数列的三种表示方法

合集下载

高中数学-数列

高中数学-数列

数列的概念及简单表示法一、数列的概念1.数列定义:按照一定次序排列起来的一列数叫做数列,数列中的每一个数叫做这个数列的项2.数列与函数的关系:从函数观点看,数列可以看成以正整数集N+(或它的有限子集)为定义域的函数a n=f(n).当自变量按照从小到大的顺序依次取值时所对应的一列函数值3.数列有三种表示法:是列表法、图象法和通项公式法二、数列的分类分类原则类型满足条件按项数分类有穷数列项数有限无穷数列项数无限按项与项间的大小关系分类递增数列a n+1>a n其中n∈N+递减数列a n+1<a n常数列a n+1=a n按其他标准分类有界数列存在正数M,使|a n|≤M摆动数列从第二项起,有些项大于它的前一项,有些项小于它的前一项的数列三、数列的两种常用的表示方法1.通项公式:如果数列{a n}的第n 项a n 与n 之间的关系可以用一个函数式a n=f(n)来表示,那么这个公式叫做这个数列的通项公式2.递推公式:如果已知数列{a n}的第1 项(或前几项),且从第二项(或某一项)开始的任一项a n 与它的前一项a n-1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式四、通项公式的求法:1.观察法:仔细观察数列的项和项数之间的关系,可分离出随项数变化的部分和不变的部分,从而找到规律.如数列2 , -1,10 , -17 , 26 , -37 ,,先将数列变为 2 , -5 , 10 , -17 , 26 , -37 ,,显然3 7 9 11 13 3 5 7 9 11 13S ⎪ ⎪ ⎨ - S 分母为2n +1,分子为n 2 +1,奇数项正偶数项负,乘以(-1)n +1即可.故n +1n 2 +1 a n = (-1)2n +1 .又如数列 7,77,777, ,可写成 7 ⨯ 9, 7 ⨯ 99, 7⨯999, 999,而 9,99,999,依次又可写成10 -1,102-1,103-1, ,因此,这个数列的通项公式为a = 7 (10n -1)2. 公式法:(1) 已知数列{a n }的前 n 项和S n ,则 a n= ⎧⎪S 1⎪⎩ nn -1 n9(n = 1) (n ≥ 2) (2) 对于等差数列和等比数列,把已知条件代入其通项公式、前 n 项和公式列出方程(组)求解3.累加法:形如a n +1 = a n + f (n ),当 f (1) + f (2) + + f (n ) 的值可求时用此法 ⎧an - a n -1 = f (n -1) ⎪a - a = f (n - 2) ⎪ n -1⎨n -2 ⇒ a n = f (n -1) + f (n - 2) +... f (2) + f (1) + a 1, (n ≥ 2) ⎪... ⎪⎩a 2 - a 1 = f (1)(1) 若 f (n ) 是关于n 的一次函数,累加后可转化为等差数列求和(2) 若 f (n ) 是关于n 的指数函数,累加后可转化为等比数列求和(3) 若 f (n ) 是关于n 的二次函数,累加后可分组求和(4) 若 f (n ) 是关于n 的分式函数,累加后可裂项求和4. 累乘法:形如a = f (n )a ⎛或 a n +1 = f (n ) ⎫,当 f (1) f (2)f (n ) 可求时,用此法.⎧ a n⎪ a= f (n -1) n +1n⎪⎝a n⎭⎪ n -1 ⎪ a n -1⎪ a f (n - 2) ⎨ n -2 ⎪... ⎪ a 2 = af (1) ⎩ 1 将上述n -1个式子两边分别相乘,可得: a n = f (n -1) ⋅ f (n - 2) ⋅...⋅ f (2) f (1)a 1, (n ≥ 2)=⎩5. 构造法:当已知非常数数列的首项(或前几项)及递推公式时用此法 (1)对于一阶递推公式: a n +1 = pa n + q , ( p 为常数,p ≠ 1) 给出的数列,两边各加q 得, a+ q = p (a +q ) ,这样就构造出一个等比数列⎧a +q ⎫ ,其公比 p -1 n +1 p -1 n p -1 ⎨ n p -1⎬⎩ ⎭为 p ,首项是a +q ,∴ a + q= (a + q ) p n -1 ,即a = (a + q ) p n -1 - q 1p -1 n p -1 1 p -1 n 1p -1 p -1(2)对于二阶递推公式: a n +1 = pa n + qa n -1 (p , q 为常数) 给出的数列,设 a + xa =y (a + xa ) (*),显然⎧ y - x = p.把方程组的解代入(*)便可构成一个等 n +1 n n n -1 ⎨xy = q比数列,继而可以求出通项公式(3)以 a = ma n 给出的数列(p , q , m 均为非零整数),当m = q 时,可以构造一个 n +1pa n + q等差数列;当m ≠ q 时,可以构造一个一阶递推公式6. 周期数列举例:通过计算前有限项发现周期,继而求出某些项或 S n1n n 等 差 数 列 及 其 前 n 项 和一、等差数列的概念1. 定义:如果一个数列从第 2 项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示 2. 数学语言表达式: a n +1 - a n = d ( n ∈N +,d 为常数),或a n - a n -1 = d ( n ≥2,d 为常数)3. 等差中项:如果三个数x ,A ,y 组成等差数列,那么 A 叫做 x 和 y 的等差中项,且有 A =x + y 2二、等差数列的通项公式与前n 项和公式1. 若等差数列{a n }的首项是a ,公差是d ,则其通项公式为a = a + (n -1)d = dn + a - d (n ∈ N *)n11通项公式的推广: a = a + (n - m )d ( m , n ∈N) ⇒ d =a n - a mnm+n - m2. 