用光电门验证动量定理
《动量定理》动量定理,实验验证

《动量定理》动量定理,实验验证在物理学的广袤领域中,动量定理是一个具有重要意义的基本原理。
它不仅在理论上为我们理解物体的运动和相互作用提供了深刻的洞察,而且在实际应用中也发挥着关键作用。
那么,什么是动量定理?又如何通过实验来验证它呢?动量定理指出,合外力的冲量等于物体动量的增量。
用公式表达即为:$I =\Delta p$,其中$I$表示合外力的冲量,$\Delta p$表示动量的增量。
为了更直观地理解动量定理,让我们先来看一个简单的例子。
假设一个质量为$m$的小球,以初速度$v_1$在光滑水平面上运动。
如果在一段时间$t$内,小球受到一个恒定的水平外力$F$的作用,速度变为$v_2$。
根据动量的定义,小球的初动量$p_1 = mv_1$,末动量$p_2 =mv_2$,动量的增量$\Delta p = p_2 p_1 = m(v_2 v_1)$。
而合外力的冲量$I = F \times t$。
由于动量定理成立,所以有$F \times t = m(v_2 v_1)$。
接下来,我们通过一个具体的实验来验证动量定理。
实验装置包括一个气垫导轨、一个滑块、两个光电门、一个气源、一个数字计时器以及一个力传感器。
首先,将气垫导轨调至水平状态,打开气源,使滑块能在导轨上近似无摩擦地运动。
在滑块上安装一个遮光片,让滑块通过两个相距一定距离的光电门。
数字计时器可以记录滑块通过每个光电门的时间,从而计算出滑块通过两个光电门的速度。
将力传感器固定在滑块的一端,通过施加一个已知大小和方向的外力,记录外力的大小和作用时间。
实验开始时,让滑块以一定的初速度通过第一个光电门,记录此时的速度$v_1$和对应的时间$t_1$。
然后,施加外力,让滑块通过第二个光电门,记录速度$v_2$和时间$t_2$。
根据实验数据,计算出滑块的初动量$p_1 = m v_1$,末动量$p_2= m v_2$,动量的增量$\Delta p = p_2 p_1$。
动量和动量守恒

动量和动量守恒7.1 冲量、动量和动量定理1、冲量实验仪器:气垫导轨(J2125)、小型气源(J2126)、钩码、滑块、细绳教师操作:小车在不同拉力作用下获得同一速度所用的时间不同实验结论:力大的作用时间短,力小的作用时间长.2、动量的变化实验仪器:气垫导轨(J2125)、小型气源(J2126)、滑块、数字计时器(J0201-CC)、天平;使用一只光电门;用手推滑块,经过光电门,经挡板反教师操作:数字计时器用S2弹后再次经过光电门,停止计时;计算动量的变化。
3、动量定理实验仪器:生鸡蛋2只、较厚的海绵垫;玻璃杯、纸条教师操作:让两只鸡蛋同时从高出落下(尽量抬高),一只落在海绵垫上,一只落在水泥地板上。
教师操作:纸条放在桌上,上边压上玻璃杯,缓慢抽动纸条;快速抽动纸条,比较。
实验结论:延长了作用时间,作用力减小。
4、验证动量定理实验仪器:电磁打点计时器(J0203型)、学生电源(J1202型)、轨道(带定滑轮)、小车、纸带、天平(托盘天平或学生天平)、线、砝码、砝码盘实验目的:验证物体做直线运动时,其动量的增量等于合外力的冲量,以加深学生对动量定理的理解。
t=mv′-mv只要动量定理:物体在恒力作用下做直线运动时,动量定理可表述为F合实验测得Ft与mv′-mv在实验误差范围内相等,则动量定理被验证。
而t、v′、v均可合也可以用平衡法直接测定。
当在砝码盘中加适量的砝码,使得小车能由打点纸带测定,F合沿斜面向上做匀速运动时,线的拉力T就等于砝码盘和砝码所受的重力mg,而T又等于小车所受的重力沿斜面向下的分力,即小车自由释放后沿斜面向下做加速运动的力。
教师操作:(1)按图装好斜面,往砝码盘中加砝码,直至小车能沿斜面向下做匀速运动,记下砝码和砝码盘所受的重力mg,这就是小车沿斜面自由向下运动时所受力的大小。
(2)用天平称出小车的质量m,保持斜面倾角不变,在斜面顶端装上电磁打点记时器。
把纸带穿过打点记时器后系在小车上,。
气垫导轨光电门验证动量守恒定律课件

