似比得到=2,从而利用比例性质可得到DH 的长.【解答】解:作AE⊥BH于E,BF⊥AH于F,如图,∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,∵∠BHD=∠ABH+∠BAH=60°,∠BAH+∠CAH=60°,∴∠ABH=∠CAH,在△ABE和△CAH中,∴△ABE≌△CAH,∴BE=AH,AE=CH,在Rt△AHE中,∠AHE=∠BHD=60°,∴sin∠AHE=,HE=AH,∴AE=AH•sin60°=AH,∴CH=AH,在Rt△AHC中,AH2+〔AH〕2=AC2=〔〕2,解得AH=2,∴BE=2,HE=1,AE=CH=,∴BH=BE﹣HE=2﹣1=1,在Rt△BFH中,HF=BH=,BF=,∵BF∥CH,∴△CHD∽△BFD,∴===2,∴DH=HF=×=.故答案为.【点评】此题考察了相似三角形的断定与性质:在断定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥根本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考察了全等三角形的断定与性质和等边三角形的性质.三、解答题题〔17题6分,18-19题各8分,请认真读题〕17.〔分〕〔2021•沈阳〕计算:2tan45°﹣|﹣3|+〔〕﹣2﹣〔4﹣π〕0.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【专题】1 :常规题型.【分析】直接利用绝对值的性质以及零指数幂的性质和特殊角的三角函数值以及负指数幂的性质分别化简得出答案.【解答】解:原式=2×1﹣〔3﹣〕+4﹣1=2﹣3++4﹣1=2+.【点评】此题主要考察了实数运算,正确化简各数是解题关键.18.〔分〕〔2021•沈阳〕如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.〔1〕求证:四边形OCED是矩形;〔2〕假设CE=1,DE=2,ABCD的面积是4.【考点】L8:菱形的性质;LD:矩形的断定与性质.【专题】556:矩形菱形正方形.【分析】〔1〕欲证明四边形OCED是矩形,只需推知四边形OCED是平行四边形,且有一内角为90度即可;〔2〕由菱形的对角线互相垂直平分和菱形的面积公式解答.【解答】〔1〕证明:∵四边形ABCD是菱形,∴AC⊥BD,∴∠COD=90°.∵CE∥OD,DE∥OC,∴四边形OCED是平行四边形,又∠COD=90°,∴平行四边形OCED是矩形;〔2〕由〔1〕知,平行四边形OCED是矩形,那么CE=OD=1,DE=OC=2.∵四边形ABCD是菱形,∴AC=2OC=4,BD=2OD=2,∴菱形ABCD的面积为:AC•BD=×4×2=4.故答案是:4.【点评】考察了矩形的断定与性质,菱形的性质.此题中,矩形的断定,首先要断定四边形是平行四边形,然后证明有一内角为直角.19.〔分〕〔2021•沈阳〕经过校园某路口的行人,可能左转,也可能直行或右转.假设这三种可能性一样,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率.【考点】X6:列表法与树状图法.【专题】1 :常规题型;543:概率及其应用.【分析】画树状图展示所有9种等可能的结果数,找出“至少有一人直行〞的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有9种等可能的结果数,其中两人之中至少有一人直行的结果数为5,所以两人之中至少有一人直行的概率为.【点评】此题考察了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.四、解答题〔每题8分,请认真读题〕20.〔分〕〔2021•沈阳〕九年三班的小雨同学想理解本校九年级学生对哪门课程感兴趣,随机抽取了局部九年级学生进展调查〔每名学生必只能选择一门课程〕.将获得的数据整理绘制如下两幅不完好的统计图.据统计图提供的信息,解答以下问题:〔1〕在这次调查中一共抽取了50名学生,m的值是18.〔2〕请根据据以上信息直在答题卡上补全条形统计图;〔3〕扇形统计图中,“数学〞所对应的圆心角度数是108度;〔4〕假设该校九年级共有1000名学生,根据抽样调查的结果,请你估计该校九年级学生中有多少名学生对数学感兴趣.【考点】V5:用样本估计总体;VB:扇形统计图;VC:条形统计图.