等差数列的前n 项和公式S= na + n (n -1) d = n (a 1 + a n ) = d n 2 + (a - 1 d )n n 12 22 1 2 (其中n ∈N +, a 1 为首项,d 为公差, a n 为第n 项)数列{a }是等差数列⇔ S = An 2+ Bn(A , B 为常数)三、等差数列的性质1. 非零常数列既是等差数列又是等比数列2. 数列{ a n }为等差数列⇔ a n = pn + q (p,q 是常数)3. 数列{λa n + b }( λ, b 为常数)仍为等差数列4. 若m + n = p + q (m , n , p , q ∈ N + ),则a m + a n = a p + a q5. 等差数列{a n }中,若项数成等差数列,则对应的项也成等差数列6. 等差数列{a n }中,隔相同的项抽出一项所得到的数列仍为等差数列p +nq 2k 2k n n 7. 若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d8. 若{a n }、{b n }是等差数列,则{ka n } 、{ka n + pb n }{a }( p , q ∈ N *)…也成等差数列 9.单调性:{a n }的公差为d ,则: (1) d > 0 ⇔ {a n }为递增数列 (2) d < 0 ⇔ {a n }为递减数列 (3) d = 0 ⇔ {a n }为常数列( k 、 p 是非零常数)、10. 若等差数列{a n }的前n 项和S n ,则S k 、S 2k - S k 、S 3k - S … 是等差数列 11. 等差数列{a n }的单调性:当d >0 时, {a n }是递增数列;当d <0 时, {a n }是递减数列;当d =0 时, {a n }是常数列12. 若{a n }是等差数列,公差为d ,则a k 、a k + m 、a k +2m …(k ,m ∈N +)是公差为md的等差数列13. 若数列{a}是等差数列,前n 项和为S ,则⎧S n ⎫也是等差数列,其首项和{a}的首 nn⎨ n ⎬ n项相同,公差是{a n⎩ ⎭}公差的 1214. 若三个数成等差数列,则通常可设这三个数分别为 x - d , x , x + d ;若四个数成等差数列,则通常可设这四个数分别为 x - 3d , x - d , x + d , x + 3d 四、等差数列前n 项的性质1. 若等差数列{a n }的前n 项和S n ,则S k 、S 2k - S k 、S 3k- S … 是等差数列2. 若数列{a } {b } 都是等差数列,其前 n 项和分别为S T ,则a n= 2n -1n,nn ,nbTn 2n -13. 若数列{a }的前n 项和S = An 2+ Bn +C (A , B 为常数,C ≠ 0) ,则数列{a n }从第二项起是等差数列sn⎨ 2n偶奇 中 偶 奇 偶偶4. 若数列{a n }是等差数列的充要条件是前n 项和公式S n = f (n ) ,是n 的二次函数或一次函数且不含常数项,即 S = An 2 + Bn (A , B 为常数,A 2 +B 2 ≠ 0)5. 等差数列{a n }中,若a < 0,d > 0 ( a ≤ 0 的n 的最大值为k )则S 有最小值S ,前n 项绝对值的和T n 1 = ⎧⎪-s n nn ≤ k;若a > 0,d< 0,( n a n ≥ k0 的n 的最大 ⎪⎩s n - 2s k n ≥ k + 1值为k )则S 有最大值S ,前n 项绝对值的和T = ⎧⎪s nn ≤ kn k n⎨ ⎪⎩2s k - s n n ≥ k + 16. 等差数列{a n }中,若项数为奇数2n - 1,则中间项为a , S =(2n-1)a ,S - S = n - 1 d s n + a , 奇 = 奇 偶 2 1S n - 1 若n 为偶数,则S = nd2若n 为奇数,则S - S =a (中间项)7. 等差数列{a n }中,若项数n 为奇数,设奇数项的和和偶数项的和分别为S 、S ,则sn + 1 s a n奇=;若项数n 为偶数, 奇= 2S n - 1S a n + 12五、等差数列的前 n 项和的最值等差数列{a n }中1. 若a 1>0,d <0,则S n 存在最大值2. 若a 1<0,d >0,则S n 存在最小值六、等差数列的四种判断方法1. 定义法:a n +1-a n =d (d 是常数)⇔{a n }是等差数列2. 等差中项法:2a n +1=a n +a n +2 (n ∈N *)⇔{a n }是等差数列3. 通项公式:a n =pn +q (p ,q 为常数)⇔{a n }是等差数列4. 前 n 项和公式:S n =An 2+Bn (A ,B 为常数)⇔{a n }是等差数列1- S 偶 偶 奇mb n 等 比 数 列 及 其 前 n 项 和一、等比数列的概念1. 定义:如果一个数列从第 2 项起,每一项与它的前一项的比都等于同一个常数(不为零),那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用q ( q ≠0)表示 2.数学语言表达式: a n= q ( n≥2, q 为非零常数),或 an +1 = q ( n ∈N , q 为非零常数)+a n -1 a n3. 等比中项:如果三个数x ,G ,y 组成等比数列,那么G 叫做 x 与 y 的等比中项,其中G = ±二、等比数列的通项公式及前n 项和公式1. 若等比数列{a }的首项为a ,公比是q ,则其通项公式为a = a q n -1n通项公式的推广: a n 1= a q n - mn 1a (1- q n )a - a q 2. 