新人教版八年级数学下册二次根式教案(整理18篇)

合集下载

人教版八年级数学下册二次根式教学设计

人教版八年级数学下册二次根式教学设计

人教版八年级数学下册二次根式教学设计人教版数学16.1二次根式教学设计16.1二次根式(1)一、研究目标:知识与技能:1.了解二次根式的概念,能判断一个式子是否为二次根式。

2.掌握二次根式有意义的条件。

过程与方法:先提出问题,让学生探讨、分析问题,师生共同归纳得出概念。

情感态度与价值观:经过探索二次根式的重要结论,发展学生观察、发现问题的能力及研究问题的严谨性。

二、研究重点:理解二次根式的概念。

三、研究难点:明确二次根式有意义的条件,并运用其解决具体问题。

四、研究过程一)复引入:1.已知一个正数x,满足x²= a,x是a的平方根,记为√a,a一定是非负数。

2.(1) 4的算术平方根为2,用式子表示为√4=2;2) 16的算术平方根是4,用式子表示为√16=4;3) 2的算术平方根是√2;4) 正数a的算术平方根为√a;5) -7没有算术平方根。

归纳:非负数和0都有算术平方根;负数没有算术平方根。

二)出示研究目标:1.了解二次根式的概念,能判断一个式子是否为二次根式。

2.掌握二次根式有意义的条件。

三)探索新知、提出问题思考:用带有根号的式子填空1.面积为3的正方形的边长是√3,面积为S的正方形的边长是√S。

2.一个长方形的围栏,长是宽的2倍,面积为130平方米,则它的宽为√(130/2)米。

3.一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下时离地面的高度h(单位:m)满足关系h=5t²。

如果用含有h的式子表示t,那么t为√(h/5)。

很明显:所得的结果都表示一些正数的算术平方根。

像这样一些非负数的算术平方根的式子,我们就把它称为二次根式。

一般地,我们把形如√a(a≥0)的式子叫做二次根式(学生举例巩固)。

四)议一议1.-1没有算术平方根。

2.√(-a)没有实数解。

3.当a<0时,没有意义。

点评:1.表示非负数a的算术平方根。

2.a可以是数也可以是一个含有字母的式子。

人教版八年级数学下册16.1二次根式教案

人教版八年级数学下册16.1二次根式教案
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解二次根式的基本概念。二次根式是指形如√a的表达式,其中a是非负实数。它是解决平方根问题的基本工具,广泛应用于数学和实际生活中。
2.案例分析:接下来,我们来看一个具体的案例。假设我们需要计算一个正方形的对角线长度,如果边长是2,那么对角线长度就是√(2^2 + 2^2) = √8。这个案例展示了二次根式在实际中的应用,以及它如何帮助我们解决问题。
-核心内容三:最简二次根式的概念及其化简方法。强调最简二次根式的重要性,并教授化简技巧。
-举例:将√50化简为最简二次根式5√2,并解释为什么这是最简形式。
-核心内容四:二次根式的实际应用。通过解决实际问题,强调二次根式在生活中的应用。
-举例:计算一个边长为√5的正方形面积。
2.教学难点
-难点一:二次根式的有理化。学生难以理解为什么要进行有理化,以及如何进行有理化。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《二次根式》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算非整数的平方根的情况?”比如,我们想要计算一个边长为√5的正方形面积。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索二次根式的奥秘。
三、教学难点与重点
1.教学重点
-核心内容一:二次根式的定义与表示。重点讲解二次根式的概念,如何表示,以及不同形式的二次根式之间的转换。
-举例:理解√9和3^2/2的等价性,以及如何将√18转换为最简二次根式。
-核心内容二:二次根式的性质与运算法则。重点掌握二次根式的乘法、除法、加法和减法运算规则。
-举例:演示√a * √b = √(ab)和√a / √b = √(a/b)的运算过程。

新人教版八年级数学下册二次根式教案(14篇)

新人教版八年级数学下册二次根式教案(14篇)