【专题】54:统计与概率.【分析】〔1〕根据统计图化学对应的数据和百分比可以求得这次调查的学生数,进而求得m的值;〔2〕根据〔1〕中的结果和条形统计图中的数据可以求得选择数学的人数,从而可以将条形统计图补充完好;〔3〕根据统计图中的数据可以求得“数学〞所对应的圆心角度数;〔4〕根据统计图中的数据,可以求得该校九年级学生中有多少名学生对数学感兴趣.【解答】解:〔1〕在这次调查中一共抽取了:10÷20%=50〔名〕学生,m%=9÷50×100%=18%,故答案为:50,18;〔2〕选择数学的有;50﹣9﹣5﹣8﹣10﹣3=15〔名〕,补全的条形统计图如右图所示;〔3〕扇形统计图中,“数学〞所对应的圆心角度数是:360°×=108°,故答案为:108;〔4〕1000×=300〔名〕,答:该校九年级学生中有300名学生对数学感兴趣.【点评】此题考察条形统计图、扇形统计图、用样本估计总体,解答此题的关键是明确题意,利用数形结合的思想解答.21.〔分〕〔2021•沈阳〕某公司今年1月份的消费本钱是400万元,由于改良技术,消费本钱逐月下降,3月份的消费本钱是361万元.假设该公司2、3、4月每个月消费本钱的下降率都一样.〔1〕求每个月消费本钱的下降率;〔2〕请你预测4月份该公司的消费本钱.【考点】AD:一元二次方程的应用.【专题】34 :方程思想;523:一元二次方程及应用.【分析】〔1〕设每个月消费本钱的下降率为x,根据2月份、3月份的消费本钱,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;〔2〕由4月份该公司的消费本钱=3月份该公司的消费本钱×〔1﹣下降率〕,即可得出结论.【解答】解:〔1〕设每个月消费本钱的下降率为x,根据题意得:400〔1﹣x〕2=361,解得:x1=0.05=5%,x2〔不合题意,舍去〕.答:每个月消费本钱的下降率为5%.〔2〕361×〔1﹣5%〕〔万元〕.答:预测4月份该公司的消费本钱为万元.【点评】此题考察了一元二次方程的应用,解题的关键是:〔1〕找准等量关系,正确列出一元二次方程;〔2〕根据数量关系,列式计算.五、解答题〔此题10〕22.〔分〕〔2021•沈阳〕如图,BE是O的直径,点A和点D是⊙O上的两点,过点A作⊙O的切线交BE延长线于点.〔1〕假设∠ADE=25°,求∠C的度数;〔2〕假设AB=AC,CE=2,求⊙O半径的长.【考点】KQ:勾股定理;M5:圆周角定理;MC:切线的性质.【专题】55:几何图形.【分析】〔1〕连接OA,利用切线的性质和角之间的关系解答即可;〔2〕根据直角三角形的性质解答即可.【解答】解:〔1〕连接OA,∵AC是⊙O的切线,OA是⊙O的半径,∴OA⊥AC,∴∠OAC=90°,∵,∠ADE=25°,∴∠AOE=2∠ADE=50°,∴∠C=90°﹣∠AOE=90°﹣50°=40°;〔2〕∵AB=AC,∴∠B=∠C,∵,∴∠AOC=2∠B,∴∠AOC=2∠C,∵∠OAC=90°,∴∠AOC+∠C=90°,∴3∠C=90°,∴∠C=30°,∴OA=OC,设⊙O的半径为r,∵CE=2,∴r=,解得:r=2,∴⊙O的半径为2.【点评】此题考察切线的性质,关键是根据切线的性质进展解答.六、解答题〔此题10分〕23.〔分〕〔2021•沈阳〕如图,在平面直角坐标系中,点F的坐标为〔0,10〕.点E的坐标为〔20,0〕,直线l1经过点F和点E,直线l1与直线l2 、y=x相交于点P.〔1〕求直线l1的表达式和点P的坐标;〔2〕矩形ABCD的边AB在y轴的正半轴上,点A与点F重合,点B在线段OF 上,边AD平行于x 轴,且AB=6,AD=9,将矩形ABCD沿射线FE的方向平移,边AD始终与x 轴平行.矩形ABCD以每秒个单位的速度匀速挪动〔点A挪动到点E时止挪动〕,设挪动时间为t秒〔t>0〕.①矩形ABCD在挪动过程中,B、C、D三点中有且只有一个顶点落在直线l1或l2上,请直接写出此时t的值;②假设矩形ABCD在挪动的过程中,直线CD交直线l1于点N,交直线l2于点M.当△PMN的面积等于18时,请直接写出此时t的值.【考点】FI:一次函数综合题.【专题】153:代数几何综合题;31 :数形结合;32 :分类讨论;533:一次函数及其应用.【分析】〔1〕利用待定系数法求解析式,函数关系式联立方程求交点;〔2〕①分析矩形运动规律,找到点D和点B分别在直线l2上或在直线l1上时的情况,利用AD、AB分别可以看成图象横坐标、纵坐标之差构造方程求点A坐标,进而求出AF间隔;②设点A坐标,表示△PMN即可.