等比数列的前n 项和公式:当q =1 时, S n = na 1 ;当q ≠1 时, S n =11- q= 1 n1- q三、等比数列的性质 1. q = 1 ⇒{a n }为常数列2. q < 0 ⇒{a n } 为摆动数列3. 若正项数列{a n }为等比数列,则数列{log a a n }为等差数列4. 若{a }是等比数列,则{λa }(λ 为不等于零的常数),{a 2}⎧ 1 ⎫ {a r }(r ∈ Z ) 是等n n n⎨ a ⎬ n ⎩ n ⎭比数列,公比依次是q ,q 2 1 q r ,若数列{a } ,{b }都是等比数列且项数相同,则⎧ a n ⎫是等比数列, , n nq ⎨ ⎬ ⎩n ⎭ 5. 若数列{a }为等差数列,则数列{ba n}为等比数列6. 若 m + n = p + q (m , n , p , q ∈ N + ) ,则 a⋅ a = a ⋅ a ,当 p = q 时, a ⋅ a = a 2 即a p 是a m 和a n 的等比中项mnpqm n p7. 相隔等距离的项组成的数列仍是等比数列,即a k 、a k + m 、a k +2m …仍是等比数列,公比为xy1 1 1 1 2n ⎩ n ⎩ q m (即若项数成等差数列,则对应的项也等比数列)8. 任意两数a , b 都存在等差中项为a + b,但不一定都存在等比中项,当且仅当a , b 同号时 2才存在等比中项为9. 任意常数列都是等差数列,但不一定都是等比数列,当且仅当非零的常数列即是等差数列又是等比数列10. 等比数列{a n }的单调性:(1) 当q >1, a >0 或 0< q <1, a <0 时,数列{a n }是递增数列 (2) 当q >1, a <0 或 0< q <1, a >0 时,数列{a n }是递减数列 (3) 当q =1 时,数列{a n }是常数列11. 当q ≠-1,或q =-1 且 n 为奇数时,S n 、S 2n - S n 、S 3n - S 仍成等比数列,其公比为q n12. 等比差数列{a n }: a n +1 = qa n + d , a 1 = b (q ≠ 0) 的通项公式为⎧b + (n -1)d q = 1⎪ a n = ⎨bq n+ (d - b )q n -1 - d ;⎪q -1 q ≠ 1 ⎧nb + n (n -1)d(q = 1)其前 n 项和公式为 s n ⎪ ⎨(b - d ) 1- q + d n(q ≠ 1)⎪1- q q -1 1- q(四)判断给定的数列{a n }是等比数列的方法(1)定义法: an +1 = q (不为 0 的常数)⇔数列{a a n}为等比数列(2)中项法: a ⋅ a= a2⇔数列{a }为等比数列mn +2n +1n(3)前n 项和法:数列{a n }的前n 项和S n = A - Aq n (A 是常数, A ≠ 0, q ≠ 0, q ≠ 1 )⇔数列{a n }为等比数列= nS 1 1 ⎨ - S 数 列 求 和一、公式法1. 等差数列的前n 项和公式: S n2. 等比数列的前n 项和公式 (1) 当q =1 时, S n = na 1= na 1+n (n -1) d = n (a 1 + a n)2 2a (1- q n )a - a q(2) 当q ≠1 时, S n = 11- q = 1 n1- q3. 已知数列{a n }的前 n 项和S n ,则 a n= ⎧⎪S 1⎪⎩ nn -1 (n = 1) (n ≥ 2) 4. 差比数列求和:通项为a n b n 型,其中{a n }是等差数列,{b n }是等比数列,称为差比数列.求和方法为(设 d , q 分别是{a n },{b n }的公差、公比):令S n = a 1b 1 + a 2b 2 + + a n b n …①,两边同乘以q 得qS n = a 1b 1q + a 2b 2q + + a n b n q , ∴qS n = a 1b 2 + a 2b 3 + + a n b n +1 …②,①-②得 (1- q )S n = a 1b 1 + (a 2 - a 1)b 2 + + (a n - a n -1)b n - a n b n +1 = a 1b 1 + d b 2 + d b 3 + + d b n -1 + d b n - a n b n +1 = a 1b 1 + d (b 2 + b 3 + + b n -1 + b n ) - a n b n +1= a 1b 1 + d ⨯b (1- qn) 1- q-a nb n +1,∴当q ≠ 1时, Sn = a 1b 1 - a n b n +1 + d ⨯ 1- q b (1- q n) (1- q )2二、观察法:仔细观察数列的项和项数之间的关系,可分离出随项数变化的部分和不变的部分,从而找到规律.1.数列 2 , -1,10 , - 17 , 26 , - 37 , ,先将数列变为 2 , - 5 , 10 , - 17 , 26 , - 37, ,分母379 111335 79 11 13n +1n 2 +1 为2n +1,分子为n 2 +1,奇数项正偶数项负,乘以(-1)n +1即可.故a = (-1)2n +1 .2.又如数列 7,77,777, ,可写成 7 ⨯ 9, 7 ⨯ 99, 7 ⨯999,9 9 9,而 9,99,999,依次又可写成10 -1,102-1,103 -1, ,因此,这个数列的通项公式为a = 7 (10n -1)n9n⎪ ⎪ 3. 周期数列举例:通过计算前有限项发现周期,继而求出某些项或 S n三、累加法:形如a n +1 = a n + f (n ),当 f (1) + f (2) + + f (n ) 的值可求时用此法⎧an - a n -1 = f (n -1) ⎪a - a = f (n - 2) ⎪ n -1⎨n -2 ⇒ a n = f (n -1) + f (n - 2) +... f (2) + f (1) + a 1, (n ≥ 2) ⎪... ⎪⎩a 2 - a 1 = f (1)(1) 若 f (n ) 是关于n 的一次函数,累加后可转化为等差数列求和(2) 若 f (n ) 是关于n 的指数函数,累加后可转化为等比数列求和(3) 若 f (n ) 是关于n 的二次函数,累加后可分组求和(4) 若 f (n ) 是关于n 的分式函数,累加后可裂项求和四、累乘法:形如a= f (n )a ⎛或 a n +1 = f (n ) ⎫,当 f (1) f (2)f (n ) 可求时用此法.