新人教版八年级数学下册二次根式教案(14篇)篇1:新人教版八年级数学下册二次根式教案1.二次根式:式子( ≥0)叫做二次根式。

2.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。

3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。

4.二次根式的性质:(1)( )2= ( ≥0); (2)5.二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.= ? (a≥0,b≥0); (b≥0,a>0).(4)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.【典型例题】1、概念与性质例1下列各式1) ,其中是二次根式的是_________(填序号).例2、求下列二次根式中字母的取值范围(1) ;(2)例3、在根式1) ,最简二次根式是( )A.1) 2)B.3) 4)C.1) 3)D.1) 4)例4、已知:例5、 (龙岩)已知数a,b,若 =b-a,则 ( )A. a>bB. a2、二次根式的化简与计算例1. 将根号外的a移到根号内,得 ( )A. ;B. - ;C. - ;D.例2. 把(a-b)-1a-b 化成最简二次根式例3、计算:例4、先化简,再求值:,其中a= ,b= .例5、如图,实数、在数轴上的位置,化简:4、比较数值(1)、根式变形法当时,①如果,则;②如果,则。

二次根式教案

二次根式教案

二次根式教案数学二次根式教案篇一一、学习目标:1.多项式除以单项式的运算法则及其应用。

2.多项式除以单项式的运算算理。

二、重点难点:重点:多项式除以单项式的运算法则及其应用难点:探索多项式与单项式相除的运算法则的过程三、合作学习:(一)回顾单项式除以单项式法则(二)学生动手,探究新课1.计算下列各式:(1)(am+bm)÷m (2)(a2+ab)÷a (3)(4x2y+2xy2)÷2xy.2.提问:①说说你是怎样计算的②还有什么发现吗?(三) 总结法则1.多项式除以单项式:先把这个多项式的每一项除以,再把所得的商2.本质:把多项式除以单项式转化成四、精讲精练例:(1)(12a3-6a2+3a)÷3a; (2)(21x4y3-35x3y2+7x2y2)÷(-7x2y);(3)[(x+y)2-y(2x+y)-8x]÷2x (4)(-6a3b3+ 8a2b4+10a2b3+2ab2)÷(-2ab2)随堂练习:教科书练习五、小结1、单项式的除法法则2、应用单项式除法法则应注意:A、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号B、把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数;C、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;D、要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行。

E、多项式除以单项式法则第三十四学时:14.2.1平方差公式一、学习目标:1.经历探索平方差公式的。

过程。

2.会推导平方差公式,并能运用公式进行简单的运算。

二、重点难点重点:平方差公式的推导和应用难点:理解平方差公式的结构特征,灵活应用平方差公式。

三、合作学习你能用简便方法计算下列各题吗?(1)20xx×1999 (2)998×1002导入新课:计算下列多项式的积。

人教版初中数学八年级下册《二次根式》教学设计

人教版初中数学八年级下册《二次根式》教学设计

人教版初中数学八年级下册《二次根式》教学设计一. 教材分析人教版初中数学八年级下册的《二次根式》是数学课程中重要的一部分。

这部分内容主要介绍了二次根式的定义、性质和运算方法。

通过学习二次根式,学生能够更好地理解实数的概念,提高解决问题的能力。

教材中包含了丰富的例题和练习题,有助于学生巩固所学知识。

二. 学情分析在八年级下册,学生已经学习了实数、有理数等基础知识,对数学概念和运算有一定的理解。

但部分学生可能对二次根式的概念和性质理解不深,运算能力有待提高。

因此,在教学过程中,要关注学生的个体差异,引导他们积极参与课堂活动,提高他们的数学素养。

三. 教学目标1.知识与技能:使学生掌握二次根式的定义、性质和运算方法,能够熟练地运用二次根式解决实际问题。

2.过程与方法:通过观察、思考、讨论等方法,培养学生的逻辑思维能力和解决问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养他们勇于探索、积极向上的学习态度。

四. 教学重难点1.重点:二次根式的定义、性质和运算方法。

2.难点:二次根式在不同情境下的应用。

五. 教学方法1.情境教学法:通过生活实例,引导学生理解二次根式的实际意义。

2.启发式教学法:引导学生主动思考、探讨,提高他们的逻辑思维能力。

3.小组合作学习:鼓励学生互相讨论、交流,培养团队合作精神。

六. 教学准备1.教学PPT:制作包含二次根式相关知识的教学PPT。

2.练习题:准备适量的练习题,以便在课堂上进行操练和巩固。

3.教学素材:收集与二次根式相关的实际问题,用于课堂讨论。

七. 教学过程1.导入(5分钟)利用生活实例,如计算物体体积、求解实际问题等,引入二次根式的概念。

引导学生思考:为什么需要引入二次根式?2.呈现(10分钟)呈现二次根式的定义、性质和运算方法。

通过PPT展示,使学生清晰地了解二次根式的相关知识。

3.操练(10分钟)根据呈现的知识点,让学生进行相关的运算练习。

教师及时给予指导和解答,确保学生掌握二次根式的运算方法。

二次根式教案(优秀8篇)