【解答】解:〔1〕设直线l1的表达式为y=kx+b∵直线l1过点F〔0,10〕,E〔20,0〕∴解得直线l1的表达式为y=﹣x+10求直线l1与直线l2交点,得x=﹣x+10解得x=8y=×8=6∴点P坐标为〔8,6〕〔2〕①如图,当点D在直线上l2时∵AD=9∴点D与点A的横坐标之差为9∴将直线l1与直线l2交解析式变为x=20﹣2y,x=y∴y﹣〔20﹣2y〕=9解得y=那么点A的坐标为:〔,〕那么AF=∵点A速度为每秒个单位∴t=如图,当点B在l2直线上时∵AB=6∴点A的纵坐标比点B的纵坐标高6个单位∴直线l1的解析式减去直线l2 的解析式得﹣x+10﹣x=6解得x=那么点A坐标为〔,〕那么AF=∵点A速度为每秒个单位∴t=故t值为或②如图,设直线AB交l2 于点H设点A横坐标为a,那么点D横坐标为a+9由①中方法可知:MN=此时点P到MN间隔为:a+9﹣8=a+1∵△PMN的面积等于18∴解得a1=,a2=﹣〔舍去〕∴AF=6﹣那么此时t为当t=时,△PMN的面积等于18【点评】此题是代数几何综合题,应用待定系数法和根据函数关系式来表示点坐标,涉及到了分类讨论思想和数形结合思想.七、解答题〔此题12分〕24.〔分〕〔2021•沈阳〕:△ABC是等腰三角形,CA=CB,0°<∠ACB≤90°.点M 在边AC上,点N在边BC上〔点M、点N不与所在线段端点重合〕,BN=AM,连接AN,BM,射线AG∥BC,延长BM交射线AG于点D,点E在直线AN上,且AE=DE.〔1〕如图,当∠ACB=90°时①求证:△BCM≌△ACN;②求∠BDE的度数;〔2〕当∠ACB=α,其它多件不变时,∠BDE的度数是α或180°﹣α〔用含α的代数式表示〕〔3〕假设△ABC是等边三角形,AB=3,点N是BC边上的三等分点,直线ED 与直线BC交于点F,请直接写出线段CF的长.【考点】KY:三角形综合题.【专题】152:几何综合题.【分析】〔1〕①根据SAS证明即可;②想方法证明∠ADE+∠ADB=90°即可;〔2〕分两种情形讨论求解即可,①如图2中,当点E在AN的延长线上时,②如图3中,当点E在NA的延长线上时,〔3〕分两种情形求解即可,①如图4中,当BN=BC=时,作AK⊥BC于K.解直角三角形即可.②如图5中,当CN=BC=时,作AK⊥BC于K,DH⊥BC于H.【解答】〔1〕①证明:如图1中,∵CA=CB,BN=AM,∴CB﹣BN=CA﹣AM即CN=CM,∵∠ACN=∠BCM∴△BCM≌△ACN.②解:如图1中,∵△BCM≌△ACN,∴∠MBC=∠NAC,∵EA=ED,∴∠EAD=∠EDA,∵AG∥BC,∴∠GAC=∠ACB=90°,∠ADB=∠DBC,∴∠ADB=∠NAC,∴∠ADB+∠EDA=∠NAC+∠EAD,∵∠ADB+∠EDA=180°﹣90°=90°,∴∠BDE=90°.〔2〕解:如图2中,当点E在AN的延长线上时,易证:∠CBM=∠ADB=∠CAN,∠ACB=∠CAD,∵EA=ED,∴∠EAD=∠EDA,∴∠CAN+∠CAD=∠BDE+∠ADB,∴∠BDE=∠ACB=α.如图3中,当点E在NA的延长线上时,易证:∠1+∠2=∠CAN+∠DAC,∵∠2=∠ADM=∠CBD=∠CAN,∴∠1=∠CAD=∠ACB=α,∴∠BDE=180°﹣α.综上所述,∠BDE=α或180°﹣α.故答案为α或180°﹣α.〔3〕解:如图4中,当BN=BC=时,作AK⊥BC于K.∵AD∥BC,∴==,∴AD=,AC=3,易证△ADC是直角三角形,那么四边形ADCK是矩形,△AKN≌△DCF,∴CF=NK=BK﹣BN=﹣=.如图5中,当CN=BC=时,作AK⊥BC于K,DH⊥BC于H.∵AD∥BC,∴==2,∴AD=6,易证△ACD是直角三角形,由△ACK∽△CDH,可得CH=AK=,由△AKN≌△DHF,可得KN=FH=,∴CF=CH﹣FH=4.综上所述,CF的长为或4.【点评】此题考察三角形综合题、全等三角形的断定和性质、解直角三角形等知识,解题的关键是学会用分类讨论的思想考虑问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考压轴题.八、解答题〔此题12分〕25.〔分〕〔2021•沈阳〕如图,在平面角坐标系中,抛物线C1:y=ax2+bx﹣1经过点A〔﹣2,1〕和点B〔﹣1,﹣1〕,抛物线C2:y=2x2+x+1,动直线x=t与抛物线C1交于点N,与抛物线C2交于点M.