⎧ a n⎪ a= f (n -1) n +1n⎪⎝a n⎭⎪ n -1 ⎪ a n -1⎪ a f (n - 2) ⎨ n -2 ⎪... ⎪ a 2 = af (1) ⎩ 1 将上述n -1个式子两边分别相乘,可得: a n = f (n -1) ⋅ f (n - 2) ⋅...⋅ f (2) f (1)a 1, (n ≥ 2)五、构造法:当已知非常数数列的首项(或前几项)及递推公式时用此法1. 对于一阶递推公式: a n +1 = pa n + q , ( p 为常数,p ≠ 1) 给出的数列,两边各加qp -1得, a +q = p (a +q) ,这样就构造出一个等比数列⎧a + q ⎫ ,其公比为 n +1p -1 np -1 ⎨ n p -1⎬⎩ ⎭p ,首项是a +q ,∴ a + q= (a + q ) p n -1 ,即a = (a + q ) p n -1 - q 1p -1 n p -1 1 p -1 n 1p -1 p -12. 对于二阶递推公式: a n +1 = pa n + qa n -1 (p , q 为常数) 给出的数列, =⎩设 a + xa =y (a + xa ) (*),显然⎧y - x = p.把方程组的解代入(*)便可构成一个等n +1n n n -1⎨xy = q比数列,继而可以求出通项公式3. 以 a= ma n 给出的数列( p , q , m 均为非零整数),当m = q 时,可以构造一个等n +1pa n + q差数列;当m ≠ q 时,可以构造一个一阶递推公式 4. 形如a n +1 = pa n + q (其中 p , q 均为常数且 p ≠ 0 )型的递推式:(1) 若 p = 1时,数列{ a n }为等差数列 (2) 若q = 0 时,数列{ a n }为等比数列(3) 若 p ≠ 1 且q ≠ 0 时,数列{ a n }为线性递推数列,其通项可通过待定系数法构造等比数列来求.方法有如下两种:法一:设a n +1 + λ = p (a n + λ) ,展开移项整理得a n +1 = pa n + ( p -1)λ ,与题设a = pa + q 比较系数(待定系数法)得λ =q, ( p ≠ 0) ⇒ a + q = p (a + q)n +1np -1 n +1p -1n p -1⇒ a + q= p (a + q ) ,即⎧a + q ⎫构成以a + q为首项,以 p 为公比的等比 np -1 n -1 p -1 ⎨ n p -1⎬ 1 p -1⎩ ⎭数列.再利用等比数列的通项公式求出⎧a + q ⎫的通项整理可得a . ⎨ n p -1⎬ n法二:由a= pa ⎩ ⎭ + q 得a = pa + q (n ≥ 2) 两式相减并整理得a n +1 - a n= p , 即 n +1 n n n -1 a - an n -1{a n +1 - a n }构成以a 2 - a 1 为首项,以 p 为公比的等比数列.求出{a n +1 - a n }的通项再转化为累加法便可求出a n .5. 形如a n +1 = pa n + f (n ) ( p ≠ 1) 型的递推式: (1) 当 f (n ) 为一次函数类型(即等差数列)时:法一:设a n + An + B = p [a n -1 + A (n -1) + B ] ,通过待定系数法确定 A 、B 的值,转化成以a 1 + A + B 为首项,以 p 为公比的等比数列{a n + An + B } ,再利用等比数列的通项公式求出{a n + An + B } 的通项整理可得a n .法二:当 f (n ) 的公差为d 时,由递推式得: a n +1 = pa n + f (n ) , a n = pa n -1 + f (n -1)两式相减得: a n +1 - a n = p (a n - a n -1 ) + d ,令b n = a n +1 - a n 得: b n = pb n -1 + d 转化为“4”求出 b n ,再用累加法便可求出a n .(2) 当 f (n ) 为指数函数类型(即等比数列)时:法一:设a n + λ f (n ) = p [a n -1 + λ f (n -1)],通过待定系数法确定λ 的值,转化成以 a 1 + λ f (1) 为首项,以 p 为公比的等比数列{a n + λ f (n )} ,再利用等比数列的通项公式求出{a n + λ f (n )} 的通项整理可得a n .法二:当 f (n ) 的公比为q 时,由递推式得: a n +1 = pa n + f (n ) ——①,a n = pa n -1 + f (n -1) ,两边同时乘以q 得a n q = pqa n -1 + qf (n -1) ——②,由①②两式相减得a - a q = p (a - qa ) ,即 a n +1 - qa n= p ,在转化为类型Ⅴ㈠便可求出a . n +1 n n n -1 a - qa nn n -1法三:递推公式为an +1 = pa n + q n (其中p ,q 均为常数)或a = pa n + rq n (其中p ,q, r 均为常数)时,要先在原递推公式两边同时除以q n +1 ,得:a n +1 = p • a n + 1 ,引入辅助数列{b }(其中b = a n ),得: b = p b + 1 再应用类型 q n +1 q q n qn n q nn +1 q n q“4”的方法解决。