二次根式教案(优秀8篇)
(二)、探索新知:
本环节通过1个引题,2个例题的活动达到让学生学会从实际问题中抽象出中心对称的基本性质,并会用二次根式的加减法则解决有关实际问题。既培养了学生的观察能力,又培养了学生的有理有据的作图能力。
(三)、巩固练习:
在此环节中,利用课后的练习和选取的课外习题来巩固二次根式的加减,来达到突出重点的目的。
(三)教学手段
采用多媒体教学,通过直观演示图象,更好地教会学生“二次根式的加减的研究方法,同时通过多媒体辅助手段展示教学内容,扩大课堂容量,提高教学效率。
六、说教学过程的设计:
本课共分为五个环节:
(一)、复习引入新课:
利用"同类二次根式的"引入,激发学生好奇心和求知欲,创设情景,旨在引出新课题。既达到了复习的目的,又引出了新课。
(注:合作学习阶段与集体讲授阶段可以根据授课内容进行适当调整次序或交叉进行)
三、课后作业(课后作业见附件2)
教师发放根据本节课所学内容制定的针对性作业,以帮助学生进一步巩固提高课堂所学。
四、板书设计
课题:二次根式(1)
二次根式概念例题例题
二次根式性质
反思:
次根式教案篇六
第十六章二次根式
代数式用运算符号把数和表示数的字母连接起来的式子叫代数式①式子中不能出现“=,≠,≥,≤,”;②单个的数字或单个的字母也是代数式
2、会运用积和商的算术平方根的性质,把一个二次根式化为最简二次根式。
教学重点
最简二次根式的定义。
教学难点
一个二次根式化成最简二次根式的方法。
教学过程
一、复习引入
1、把下列各根式化简,并说出化简的根据:
2、引导学生观察考虑:
化简前后的根式,被开方数有什么不同?
化简前的被开方数有分数,分式;化简后的被开方数都是整数或整式,且被开方数中开得尽方的因数或因式,被移到根号外。

初二数学二次根式教案

初二数学二次根式教案

初二数学二次根式教案【篇一:新人教版八年级数学下册第16章二次根式教案】课题:16.1二次根式1 课型:新授一、学习目标1、了解二次根式的概念,能判断一个式子是不是二次根式。

2、掌握二次根式有意义的条件。

3、掌握二次根式的基本性质:a?0(a?0)和(a)?a(a?0)二、学习重点、难点重点:二次根式有意义的条件;二次根式的性质.难点:综合运用性质a?0(a?0)和(a)?a(a?0)。

三、学习过程(一)自学导航(课前预习)(1)已知x?a,那么a是x的______;x是a的______, 记为_____,a一定是____数。

(2)4的算术平方根为2,用式子表示为;正数a的算术平方根为4_______,0的算术平方根为_______;式子a?0(a?0)的意义是。

(二)合作交流(小组互助)(1)的平方根是;(2)一个物体从高处自由落下,落到地面的时间是t(单位:秒)与开始下落时的高度h(单位:米)满足关系式h?5t。

如果用含h的式子表示t,则t;(3)圆的面积为s,则圆的半径是;(4)正方形的面积为b?3,则边长为。

思考:,2222hs ,,?3等式子的实际意义.说一说他们的共同特征. ?5a(a?0)叫做二次根式,a叫做_____________。

定义: 一般地我们把形如1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?,?,4a(a?0),x2?1 32、当a为正数时a指a的,而0的算术平方根是,负数,只有非负数a才有算术平方根。

所以,在二次根式a中,字母a必须满足 , 1a才有意义。

3、根据算术平方根意义计算: (1) (4)2 (2)((3)(.5) (4)()2根据计算结果,你能得出结论:(a)2?________,其中a?0,4、由公式(a)?a(a?0),我们可以得到公式a=(a)2 ,利用此公式可以把任意一个非负数写成一个数的平方的形式。