〔1〕求抛物线C1的表达式;〔2〕直接用含t的代数式表示线段MN的长;〔3〕当△AMN是以MN为直角边的等腰直角三角形时,求t的值;〔4〕在〔3〕的条件下,设抛物线C1与y轴交于点P,点M在y轴右侧的抛物线C2上,连接AM交y轴于点k,连接KN,在平面内有一点Q,连接KQ和QN,当KQ=1且∠KNQ=∠BNP时,请直接写出点Q的坐标.【考点】HF:二次函数综合题.【专题】153:代数几何综合题;16 :压轴题;537:函数的综合应用;558:平移、旋转与对称.【分析】〔1〕应用待定系数法;〔2〕把x=t带入函数关系式相减;〔3〕根据图形分别讨论∠ANM=90°、∠AMN=90°时的情况.〔4〕根据题意画出满足条件图形,可以找到AN为△KNP对称轴,由对称性找到第一个满足条件Q,再通过延长和圆的对称性找到剩余三个点.利用勾股定理进展计算.【解答】解:〔1〕∵抛物线C1:y=ax2+bx﹣1经过点A〔﹣2,1〕和点B〔﹣1,﹣1〕。

2021年辽宁省沈阳市中考数学试题及答案

2021年辽宁省沈阳市中考数学试题及答案

2021年沈阳市中考数学试题*试题满分150分 考试时间120分钟参考公式: 抛物线c bx ax y ++=2的顶点是(a b 2-,ab ac 442-),对称轴是直线a bx 2-=.一、选择题 (下列各题的备选答案中,只有一个答案是正确的.每小题3分,共24分)1.下列各数中比0小的数是 A.-3 B.311 C.3 D. 32.左下图是由四个相同的小立方块搭成的几何体,这个几何体的左视图是3.沈阳地铁2号线的开通,方便了市民的出行.从2012年1月9日到2月7日的30天里,累计客运量约达3040000人次,将3040000用科学记数法表示为A .3.04×105B .3.04×106C .30.4×105D .0.304×107 4.计算(2a )3·a 2的结果是A .2a 5B .2a 6C .8a 5D .8a 65.在平面直角坐标系中,点P (-1,2 ) 关于x 轴的对称点的坐标为 A.(-1,-2 ) B.(1,-2 ) C.(2,-1 ) D.(-2,1 )6.气象台预报“本市明天降水概率是30%” ,对此消息下列说法正确的是 A.本市明天将有30%的地区降水 B.本市明天将有30%的时间降水 C.本市明天有可能降水 D.本市明天肯定不降水 7.一次函数y =-x +2的图象经过A.一、二、三象限B.一、二、四象限C.一、三、四象限D.二、三、四象限 8.如图,正方形ABCD 中,对角线AC ,BD 相交于点O ,则图中的等腰直角三角形有 A .4个 B .6个 C .8个 D .10个二、填空题(每小题4分,共32分)9.分解因式:m 2-6m +9=____________.10.一组数据1,3,3,5,7的众数是____________. 11.五边形的内角和为____________度.12.不等式组⎩⎨⎧>->+02101x x 的解集是____________.13.已知△ABC △△A ′B ′C ′,相似比为3△4,△ABC 的周长为6,则△A ′B ′C 的周长为____________.14.已知点A 为双曲线y = kx 图象上的点,点O 为坐标原点过点A 作AB △x 轴于点B ,连接OA .若△AOB 的面积为5,则k 的值为____________.15.有一组多项式:a +b 2,a 2-b 4,a 3+b 6,a 4-b 8,…,请观察它们的构成规律,用你发现的规律写出第10个多项式为____________.16.如图,菱形ABCD 的边长为8cm ,△A =60°,DE △AB 于点E ,DF △BC 于点F ,则四边形BEDF 的面积为____________cm 2.三、解答题(第17、18小题各8分,第19小题10分,共26分 )17.计算:(-1)2+|12|-+2sin 45°18.小丁将中国的清华大学、北京大学及英国的剑桥大学的图片分别贴在3张完全相同的不透明的硬纸板上,制成名校卡片,如图.小丁将这3张卡片背面朝上洗匀后放在桌子上,从中随机抽取一张卡片,放回后洗匀,再随机抽取一张卡片.(1) 小丁第一次抽取的卡片上的图片是剑桥大学的概率是多少?(请直接..写出结果)(2) 请你用列表法或画树状图(树形图)法,帮助小丁求出两次抽取的卡片上的图片一个是国内大学、一个是国外大学的概率.(卡片名称可用字母表示)19.