第一节 数列的概念与简单表示法

第一节 数列的概念与简单表示法

第一节数列的概念与简单表示法【最新考纲】 1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式).2.了解数列是自变量为正整数的一类特殊函数.1.数列的定义按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项.2.数列的分类3.数列的表示法数列有三种表示法,它们分别是列表法、图表法和解析法.4.数列的通项公式如果数列{ɑn}的第n项与序号n之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.5.数列的递推公式如果已知数列的第1项(或前几项),且从第二项(或某一项)开始的任一项ɑn 与它的前一项ɑn -1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.6.ɑn 与S n 的关系若数列{ɑn }的前n 项和为S n ,通项公式为ɑn ,则ɑn =⎩⎪⎨⎪⎧S 1,(n =1),S n -S n -1,(n ≥2).1.(质疑夯基)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)所有数列的第n 项都能使用公式表达.( )(2)根据数列的前几项归纳出数列的通项公式可能不止一个.( )(3)如果数列{ɑn }的前n 项和为S n ,则对∀n ∈N *,都有ɑn +1=S n+1-S n .( )(4)若已知数列{ɑn }的递推公式为ɑn +1=12ɑn -1,且ɑ2=1,则可以写出数列{ɑn }的任何一项.( )答案:(1)× (2)√ (3)√ (4)√2.设数列{ɑn }的前n 项和S n =n 2,则ɑ8的值为( ) A .15 B .16 C .49 D .64解析:当n=8时,ɑ8=S8-S7=82-72=15.答案:A3.对于数列{ɑn},“ɑn+1>|ɑn|(n=1,2,…)”是“{ɑn}为递增数列”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件解析:当ɑn+1>|ɑn|时,∵|ɑn|≥ɑn,∴ɑn+1>ɑn,∴{ɑn}是递增数列.当ɑn=-1n时,数列{ɑn}是递增数列,但ɑn+1<|ɑn|.答案:B4.把1,3,6,10,15,21,…这些数叫做三角形数,这是因为用这些数目的点可以排成一个正三角形(如下图).则第7个三角形数是()A.27 B.28 C.29 D.30解析:由图可知,第7个三角形数是1+2+3+4+5+6+7=28.答案:B5.(2017·唐山调研)数列{ɑn}满足:ɑ1=1,且当n≥2时,ɑn=n-1 nɑn -1,则ɑ5=________.解析:因为ɑ1=1,且当n ≥2时,ɑn =n -1n ɑn -1,则ɑn ɑn -1=n -1n .所以ɑ5=ɑ5ɑ4·ɑ4ɑ3·ɑ3ɑ2·ɑ2ɑ1·ɑ1=45×34×23×12×1=15.答案:15两种关系1.数列是一种特殊的函数,因此,在研究数列问题时,既要注意函数方法的普遍性,又要考虑数列方法的特殊性.2.ɑn =⎩⎪⎨⎪⎧S n (n =1),S n -S n -1 (n ≥2).三种方法由递推关系求数列的通项的基本思想是转化,常用的方法是: 1.ɑn +1-ɑn =f(n)型,采用叠加法. 2.ɑn +1ɑn=f(n)型,采用叠乘法. 3.ɑn +1=p ɑn +q(p ≠0,p ≠1)型,转化为等比数列解决.一、选择题1.下列数列中,既是递增数列又是无穷数列的是( ) A .1,12,13,14,…B .-1,-2,-3,-4,…C .-1,-12,-14,-18,…D .1,2,3,…,n解析:根据定义,属于无穷数列的是选项A 、B 、C ,属于递增数列的是选项C 、D ,故同时满足要求的是选项C.答案:C2.若S n 为数列{ɑn }的前n 项和,且S n =n n +1,则1ɑ5等于( )A.56B.65C.130D .30 解析:当n ≥2时,ɑn =S n -S n -1=nn +1-n -1n =1n (n +1),所以1ɑ5=5×6=30. 答案:D3.若数列{ɑn }的通项公式是ɑn =(-1)n (3n -2),则ɑ1+ɑ2+…+ɑ10等于( )A .15B .12C .-12D .-15解析:由题意知,ɑ1+ɑ2+…+ɑ10=-1+4-7+10+…+(-1)10×(3×10-2)=(-1+4)+(-7+10)+…+[(-1)9×(3×9-2)+(-1)10×(3×10-2)]=3×5=15. 答案:A4.(2017·广东六校一联)已知数列{ɑn }的前n 项和S n =n 2-2n ,则ɑ2+ɑ18=( )A .36B .35C .34D .33解析:当n ≥2时,ɑn =S n -S n -1=2n -3, 故ɑ2+ɑ18=(2×2-3)+(2×18-3)=34. 答案:C6.数列{ɑn }满足ɑ1=2,ɑn =ɑn +1-1ɑn +1+1,其前n 项积为T n ,则T 2017=()A.12 B .-12C .2D .-2解析:由ɑn =ɑn +1-1ɑn +1+1,得ɑn +1=1+ɑn1-ɑn,而ɑ1=2,则有ɑ2=-3,ɑ3=-12,ɑ4=13,ɑ5=2,故数列{ɑn }是以4为周期的周期数列,且ɑ1ɑ2ɑ3ɑ4=1, 所以T 2 017=()ɑ1ɑ2ɑ3ɑ4504ɑ1=1504×2=2 答案:C 二、填空题7.在数列-1,0,19,18,…,n -2n 2,…中,0.08是它的第________项.解析:令n -2n 2=0.08,得2n 2-25n +50=0,则(2n -5)(n -10)=0,解得n =10或n =52(舍去).∴ɑ10=0.08. 答案:108.(经典再现)若数列{ɑn }的前n 项和S n =23ɑn +13,则{ɑn }的通项公式是ɑn =________.解析:当n =1时,S 1=23ɑ1+13,∴ɑ1=1.当n ≥2时,ɑn =S n -S n -1=23ɑn +13-⎝ ⎛⎭⎪⎫23ɑn -1+13=23(ɑn -ɑn -1),∴ɑn =-2ɑn -1,即ɑn ɑn -1=-2, ∴{ɑn }是以1为首项,-2为公比的等比数列, ∴ɑn =1×(-2)n -1,即ɑn =(-2)n -1. 答案:(-2)n -19.(2016·太原二模)已知数列{ɑn }满足ɑ1=1,ɑn -ɑn +1=n ɑn ɑn +1(n ∈N *),则ɑn =________.解析:由已知得,1ɑn +1-1ɑn =n ,所以1ɑn -1ɑn -1=n -1,1ɑn -1-1ɑn -2=n -2,…,1ɑ2-1ɑ1=1,所以1ɑn -1ɑ1=n (n -1)2,ɑ1=1,所以1ɑn=n 2-n +22, 所以ɑn =2n 2-n +2.答案:2n 2-n +2三、解答题10.数列{ɑn }的通项公式是ɑn =n 2-7n +6(n ∈N *). (1)这个数列的第4项是多少?(2)150是不是这个数列的项?若是这个数列的项,它是第几项? (3)该数列从第几项开始各项都是正数? 解:(1)当n =4时,ɑ4=42-4×7+6=-6. (2)令ɑn =150,即n 2-7n +6=150,解得n =16或n =-9(舍去), 即150是这个数列的第16项.(3)令ɑn =n 2-7n +6>0,解得n >6或n <1(舍). ∵n ∈N *,∴数列从第7项起各项都是正数.11.已知S n 为正项数列{ɑn }的前n 项和,且满足S n =12ɑ2n +12ɑn (n ∈N *).(1)求ɑ1,ɑ2,ɑ3,ɑ4的值; (2)求数列{ɑn }的通项公式. 解:(1)由S n =12ɑ2n +12ɑn (n ∈N *)可得ɑ1=12ɑ21+12ɑ1,解得ɑ1=1;S 2=ɑ1+ɑ2=12ɑ22+12ɑ2,解得ɑ2=2;同理,ɑ3=3,ɑ4=4. (2)S n =ɑn 2+12ɑ2n ,①当n ≥2时,S n -1=ɑn -12+12ɑ2n -1,②①-②即得(ɑn -ɑn -1-1)(ɑn +ɑn -1)=0. 由于ɑn +ɑn -1≠0,所以ɑn -ɑn -1=1, 又由(1)知ɑ1=1,故数列{ɑn }为首项为1,公差为1的等差数列, 故ɑn =n.。