如()=5;也可以把一个非负数写成一个数的平方形式,如5=(). 22212) 32练习:(1)把下列非负数写成一个数的平方的形式:6 0.35(2)在实数范围内因式分解x2?74a2-11(三)展示提升(质疑点拨)例:当x是怎样的实数时,x?2在实数范围内有意义?解:由x?2?0,得x?2当x?2时,x?2在实数范围内有意义。

人教版初中数学八年级下册16.3.2《二次根式的混合运算》教案

人教版初中数学八年级下册16.3.2《二次根式的混合运算》教案
在教学方法上,我也要不断尝试创新。例如,利用多媒体教学手段,以动画或图像的形式展示二次根式的混合运算过程,让学生更加直观地理解。同时,引入一些趣味性的数学游戏,让学习变得更加轻松愉快。
最后,关注学生的个体差异,对于学习有困难的学生,给予更多的关心和指导。在课后,我会主动询问他们是否理解课堂内容,针对他们的疑问进行解答,帮助他们克服学习难点。
4.培养学生的抽象思维能力:通过二次根式的混合运算,让学生从具体实例中抽象出数学规律,提升学生的数学抽象思维水平。
三、教学难点与重点
1.教学重点
a.掌握二次根式的乘除法则:\(\sqrt{a} \times \sqrt{b} = \sqrt{ab}\)(a≥0,b≥0)和\(\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}\)(a≥0,b>0);
c.了解二次根式的乘方运算:\((\sqrt{a})^n = \sqrt{a^n}\)(n为正整数);
举例:通过\((\sqrt{2})^2\)和\((\sqrt{3})^3\)等例题,强调乘方运算的规则。
2.教学难点
a.理解并运用二次根式乘除法则进行简化时的步骤和方法;
难点解析:学生在进行\(\sqrt{18} \times \sqrt{2}\)等计算时,可能会忽略先简化根号内的乘积,直接相乘,导致计算复杂。教师需强调先简化根号内的乘积,再进行乘法运算。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了二次根式混合运算的基本概念、运算法则和实际应用。同时,我们也通过实践活动和小组讨论加深了对这一知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新人教版八年级数学下册二次根式教案(整理18篇)篇1:新人教版八年级数学下册二次根式教案1.二次根式:式子( ≥0)叫做二次根式。

2.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。

3.同类二次根式:二次根变换成最简单的二次根后,如果根的个数相同,那么这些二次根就是相似的二次根。

4.二次根式的性质:(1)( )2= ( ≥0); (2)5.二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.= ? (a≥0,b≥0); (b≥0,a>0).(4)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.【典型例题】1、概念与性质例1下列各式1) ,其中是二次根式的是_________(填序号).例2、求下列二次根式中字母的取值范围(1) ;(2)例3、在根式1) ,最简二次根式是( )A.1) 2)B.3) 4)C.1) 3)D.1) 4)例4、已知:例5、 (龙岩)已知数a,b,若 =b-a,则 ( )A. a>bB. a2、二次根式的化简与计算例1. 将根号外的a移到根号内,得 ( )A. ;B. - ;C. - ;D.例2. 把(a-b)-1a-b 化成最简二次根式例3、计算:例4、先化简,再求值:,其中a= ,b= .例5、如图,实数、在数轴上的位置,化简:4、比较数值(1)、根式变形法当时,①如果,则;②如果,则。