目录
• 实验原理 • 实验装置与操作 • 实验步骤与注意事项 • 实验结果与讨论 • 结论与展望 • 参考文献与附录
01 实验原理
动量守恒定律的概述
动量守恒定律的定义
一个封闭系统不受外力时,其总动量保持不变。
动量的定义
物体的动量(p)等于质量(m)和速度(v)的乘积,用公式表示为: p=mv
通过实验,我们验证了气垫导轨 上滑块碰撞后动量守恒的原理, 证明了在碰撞过程中,总动量保
持不变。
实验结果的可靠性
我们通过多次实验,用光电门记 录了碰撞过程中滑块的运动时间 ,并计算了碰撞前后的动量,发 现实验结果具有很高的可靠性。
实验误差分析
在实验过程中,由于气垫导轨的 不稳定、滑块质量的差异、空气 阻力的影响等因素,会导致实验
实验的局限性与未来发展方向
实验局限性
虽然本实验取得了较为理想的结果,但实验过程中仍存在一些局限性,例如气垫导轨的不稳定性、滑块质量的差 异、空气阻力的影响等。
未来发展方向
为了进一步提高实验的精度和可靠性,未来可以对气垫导轨进行改进和优化,减少实验误差;同时,可以尝试采 用更精确的测量方法,如利用激光测速仪等更先进的设备来测量滑块的速度。此外,可以进一步研究不同碰撞类 型(如弹性碰撞和非弹性碰撞)中动量守恒定律的表现形式和特点。
存在一定的误差。
动量守恒定律的意义与应用
动量守恒定律的重要性
动量守恒定律是物理学的基本定律之一,它揭示了物体之间 相互作用的基本规律。在许多物理现象中,如行星运动、原 子核衰变等,动量守恒定律都起着重要的作用。
实验与实际应用
通过本实验,我们可以了解到动量守恒定律在现实生活中的 应用。例如,在航天技术中,卫星的运动必须遵守动量守恒 定律;在交通事故分析中,也可以利用动量守恒定律来分析 事故的责任方。
动量守恒定律的验证

动量守恒定律的验证一 【实验目的】1.验证动量守恒定律。
2.学习用比较数据法验证物理规律的方法。
3.用观察法研究弹性碰撞和非弹性碰撞的特点。
二 【实验仪器】主要由气轨、气源、滑块、挡光片、光电门、游标卡尺、米尺和光电计时装置等。
三 【实验原理】如果某一力学系统不受外力,或外力的矢量和为零,则系统的总动量保持不变,这就是动量守恒定律。
在本实验中,是利用气垫导轨上两个滑块的碰撞来验证动量守恒定律的。
在水平导轨上滑块与导轨之间的摩擦力忽略不计,则两个滑块在碰撞时除受到相互作用的内力外,在水平方向不受外力的作用,因而碰撞时动量守恒。
如m 1和m 2分别表示两个滑块的质量,以v 10、v 20、10v '、20v '分别表示两个滑块碰撞前、后的速度,则由动量守恒定律可得 202101202101v m v m v m v m '+'=+ (2-9-1) 下面分别情况来进行讨论:1.完全弹性碰撞在两个滑块相碰撞的两端装上缓冲弹簧,在滑块相碰时,由于缓冲弹簧发生弹性形变后恢复原状,系统的机械能可以看作守恒,两个滑块碰撞前、后的总功能不变,可用公式表示220221012202210121212121v m v m v m v m '+'=+ (2-9-2) 由(2-9-1)式和(2-9-2)式联合求解可得⎪⎪⎭⎪⎪⎬⎫++-='++-='21101201220212021021102)(2)(m m v m v m m v m m v m v m m v (2-9-3) 在实验时,若令m 1=m 2 ,两个滑块的速度必交换。
若不仅m 1=m 2 ,且令v 20=0,则碰撞后m 1滑块变为静止,而m 2滑块却以m 1滑块原来的速度沿原方向运动起来。
这与公式的推导一致。
若两个滑块质量m 1≠m 2,仍令v 20=0,即2110120*********)(m m v m v m m v m m v +='+-=' (2-9-4) 实际上完全弹性碰撞只是理想的情况,一般碰撞时总有机械能损耗,所以碰撞前后仅是总动量保持守恒,当v 20=0时202101101v m v m v m '+'= (2-9-5) 2.完全非弹性碰撞在两个滑块的两个碰撞端分别装上尼龙搭扣,碰撞后两个滑块粘在一起以同一速度运动就可成为完全非弹性碰撞。
《实验:验证动量守恒定律》 知识清单