已知,如图,在荀ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.(1)求证:△AEM△△CFN;(2)求证:四边形BMDN是平行四边形.四、(每小题10分,共20分)20.为了提高沈城市民的节水意识,有关部门就“你认为最有效的节水措施”随机对部分市民进行了问卷调查.其中调查问卷设置以下选项(被调查者只能选择其中的一项):A.出台相关法律法规;B.控制用水大户数量;C.推广节水技改和节水器具;D.用水量越多,水价越高;E.其他.根据调查结果制作了统计图表的一部分如下:(1)此次抽样调查的人数为△ 人;(2)结合上述统计图表可得m= △ ,n= △ ;(3)请根据以上信息直接..在答题卡中补全条形统计图.21.甲、乙两人加工同一种机器零件,甲比乙每小时多加工10个零件,甲加工150个零件所用时间与乙加工120个零件所用时间相等,求甲、乙两人每小时各加工多少个机器零件?22.如图,△O是△ABC的外接圆,AB是△O的直径,D为△O上一点,OD△AC,垂足为E,连接BD.(1)求证:BD平分△ABC;(2) 当△ODB=30°时,求证:BC=OD.六、(本题12分)23.已知,如图,在平面直角坐标系内,点A的坐标为(0,24 ),经过原点的直线l1与经过点A的直线l2相交于点B,点B坐标为(18,6).(1)求直线l1,l2的表达式;(2)点C为线段OB上一动点(点C不与点O,B重合),作CD△y轴交直线l2于点D,过点C,D分别向y轴作垂线,垂足分别为F,E,得到矩形CDEF.△设点C的纵坐标为a,求点D的坐标(用含a的代数式表示);△若矩形CDEF的面积为60,请直接..写出此时点C的坐标.24.已知,如图△,△MON=60°,点A,B为射线OM,ON上的动点(点A,B不与点4,在△MON的内部、△AOB的外部有一点P,且AP=BP,△APB=120°. O重合),且AB=3(1)求AP的长;(2)求证:点P在△MON的平分线上;(3)如图△,点C,D,E,F分别是四边形AOBP的边AO,OB,BP,P A的中点,连接CD,DE,EF,FC,OP.△当AB△OP时,请直接..写出四边形CDEF的周长的值;△若四边形CDEF的周长用t表示,请直接..写出t的取值范围.25.已知,如图,在平面直角坐标系中,点A 坐标为(-2,0),点B 坐标为 (0,2 ),点E 为线段AB 上的动点(点E 不与点A ,B 重合),以E 为顶点作△OET =45°,射线ET 交线段OB 于点F ,C 为y 轴正半轴上一点,且OC =AB ,抛物线y =2-x 2+mx +n 的图象经过A ,C 两点.(1) 求此抛物线的函数表达式; (2) 求证:△BEF =△AOE ;(3) 当△EOF 为等腰三角形时,求此时点E 的坐标;(4) 在(3)的条件下,当直线EF 交x 轴于点D ,P 为(1) 中抛物线上一动点,直线PE 交x 轴于点G ,在直线EF 上方的抛物线上是否存在一点P ,使得△EPF 的面积是△EDG 面积的(122+) 倍.若存在,请直接..写出点P 的坐标;若不存在,请说明理由. 温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.参考答案一、选择题(每小题3分,共24分)1.A2.D3.B4.C5.A6.C7.B8.C 二、填空题(每小题4分,共32分)9. (m -3)2 10.3 11. 540 12.-1<x <2113.8 14.10 或 -10 15.a 10-b 20 16. 316三、解答题 (第17、 18小题各8分, 第19小题10分,共26分) 17.原式=1+ 2-1+2×22=22 18.解: (1)31 (2) 列表得或画树状 (形) 图得由表格 (或树状图/树形图) 可知, 共有9种可能出现的结果, 每种结果出现的可能性相同,其中两次抽取的卡片上的图片一个是国内大学, 一个是国外大学的结果有4种: (A , C )(B , C )(C , A )(C , B )△P (两次抽取的卡片上的图片一个是国内大学一个是国外大学) =94. 19.证明:(1) △四边形ABCD 是平行四边形△△DAB =△BCD △△EAM =△FCN 又△AD △BC △△E =△F △AE =CF △△AEM △△CFN(2) 由(1) 得AM =CN ,又△四边形ABCD 是平行四边形△AB CD △BM DN △四边形BMDN 是平行四边形四、(每小题10分,共20分) 20.