第一讲+数列的概念与简单表示法课件-2025届高三数学一轮复习

第一讲+数列的概念与简单表示法课件-2025届高三数学一轮复习

a6=( )
A.3×44
B.3×44+1
C.44
D.44+1
解析:由an+1=3Sn,得到an=3Sn-1(n≥2),
两式相减,得an+1-an=3(Sn-Sn-1)=3an, 则an+1=4an(n≥2),因为a1=1,a2=3S1=3a1=3,所以此数 列除去第一项后,为首项是3,公比为4的等比数列,所以an= a2qn-2=3×4n-2(n≥2).则a6=3×44.故选A.
1

(2n

1)
7 8
n+1

an+1 an

(2n+1)78n+1 (2n-1)78n

14n+7 16n-8
.

aan+n1>1 时,n<125;当aan+n1<1 时,n>125.∵an>0,∴数列{an}的最大项 是 a8.
答案:8
考向 2 数列的周期性
[例3]已知数列{an}满足:an+1=an-an-1(n≥2,n∈N*),a1=
2.数列的表示方法
列表法
列表格表示n与an的对应关系
图象法
把点(n,an)画在平面直角坐标系中
公 通项公式 把数列的通项用公式表示
式 法
递推公式
使用初始值a1和an+1=f(an)或a1,a2和an+1=f(an, an-1)等表示数列的方法
3.an 与 Sn 的关系 若数列{an}的前 n 项和为 Sn, 则 an=SS1n, -nSn=-11,,n≥2.
4.数列的分类
分类标准
类型
项数
有穷数列 无穷数列
项与项间的 大小关系
递增数列 递减数列
常数列

数列的概念及表示方法

数列的概念及表示方法
公元前 13 世纪意大利数学家斐波那契的名著《算盘全书》中, 记载了一个著名的问题,某人有一对新生的兔子饲养在围墙 中,如果它们每个月生一对兔子,且新生的兔子从第三个月开 始也是每个月生一对兔子, 问一年后围墙中共有多少对兔子?
据 载 首 先 是 由 19 世 纪 法 国 数 学 家 吕 卡 将 级 数 {an} : 1,1,2,3,5,8,13,21,34,…,an+1=an+an-1 命名为斐波那契数列, 它在数学的许多分支中有广泛应用.
②用列表法表示:
n an
1 1
2 1 2
3 1 3
4 1 4
5 1 5
… …
③用图象法表示为(在下面坐标系中绘出):
数列中的项与数集中的元素进行对比,数列中的项具有怎样的性质?
答 (1)确定性:一个数是或不是某一数列中的项是确定的,集合中
的元素也具有确定性; (2)可重复性: 数列中的数可以重复, 而集合中的元素不能重复出现(即 互异性); (3)有序性: 一个数列不仅与构成数列的“数”有关, 而且与这些数的排 列次序有关,而集合中的元素没有顺序(即无序性); (4)数列中的每一项都是数,而集合中的元素还可以代表除数字外的 其他事物.
下面是用列举法给出的数列, 请你根据题目要求补充完整. (1)数列:1,3,5,7,9,… ①用公式法表示:an= 2n-1,n∈N ; ②用列表法表示:
*
n an
1 1
2 3
3 5
4 7
5 9
… …
③用图象法表示为(在下面坐标系中绘出):
1 1 1 1 (2)数列:1,2,3,4,5,…
1 * , n ∈ N ①用公式法表示:an= n .
1.按照一定顺序排列的一列数称为 数列,数列中的每一个数叫做这个 数列的 项 .数列中的每一项都和它的序号有关,排在第一位的数

高考总复习一轮数学精品课件 第六章 数列 第一节 数列的概念与简单表示法

高考总复习一轮数学精品课件 第六章 数列 第一节 数列的概念与简单表示法
典例突破
1
例 4.在数列{an}中,a1=2且(n+2)an+1=nan,则它的前 30 项和 S30=(
30
A.
31
29
B.
30
28
C.
29
19
D.
29
)
答案 A
解析 易知
+1
an≠0,∵(n+2)an+1=nan,∴

2 3

∴an=a1·
· ·
…·
1 2
-1
=
1 1 2
2-1-2 , ≥ 2.
增素能 精准突破
考点一
利用an与Sn的关系求通项公式(多考向探究)
考向1.已知Sn求an
典例突破
例1.(1)(2023北京朝阳二模)已知数列{an}的前n项和是2n-1,则a5=(
)
A.9
B.16
C.31
D.33
(2)若数列{an}对任意n∈N*满足a1+2a2+3a3+…+nan=n,则数列{
∴{an}是首项为1,公差为1的等差数列.
∴a4 023=1+(4 023-1)×1=4 023.故选B.
(2)因为 + -1 =an=Sn-Sn-1=( + -1 )( − -1 )(n≥2),所以
− -1 =1.又 1 = √1 =1,所以数列{ }是首项为 1,公差为 1 的等差
(+1)
1+2+3+…+n=
.
2
考向2.已知an与Sn的关系式求an
典例突破
例2.(1)(2023河南名校联考改编)已知正项数列{an}的前n项和为Sn,满足