《实验:验证动量守恒定律》知识清单一、实验目的验证在碰撞过程中动量守恒定律。
二、实验原理1、动量守恒定律:如果一个系统不受外力或所受外力的矢量和为零,那么这个系统的总动量保持不变。
即:m1v1 + m2v2 = m1v1' +m2v2' (其中 m1、m2 分别为两物体的质量,v1、v2 为碰撞前两物体的速度,v1'、v2' 为碰撞后两物体的速度)2、本实验通过研究两个物体在碰撞前后的动量变化,来验证动量守恒定律。
三、实验器材1、气垫导轨、光电门、数字计时器、滑块(两个,质量不同)、天平。
2、气源、细绳、弹性碰撞器(或完全非弹性碰撞器)。
四、实验步骤1、用天平测量两个滑块的质量 m1 和 m2,并记录。
2、安装好气垫导轨,调节导轨水平。
可以通过将滑块放在导轨上,观察其能否静止或匀速运动来判断导轨是否水平。
3、给气垫导轨通气,让滑块在导轨上自由运动,检查是否顺畅。
4、在两个滑块上分别安装遮光片,调整遮光片的宽度,使其能够顺利通过光电门。
5、将两个滑块放在导轨的两端,给其中一个滑块一定的初速度,使其与另一个滑块碰撞。
6、记录通过光电门的遮光时间,从而得到滑块碰撞前后通过光电门的速度。
7、改变碰撞的条件(如弹性碰撞或非弹性碰撞),重复实验多次。
8、记录每次实验的数据。
五、数据处理1、计算碰撞前后两个滑块的动量。
动量=质量×速度2、比较碰撞前后系统的总动量,判断是否近似相等。
3、计算每次实验的误差,并分析误差产生的原因。
六、注意事项1、气垫导轨要调至水平,以确保滑块在运动过程中不受重力分力的影响。
2、滑块的运动要保持稳定,避免碰撞时发生跳动或偏离导轨。
3、遮光片的宽度要适中,太宽或太窄都会影响测量的精度。
4、测量质量时要准确,天平的使用要规范。
5、多次实验以减小偶然误差。
七、误差分析1、气垫导轨未完全水平,导致滑块受到重力分力的作用,影响速度的测量。
2、空气阻力的影响,使滑块的运动速度逐渐减小。
《科学验证:动量守恒定律》 讲义

《科学验证:动量守恒定律》讲义一、引言在物理学的广阔领域中,动量守恒定律是一个极其重要的基本定律。
它不仅在理论研究中具有关键地位,还在实际应用中发挥着巨大作用。
接下来,让我们一同深入探索动量守恒定律的奥秘。
二、动量守恒定律的基本概念首先,我们来了解一下什么是动量。
动量(momentum)可以简单地定义为物体的质量乘以其速度,用公式表示就是 p = mv,其中 p 代表动量,m 是物体的质量,v 是物体的速度。
那么,动量守恒定律又是什么呢?动量守恒定律指出:在一个孤立系统中,系统的总动量保持不变。
这里的孤立系统是指不受外力或者所受外力之和为零的系统。
三、动量守恒定律的推导为了更好地理解动量守恒定律,我们来进行一下简单的推导。
考虑两个相互作用的物体 A 和 B,它们的质量分别为 m₁和 m₂,初始速度分别为 v₁₀和 v₂₀,相互作用后的速度分别为 v₁和 v₂。
根据牛顿第二定律,物体 A 受到的力 F₁= m₁a₁,物体 B 受到的力F₂=m₂a₂,由于牛顿第三定律,这两个力大小相等、方向相反,即 F₁= F₂。
对物体 A 运用动量定理:m₁v₁ m₁v₁₀= F₁t对物体 B 运用动量定理:m₂v₂ m₂v₂₀= F₂t将上面两个式子相加,得到:m₁v₁ m₁v₁₀+ m₂v₂ m₂v₂₀= 0整理可得:m₁v₁+ m₂v₂= m₁v₁₀+ m₂v₂₀这就证明了在这个相互作用的系统中,总动量保持不变,即动量守恒。
四、动量守恒定律的条件动量守恒定律成立的条件是系统所受合外力为零。
但在实际情况中,有些系统所受合外力虽然不为零,但在某个方向上合外力为零,那么在这个方向上动量也是守恒的。
例如,一个在光滑水平面上的小车,车上有一个人在水平方向上推车。
如果忽略摩擦力和空气阻力,系统在水平方向上所受合外力为零,动量在水平方向上守恒,但在竖直方向上,由于受到重力和支持力的作用,动量不守恒。
五、动量守恒定律的应用动量守恒定律在许多领域都有广泛的应用。
DIS专用实验二十二动量定理