解: (1) 500 (2) 35%, 5% (3)21.解:设乙每小时加工机器零件x 个, 则甲每小时加工机器零件(x +10) 个, 根据题意得:xx 12010150=+ 解得x =40 经检验, x =40是原方程的解 x +10=40+10=50 答: 甲每小时加工50个零件, 乙每小时加工40个零件. 五、(本题10分)22.证明: (1) △OD △AC OD 为半径△△△CBD =△ABD △BD 平分△ABC(2) △OB =OD △△OBD =△ODB =30°△△AOD =△OBD +△ODB =30°+30°=60° 又△OD △AC 于E △△OEA =90°△△A =180°-△OEA -△AOD =180°-90°-60°=30° 又△AB 为△O 的直径 △△ACB =90°则在Rt △ACB 中BC =21AB △OD =21AB △BC =OD 六、(本题12分)23.解:(1)设直线l 1的表达式为y =k 1x ,它过B (18, 6) 得18k 1=6 k 1=31 △y =31x设直线l 2的表达式为y =k 2x +b ,它过A (0, 24), B (18, 6)得⎩⎨⎧=+=618242b k b 解得⎩⎨⎧=-=212b ky =-x +24 (2) △△点C 在直线l 1上, 且点C 的纵坐标为a ,△a =31x x =3a △点C 的坐标为 (3a , a ) △CD △y 轴△点D 的横坐标为3a △点D 在直线l 2上 △y =-3a +24 △D (3a , -3a +24) △C (3, 1) 或C (15, 5) 七、(本题12分)24.解: (1) 过点P 作PQ △AB 于点Q △P A =PB , △APB =120° AB =43△AQ =21AB =21×43=23 △APQ = 21△APB =21×120°=60°在Rt △APQ 中, sin △APQ =AP AQ △AP = 233260sin 32sin =︒=∠APQ AQ =sin 60°=4 (2) 过点P 分别作PS △OM 于点S , PT △ON 于点T △△OSP =△OTP =90° 在四边形OSPT 中,△SPT =360°-△OSP -△SOT -△OTP =360°-90°-60°-90°=120°△△APB =△SPT =120° △△APS =△BPT又△△ASP =△BTP =90° AP =BP△△APS △△BPT △PS =PT△点P 在△MON 的平分线上(3) △8+43 △4+43<t ≤8+43八、 (本题14分)25.解:(1) 如答图△, △A (-2, 0) B (0, 2)△OA =OB =2 △AB 2=OA 2+OB 2=22+22=8△AB =22△OC =AB △OC =22, 即C (0, 22) 又△抛物线y =-2x 2+mx +n 的图象经过A 、C 两点 则可得⎪⎩⎪⎨⎧==+--220224n n m 解得:⎪⎩⎪⎨⎧=-=222n m △抛物线的表达式为y =-2x 2-2x +22 (2) △OA =OB △AOB =90° △△BAO =△ABO =45°又△△BEO =△BAO +△AOE =45°+△AOE△BEO =△OEF +△BEF =45°+△BEF △△BEF =△AOE(3) 当△EOF 为等腰三角形时,分三种情况讨论△当OE =OF 时, △OFE =△OEF =45°在△EOF 中, △EOF =180°-△OEF -△OFE =180°-45°-45°=90°又△△AOB =90°则此时点E 与点A 重合, 不符合题意, 此种情况不成立.△如答图△, 当FE =FO 时,△EOF =△OEF =45°在△EOF 中,△EFO =180°-△OEF -△EOF =180°-45°-45°=90°△△AOF +△EFO =90°+90°=180°△EF △AO △ △BEF =△BAO =45° 又△ 由 (2) 可知 ,△ABO =45°△△BEF =△ABO △BF =EF △EF =BF =OF =21OB =21×2=1 △ E (-1, 1) △如答图△, 当EO =EF 时, 过点E 作EH △y 轴于点H 在△AOE 和△BEF 中, △EAO =△FBE , EO =EF , △AOE =△BEF △△AOE △△BEF △BE =AO =2△EH △OB △△EHB =90°△△AOB =△EHB △EH △AO △△BEH =△BAO =45°在Rt △BEH 中, △△BEH =△ABO =45° △EH =BH =BEcos 45°=2×22=2 △OH =OB -BH =2- 22△ E (-2, 2-2)综上所述, 当△EOF 为等腰三角形时, 所求E 点坐标为E (-1, 1)或E (-2, 2- 22)(4) P (0, 22)或P (-1, 2 2)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021年辽宁省沈阳市数学中考试卷及答案
2021年沈阳市数学中考试题及答案
一、选择题(下列各题的备选答案中,只有一个答案是正确的每小题2分,共20分)
1.下列各数中是有理数的是 A.?B.0C.2D.35
2.辽宁男篮冠后,从4月21日至24日各类
媒体关于“辽篮CBA夺冠”的相关文章达到81000篇,将数据81000用科学记数法表示为
A.0.81×10
B.0.81×10
C.8.1×10
D.8.1×10
3左下图是由五个相同的小立方块搭成的几何体,这个几何体的左视图是
4
5
4
5
4.在平面直角坐标系中,点B的坐标是(4,-1),点A与点B关于x轴对称,则
点A的坐标是 A.(4,1)B.(-1,4)C.(-4,-1)D.(-1,-4) 5.下列运算错误的是
A.(m)=m
B.a÷a=aC.x・x=xD.a +a=a
23
6
10
9
3
5
8
4
3
7
6.如图,AB∥CD,EF∥GH,∠1=60°,则∠2补角的度数是
A.60°
B.100°
C.110°
D.120° 7.下列事件中,是必然事件的是 A.任意买一张电影票,
座位号是2的倍数 B.13个人中至少有两个人生肖相同 C.车辆随机到达一个路口,遇到红灯 D.明天一定会下雨
8.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围
是 A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0
9.点A(-3,2)在反比例函数y=
3C.-1D.6 2k(k?O)的图象上,则k的值是 xA.-6B.?10.如图,正方形ABCD内接于
⊙O,AB=22,则AB的长是 31A.?B.?C.2?D.?
22二、填空题(每小题3分,共18分) 11.因式分解:3x-12x=.
12.一组数3,4,7,4,3,4,5,6,5的众数是. 13.化简:
2a1=. ?a2?4a?2?x?2?0的解集是.
3x?6?0?3
14.不等式组?15.如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行
的篱笆EF分开.已知篱笆的总长为900m(篱篱笆的厚度忽略不计),当AB=m时,矩形
土地ABCD面积最大.
16.如图,△ABC是等边三角形,AB=7,点D是边BC上一点,点H是线段AD上一点,连接BH、CH,当∠BHD=60°∠AHC=90°时,DH=.
三、解答题(第17小题6分,第18、19小题各8分,共22分) 117.计
算:2tan45??2?3?()?2?(4??)0
218.如图,在菱形ABCD中,对角线AC与BD交于点O,过点C作BD的平行线,过点
D作AC的平行线,两直线相交于点E.
(1)求证:四边形OCED是矩形;
(2)若CE=1,DE=2,则菱形ABCD的面积是.
19.经过校园某路口的行人,可能左转,也可能直行或右转假设这三种可能性相同,
现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行
的概率. 四、(每小题8分,共16分)
20.九年三班的小雨同学想了解本校九年级学生对哪门课感兴趣,随机抽取了部分九
年级学生进行调查(每名学生必选且只能选择一门课程),将获得的数据整理绘制成如下
两幅不完整的统计图:学生感兴趣的课程情况条形统计图学生感兴的课程情况扇形统计图
根据统计图提供的信息,解答下列问题
(1)在这次调查中一共抽取了名学生,m的值是. (2)请根据以上信息直接在答题
卡上补全条形统计图; ..(3)扇形统计图中,“数学”所对应的圆心角度数是度;
(4)若该校九年级共有1000名学生,根据抽样调查的结果,请你估计该校九年级学
生中有多少名学生对数学感兴趣.