例1、比较与的大小。

(2)、平方法当时,①如果,则;②如果,则。

例2、比较与的大小。

(3)、分母有理化法通过分母的合理化,以分子的大小进行比较。

例3、比较与的大小。

(4)、分子有理化法通过分子的合理化,用分母的大小来比较。

例4、比较与的大小。

(5)、倒数法例5、比较与的大小。

(6)、媒介传递法使用传递性进行比较,在两个数字之间适当选择媒体值。

例6、比较与的大小。

(7)、作差比较法在对两数比较大小时,经常运用如下性质:① ;②例7、比较与的大小。

(8)、求商比较法它运用如下性质:当a>0,b>0时,则:① ; ②例8、比较与的大小。

5、规律性问题例1. 观察下列各式及其验证过程:,验证: ;验证: .(1)按照上述两个等式及其验证过程的基本思路,猜想的变形结果,并进行验证;(2)针对上述各式反映的规律,写出用n(n≥2,且n是整数)表示的等式,并给出验证过程.篇2:新人教版八年级数学下册二次根式教案1.下列图像中可能是反比例函数y= 的图像的共有 ( )2.在同一直角坐标系下,直线y=x+1与双曲线y= 的交点的个数为 ( )A.0个B.1个C.2个D.不能确定3.反比例函数y=- 的图像是_______,该函数图像在第_______象限.4.已知反比例函数y= 的图像经过点(1,-2),则这个函数的表达式是_______.5.已知双曲线y= 经过点(-1,2),那么k的值等于_______.6.在平面直角坐标系中,分别画出下列函数的图像:(1)y= (2)y=-7.反比例函数y= 的图像经过点(-2,3),则k的值为 ( )A.6B.-6C.D.-8.反比例函数y= 的图像大致是 ( )9.如图,点P(-3,2)是反比例函数y= (k≠0)的图像上一点,则反比例函数的解析式为 ( )A.y=-B.y=-C.y=-D.y=-10.函数y=- 的图像上所有点的横坐标与纵坐标的乘积是_______.11.已知点P为函数y= 图像上一点,且P到原点的距离为2,则符合条件的点P有__个12.分别在坐标系中画出下列函数的图像:(1)y= (2)y=-13.反比例函数y= 的图像经过点(-2,4),求它的解析式,并画出函数图像,图像分布在哪几个象限?14.设某一直角三角形的面积为18 cm2,两条直角边的长分别为x(cm),y(cm).(1)写出y(cm)与x( cm)的函数关系式;(2)画出该函数的图像;(3)根据图像,求解:①当x=4 cm时,y的值;②x等于多少时,该直角三角形是等腰直角三角形?参考答案1.B2.C3.双曲线二、四4.y=-5.-36.略7.C 8.C 9.D 10.-5 11.4 12.略 13.y=- 图像略分布在二、四象限 14.(1)y= (2)略(3)①y=9 ② x=6篇3:八年级数学下册《二次根式》教后反思新人教版八年级数学下册《二次根式》教后反思二次根式这节课的重点是了解二次根式的定义,会判断一个根式是不是二次根式,难点是二次根式成立的条件,和利用进行计算。

通过课前备学生,我了解到,学生接受起来并不是太顺利,所以,这一节课我进行了两块的内容,一是二次根式的定义,理解它并会用定义进行判断;二是二次根式成立的`条件,让学生掌握如何使二次根式有意义并会正确书写步骤。

接下来重点讲解确定平方根所含字母范围的知识点。

这里面要掌握一点,那就是若一个式子是二次根式,则它的被开方数一定是非负数,利用这一条件能确定二次根式中被开方数所含字母的取值范围。

特别的,含有分母的二次根式取值时易忽略分母不能为零这一条件。

由于取值范围的确定与不等式(组)有关,所以,在学习之前又进行了不等式的性质及解法进行了复习,因为前几天让学生复习过,且一直在温习,所以这一点学习并没有感觉到困难。

篇4:八年级数学下册《二次根式》教学反思新人教版八年级数学下册《二次根式》教学反思在二次根式这一章的学习中,重点是熟练掌握二次根式的运算,教学的关键是理解二次根式的性质,在本章教学中,存在以下问题:1、课前没很好确定学生的基础知识情况高估学生对学过知识的掌握,认为平方根这一章的知识掌握不错,所以在二次根式结果是非负数以及二次根式的被开方数也是非负数。