实验二十二 动量定理(变力) 实验器材
朗威DISLab 数据采集器、力传感器、光电门传感器、轨道、小车、挡光片、计算机。
实验装置
如图22-1。
实验操作
1.在小车上安装“I ”型挡光片(本次实验所用挡光片的宽度为0.020m )并在其前端安装弹簧圈,用天平称出小车的总质量m (kg )。
2.将光电门传感器和力传感器分别接入数据采集器的第一、二通道,将光电门传感器用支架固定在轨道的一侧。
3.将力传感器通过力学轨道上的固定柱固定在轨道上,调整其高度使测钩与弹簧圈的触碰点刚好位于测钩中心线上。
4.点击教材专用软件主界面上的实验条目“变力作用下的动量定理”,打开该软件。
5.在界面相应位置输入小车的质量及挡光片的宽度,点击“开始记录”,推动小车通过光电门传感器后与力传感器的测钩碰撞,经反弹后又通过光电门传感器,系统自动计算出碰撞前后的动量(图22-2)。
6.点击“选择区域”,选择需要研究的一段F-S 图线即可得到相应的面积值(图22-3)。
图22-1 实验装置图
图22-2 碰撞前后动量的变化
图22-3 碰撞过程中的冲量
7.比较动量变化与面积值之间的大小,总结变力做功的动能关系。
动量定理实验实验报告

一、实验目的1. 验证动量定理的正确性。
2. 掌握气垫导轨实验的基本操作。
3. 学习光电门测量速度的方法。
二、实验原理动量定理表明,物体所受合外力的冲量等于物体动量的变化量。
即:\[ F \cdot \Delta t = \Delta p \]其中,\( F \) 为合外力,\( \Delta t \) 为作用时间,\( \Delta p \) 为动量的变化量。
本实验通过测量滑块在气垫导轨上运动过程中的速度和加速度,以及作用在滑块上的合外力,验证动量定理的正确性。
三、实验器材1. 气垫导轨2. 滑块(上方安装有宽度为 \( d \) 的遮光片)3. 光电门(两个)4. 砝码盘和砝码5. 计算机及数据采集软件6. 秒表四、实验步骤1. 将气垫导轨水平放置,确保导轨的直线度和稳定性。
2. 将滑块放在气垫导轨上,确保滑块与导轨接触良好。
3. 将两个光电门安装在导轨上,间距为 \( L \)。
4. 将光电门与计算机相连接,打开数据采集软件。
5. 将砝码放在砝码盘上,通过砝码盘对滑块施加合外力。
6. 开启气垫导轨,使滑块从光电门 1 处开始运动,通过光电门 2 时记录下时间\( t_1 \) 和 \( t_2 \)。
7. 重复步骤 6,记录多组数据。
8. 关闭气垫导轨,将砝码盘上的砝码质量增加,重复步骤 6 和 7。
9. 对实验数据进行处理和分析。
五、数据处理1. 计算滑块通过光电门 1 和 2 的时间差 \( \Delta t \):\[ \Delta t = t_2 - t_1 \]2. 计算滑块在光电门 1 和 2 之间的平均速度 \( v \):\[ v = \frac{L}{\Delta t} \]3. 计算滑块所受合外力 \( F \):\[ F = m \cdot a \]其中,\( m \) 为滑块的质量,\( a \) 为滑块的加速度。
4. 计算滑块的动量变化量 \( \Delta p \):\[ \Delta p = m \cdot v \]5. 根据动量定理,计算合外力的冲量 \( I \):\[ I = F \cdot \Delta t \]6. 对比 \( I \) 和 \( \Delta p \) 的数值,验证动量定理的正确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用光电门验证动量定理
要使用光电门验证动量定理,可以按照以下步骤进行:
1. 准备材料和设备:光电门、光源、平台、小球等。
2. 将光电门放置在平台上,并确保其能够正常工作。
3. 选取一颗小球放在光电门的发光面前,确保小球与光电门之间有一段适当的距离。
4. 设置光源并将光源对准光电门的接收器,确保光能能够准确地被感应到。
5. 记录小球在被光能照射之前和照射之后通过光电门的时间。
6. 根据光电门的测量结果计算小球通过光电门时的速度和动量。
7. 使用动量定理,将小球在照射前后的动量进行比较,并验证动量定理是否成立。
在实验过程中,需要注意以下事项:
- 确保光电门的位置和实验环境的稳定性,以减少误差。
- 精确测量小球通过光电门的时间,并注意记录结果。
- 确保小球没有被其他力或因素干扰,以保持实验的准确性。
- 在进行实验前,可以先进行一些预实验,以确定实验方法和
参数的准确性。