21,某公司今年1月份的生产成本是400万元,由于改进生产技术,生产成本逐月下降,3月份的生产成本是361万元、假设该公司2、3、4月每个月生产成本的下降率都相同. (1)求每个月生产成本的下下降率;(2)请你预测4月份该公司的生产成本. 五、(本题10分)
22.如图,BE是⊙O的直径,点A和点D是⊙O上的两点,过点A作⊙O的切线交BE
延长线于点C. (1)若∠ADE=25°,求∠C的度数
(2)若AB=AC,CE=2,求⊙O半径的长.
六、(本题10分)
23.如图,在平面直角坐标系中,点F的坐标为(0,10),点E的坐标为(20,0),直线l1经过点F和点E,直线11与直线12:y=x相交于点P (1)求直线的表达式和点
P的坐标;
(2)矩形ABCD的边AB在y轴轴的正半轴上,点A与点F重合,点B在线段OF上,
边AD平行于X轴,且AB=6,AD=9,将矩形ABCD沿射线FE的方向平移,边AD始终与x
轴平行,已
知矩形ABCD以每秒5个单位的速度匀速移动动(点A移动到点E时停止移动),设
移动时间为t秒(t>0),
①矩形ABCD在移动过程中,B、C、D三点中有且只有一个顶点落在直线11或12上,请直接写出此时t的..值;
②若矩形ABCD在移动的过程中,直线CD交直线11于点N,交直线于点M,当△PMN
的面积等于18时,请直接写出此时t的值. ..
七、(本题12分)
24.已知△ABC是等腰三角形,CA=CB,0°<∠ACB≤90°,点M在边AC上,点N在边BC上(点M、点N不与所在线段端点重合),BN=AM,连接AN,BM.射线AG∥BC,延长BM交射线AG于点D,点E在直线AN上,且AE=DE.
(1)如图,当∠ACB=90°时, ①求证:△BCM≌△CAN;
②求∠BDE的度数;
(2)当∠ACB=?,其它条件不变时,∠BDE的度数是(用含?的代数式表示)
(3)若△ABC是等边三角形,AB=33,点N是BC边上的三等分点,直线ED与直线BC交于点F,请直.接写出线段CF的长.
八、(本题12分)
25.如图,在平而直角坐标系中,抛抛物线C1:y=ax+bx-1经过点A(-2,1)和点B(-1,-1),抛抛物线C2:y=2x+x+1,动直线x=t与抛物线C1交于点N,与抛物线C2交于点M (1)求抛物线C1的表达式;
(2)直接用含t的代数式表示线段MN的长;
(3)当△AMN是以MN为直角边的等腰直角三角形时,求t的值;
(4)在(3)的条件下,设抛物线C1与y轴交于点P,点M在y轴右侧的抛物线C2上,连接AM交y轴于点K,连接KN,在平面内有一点Q,连连接KQ和QN.当KO=1且
∠KNO=∠BNP时,请直接写出点Q的坐..标
2
2
参考答案
一、选择题(每小题2分,共20分) 1.B2.C3.D4.A5.D6.D7.B8.C9.A10.A 二、填空题(每小题3分,共18分) 11.3x(x+2)(x-2) 12.4 13.
11 14.?2?x?215.15016. a?23三、解答题(第17小题6分,第18、19小题各8分,共22分) 17.2?2 18.证明:(1)四边形ABCD为菱形,A C⊥BD,∠COD=
90°,CE∥OD,DE∥OC,四边形OCED是平行四边形,∠COD=90o,平行四边形OCED是矩形(2)4
参考答案
一、选择题(每小题2分,共20分) 1.B2.C3.D4.A5.D6.D7.B8.C9.A10.A 二、填空题(每小题3分,共18分) 11.3x(x+2)(x-2) 12.4 13.
11 14.?2?x?215.15016. a?23三、解答题(第17小题6分,第18、19小题各8分,共22分) 17.2?2 18.证明:(1)四边形ABCD为菱形,AC⊥BD,∠COD=
90°,CE∥OD,DE∥OC,四边形OCED是平行四边形,∠COD=90o,平行四边形OCED是矩形(2)4
感谢您的阅读,祝您生活愉快。

相关文档
最新文档