我把这两个结论草草给出,这样导致基础差的学生根本不知道这两个结论的来源。

2、课堂没完全还给学生预习时间不够。

大部分同学都复习了这一章的知识点,但是还没来得及思考,老师也没来得及整理错误。

他们总是害怕这个板块的任务因为展示时间太多而无法完成。

课堂活动时间不够,学生思考问题时给出的暗示太多,以至于学生跟着老师的思路走,没有自己的思维体系。

由于时间不够,老师不得不代替学生修改答案,有些学生还没有完成。

这样学生就不能真正检验自己对情况的掌握程度,不能及时反馈,及时采取措施补救。

3、课后练习不能真正落实学生不能很熟练地化简二次根式,以致于二次根式的加减乘除不能顺利进行。

例如不会熟练化成最简二次根式,导致学生对二次根式的加减感到很困难。

在这里,应要求学生对100以内的二次根式化简熟练掌握,为二次根式的'加减打下扎实的基础。

对二次根式的加减,大部分学生理解同类二次根式,并能够合并同类二次根式,出现的问题在于二次根式的化简,学困生在于整式的加减,整式的乘除,分式的加减和乘除的运算的公式和运算法则不清,即使把本节知识听懂了,由于过去的知识不牢固,造成运算结果不正确。

把过去学过的知识复习,使学生能够独立完成二次根式的运算。

篇5:八年级下册二次根式教学设计八年级下册二次根式教学设计教学目标:掌握二次方根的概念;根据二次方根的概念,掌握根号的取值范围。

教学重难点:重点:二次根式的概念以及二次根式有意义的条件;难点:找到符合要求的字母范围。

教学方法:先学后教,当堂训练课时安排:一课时教学过程:1、知识回顾1、算数平方根:一般地,如果一个正数x的平方等于a,那么这个正数x叫做a的`算数平方根。

2.正数的算术平方根是正数,0的算术平方根是0,负数没有平方根。

2、板书课题3、出示学习目标4、出示自学指导自学教材2、3页,完成下列各题:1、完成第二页思考题,找出二次根式的概念;2、明确二次根式的特点;3、式子有意义的条件;4、完成《基础训练》课前预习。

5、检测1、二次根式的概念2、二次根式的特点3、式子有意义的条件4、课前预习讲解6、练习1、教材3页练习题;2、习题16.1第1、7题;3、《基础训练》课堂练习7、小结谈谈你对二次根式的认识......8、作业1、课本19页第一题2、《基础训练》课后练习3、思考学习拓展。

9、教学反思1、因为学生已学习过算数平方根,所以对本节课知识能较快掌握;2、本节课的关键在于掌握二次根式有意义的条件:被开方数大于等于0。

同时结合之前所学知识能解答式子有意义时字母的取值范围。

3.学习之初要加强实践,把课堂还给学生,充分发挥学生的主动性。

篇6:八年级数学《二次根式》教学反思本章的教学目标是经历二次根式的概念的发生过程,了解二次根式的概念,以及二次根式的性质和运算。

在概念的教学上采用了问题导入法比较顺利。

但对概念有一点疑惑,形如根号a (a>=o)的式子,那根号前面的系数要不是1呢,难道就不是二次根式了吗?本章的难点在利用性质化简。

往往不顾条件就往下做,过后才会醒悟,这是一棘手的问题。

对于同类二次根式的概念的教学必须强调两点1要最简2被开方数相同。

尤其在应用时学生会忽略第一点。

运算方面对加减法主要还是要熟练化简,对一些常用的数进行分解。

其次同类要合并,问题不是很大。

而在乘除法的运算上,方法用的不当会变的很麻烦。

主要要学会细心观察,是先乘除后化简来的比较简单。

篇7:八年级数学《二次根式》教学反思二次根式是代数式的一部分,其运算是有关运算中不可或缺的环节,是后续教学中的基础之一。

因此,学好本章内容具有重要意义。

而在教学中发现,有很多学生(甚至教师)对这一部分内容相当含糊,特别是积的算术平方根、商的算术平方根公式以及二次根式的乘除法公式的有机应用,更造成了理解上的混乱,运算上的失误。

要解决这个问题,就必须明确二次根式的化简、运算目的。

通过教学反思,我认为二次根式的教与学必须围绕“小”、“少”、“分母无根号”三步诀。

所谓“小”,是指被开方数化简到最简(即化简成不能再开平方的整数)为止。

为此,可以用二次根式的四个性质来实现这个目的:①2=a;②=|a|;③=;④=。

所谓“少”,是指结果中尽量少含根号。

要达到这个要求,可以用二次根式的乘法、除法公式来解决:;。

在教材中P7例1计算、P9例4等。

所谓“分母无根号”,是指分母中不含有根号。

众所周知,开不尽方的数是无理数,要除以一个无限不循环的小数,是很困难的,所以要转化为有理数来解决。

相关文档
最新文档