知识点总结数列

知识点总结数列

知识点总结数列一、数列的概念1. 数列的定义数列是指按照一定的顺序排列的一组数字。

数列可由以下形式表示:{a1, a2, a3, …, an},其中ai表示数列中的第i个数字。

2. 数列的元素数列中的每个数字称为数列的元素。

第一个元素称为首项,最后一个元素称为末项,数列中相邻两个元素之间的差称为公差。

3. 数列的分类根据数列的元素之间的关系,数列可以分为等差数列、等比数列、等差-等比数列等不同类型。

二、等差数列1. 等差数列的概念等差数列是指数列中相邻两项之差等于同一个常数的数列。

常数d称为等差数列的公差。

等差数列通常用an=a1+(n-1)d表示。

2. 等差数列的性质(1)等差数列的通项公式an=a1+(n-1)d。

(2)等差数列的前n项和Sn=(a1+an)n/2。

(3)等差数列的性质:如果数列是等差数列,则有an=a1+(n-1)d。

(4)等差数列的性质:如果数列是等差数列,则有Sn=(a1+an)n/2。

3. 等差数列的求和公式等差数列的前n项和可由以下公式表示:Sn=(a1+an)n/2。

4. 等差数列的应用等差数列在数学中有着广泛的应用,例如在代数、微积分、概率统计等领域中都有着重要的作用。

同时,等差数列也广泛应用于生活中的各个方面,例如金融领域的利息计算、物理学中的加速度等。

三、等比数列1. 等比数列的概念等比数列是指数列中相邻两项之比等于同一个非零常数的数列。

常数q称为等比数列的公比。

等比数列通常用an=a1*q^(n-1)表示。

2. 等比数列的性质(1)等比数列的通项公式an=a1*q^(n-1)。

(2)等比数列的前n项和Sn=a1*(1-q^n)/(1-q)。

(3)等比数列的性质:如果数列是等比数列,则有an=a1*q^(n-1)。

(4)等比数列的性质:如果数列是等比数列,则有Sn=a1*(1-q^n)/(1-q)。

3. 等比数列的求和公式等比数列的前n项和可由以下公式表示:Sn=a1*(1-q^n)/(1-q)。

【2022高考数学一轮复习(步步高)】第1节 数列的概念与简单表示法

【2022高考数学一轮复习(步步高)】第1节 数列的概念与简单表示法

第1节数列的概念与简单表示法考试要求 1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式);2.了解数列是自变量为正整数的一类特殊函数.知识梳理1.数列的定义按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项.2.数列的分类分类标准类型满足条件项数有穷数列项数有限无穷数列项数无限项与项间的大小关系递增数列a n+1>a n其中n∈N*递减数列a n+1<a n常数列a n+1=a n摆动数列从第二项起,有些项大于它的前一项,有些项小于它的前一项的数列数列有三种表示法,它们分别是列表法、图象法和解析法.4.数列的通项公式(1)通项公式:如果数列{a n}的第n项a n与序号n之间的关系可以用一个式子a n =f(n)来表示,那么这个公式叫做这个数列的通项公式.(2)递推公式:如果已知数列{a n}的第1项(或前几项),且从第二项(或某一项)开始的任一项a n与它的前一项a n-1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.[常用结论与微点提醒]1.数列的最大(小)项,可以用⎩⎨⎧a n ≥a n -1,a n ≥a n +1(n ≥2,n ∈N *)⎝ ⎛⎭⎪⎫⎩⎨⎧a n ≤a n -1,a n ≤a n +1(n ≥2,n ∈N *)求,也可以转化为函数的最值问题或利用数形结合求解.2.数列是按一定“次序”排列的一列数,一个数列不仅与构成它的“数”有关,而且还与这些“数”的排列顺序有关.3.易混项与项数的概念,数列的项是指数列中某一确定的数,而项数是指数列的项对应的位置序号.诊 断 自 测1.判断下列结论正误(在括号内打“√”或“×”)(1)相同的一组数按不同顺序排列时都表示同一个数列.( ) (2)1,1,1,1,…,不能构成一个数列.( ) (3)任何一个数列不是递增数列,就是递减数列.( )(4)如果数列{a n }的前n 项和为S n ,则对任意n ∈N *,都有a n +1=S n +1-S n .( ) 解析 (1)数列:1,2,3和数列:3,2,1是不同的数列. (2)数列中的数是可以重复的,可以构成数列. (3)数列可以是常数列或摆动数列. 答案 (1)× (2)× (3)× (4)√2.(老教材必修5P33T4改编)在数列{a n }中,a 1=1,a n =1+(-1)na n -1(n ≥2),则a 5等于( ) A.32B.53C.85D.23解析 a 2=1+(-1)2a 1=2,a 3=1+(-1)3a 2=12, a 4=1+(-1)4a 3=3,a 5=1+(-1)5a 4=23. 答案 D3.(老教材必修5P33T5改编)根据下面的图形及相应的点数,写出点数构成的数列的一个通项公式a n =________.…解析 由a 1=1=5×1-4,a 2=6=5×2-4,a 3=11=5×3-4,…,归纳a n =5n -4. 答案 5n -44.(2020·北京朝阳区月考)数列0,1,0,-1,0,1,0,-1,…的一个通项公式a n 等于( ) A.(-1)n +12B.cos n π2C.cosn +12πD.cosn +22π解析 令n =1,2,3,…,逐一验证四个选项,易得D 正确. 答案 D5.(2019·济南一模)设数列{a n }的前n 项和为S n ,且S n =a 1(4n -1)3,若a 4=32,则a 1=________.解析 由题意,得a 4=S 4-S 3=32. 即255a 13-63a 13=32,解得a 1=12. 答案 126.(2020·成都诊断)数列{a n }中,a n =-n 2+11n (n ∈N *),则此数列最大项的值是________.解析 a n =-n 2+11n =-⎝ ⎛⎭⎪⎫n -1122+1214,∵n ∈N *,∴当n =5或n =6时,a n 取最大值30. 答案 30考点一 由a n 与S n 的关系求通项【例1】 (1)(2019·广州质检)已知数列{a n }的前n 项和S n =2n 2-3n ,则a n =________.(2)(2020·德州模拟)已知数列{a n }的前n 项和为S n ,且a 1=1,S n =13a n +1-1,则数列{a n }的通项公式为________. 解析 (1)a 1=S 1=2-3=-1,当n ≥2时,a n =S n -S n -1=(2n 2-3n )-[2(n -1)2-3(n -1)]=4n -5, 由于a 1也适合此等式,∴a n =4n -5.(2)由a 1=1,S n =13a n +1-1可得a 1=13a 2-1=1,解得a 2=6,当n ≥2时,S n -1=13a n -1,又S n =13a n +1-1,两式相减可得a n =S n -S n -1=13a n +1-13a n ,即a n +1=4a n (n ≥2),则a n =6·4n -2,又a 1=1不符合上式, 所以a n =⎩⎨⎧1,n =1,6·4n -2,n ≥2.答案 (1)4n -5 (2)a n =⎩⎨⎧1,n =1,6·4n -2,n ≥2规律方法 数列的通项a n 与前n 项和S n 的关系是a n =⎩⎨⎧S 1,n =1,S n -S n -1,n ≥2.①当n =1时,a 1若适合S n -S n -1,则n =1的情况可并入n ≥2时的通项a n ;②当n =1时,a 1若不适合S n -S n -1,则用分段函数的形式表示.【训练1】 (1)设数列{a n }满足a 1+3a 2+…+(2n -1)a n =2n ,则a n =________. (2)(2018·全国Ⅰ卷)记S n 为数列{a n }的前n 项和.若S n =2a n +1,则S 6=________. 解析 (1)因为a 1+3a 2+…+(2n -1)a n =2n , 故当n ≥2时,a 1+3a 2+…+(2n -3)a n -1=2(n -1). 两式相减得(2n -1)a n =2, 所以a n =22n -1(n ≥2).又由题设可得a 1=2,满足上式,从而{a n }的通项公式为a n =22n -1(n ∈N *).(2)由S n =2a n +1,得a 1=2a 1+1,所以a 1=-1. 当n ≥2时,a n =S n -S n -1=2a n +1-(2a n -1+1), 得a n =2a n -1.∴数列{a n }是首项为-1,公比为2的等比数列. ∴S 6=a 1(1-q 6)1-q =-(1-26)1-2=-63.答案 (1)22n -1(n ∈N *) (2)-63 考点二 由数列的递推关系求通项多维探究角度1 累加法——形如a n +1-a n =f (n ),求a n【例2-1】 在数列{a n }中,a 1=2,a n +1=a n +ln ⎝ ⎛⎭⎪⎫1+1n ,则a n 等于( )A.2+ln nB.2+(n -1)ln nC.2+n ln nD.1+n +ln n解析 因为a n +1-a n =ln n +1n =ln(n +1)-ln n , 所以a 2-a 1=ln 2-ln 1, a 3-a 2=ln 3-ln 2, a 4-a 3=ln 4-ln 3, ……a n -a n -1=ln n -ln(n -1)(n ≥2).把以上各式分别相加得a n -a 1=ln n -ln 1, 则a n =2+ln n (n ≥2),且a 1=2也适合, 因此a n =2+ln n (n ∈N *). 答案 A角度2 累乘法——形如a n +1a n=f (n ),求a n【例2-2】 若a 1=1,na n -1=(n +1)a n (n ≥2),则数列{a n }的通项公式a n =________.解析 由na n -1=(n +1)a n (n ≥2),得a n a n -1=nn +1(n ≥2).所以a n =a n a n -1·a n -1a n -2·a n -2a n -3·…·a 3a 2·a 2a 1·a 1=n n +1·n -1n ·n -2n -1·…·34·23·1=2n +1(n ≥2),又a 1也满足上式,所以a n =2n +1.答案2n +1角度3 构造法——形如a n +1=Aa n +B (A ≠0且A ≠1,B ≠0),求a n【例2-3】 (2020·青岛模拟)已知数列{a n }满足a 1=1,a n +1=3a n +2(n ∈N *),则数列{a n }的通项公式为________.解析 由a n +1=3a n +2,得a n +1+1=3(a n +1), ∴数列{a n +1}是首项为2,公比为3的等比数列, ∴a n +1=2·3n -1,∴a n =2·3n -1-1. 答案 a n =2·3n -1-1角度4 取倒数法——形如a n +1=Aa n Ba n +C(A ,B ,C 为常数),求a n【例2-4】 已知数列{a n }中,a 1=1,a n +1=2a na n +2(n ∈N *),则数列{a n }的通项公式为________.解析 因为a n +1=2a n a n +2,a 1=1,所以a n ≠0,所以1a n +1=1a n +12,即1a n +1-1a n=12.又a 1=1,则1a 1=1,所以⎩⎨⎧⎭⎬⎫1a n 是以1为首项,12为公差的等差数列.所以1a n =1a 1+(n-1)×12=n 2+12.所以a n =2n +1.答案 a n =2n +1规律方法 由数列的递推关系求通项公式的常用方法 (1)已知a 1,且a n -a n -1=f (n ),可用“累加法”求a n . (2)已知a 1(a 1≠0),且a na n -1=f (n ),可用“累乘法”求a n .(3)已知a 1,且a n +1=qa n +b ,则a n +1+k =q (a n +k )(其中k 可用待定系数法确定),可转化为{a n +k }为等比数列.(4)形如a n +1=Aa n Ba n +C (A ,B ,C 为常数)的数列,将其变形为1a n +1=C A ·1a n +BA ,①若A =C ,则⎩⎨⎧⎭⎬⎫1a n 是等差数列,且公差为BA ,②若A ≠C ,则采用待定系数法构造新数列求解.【训练2】 (1)(角度1)在数列{a n }中,若a 1=3,a n +1=a n +1n (n +1),则通项公式a n =________.(2)(角度2)已知a 1=2,a n +1=2n a n ,则数列{a n }的通项公式a n =________. (3)(角度3)已知数列{a n }中,a 1=3,且点P n (a n ,a n +1)(n ∈N *)在直线4x -y +1=0上,则数列{a n }的通项公式a n =________.(4)(多填题)(角度4)已知数列{a n }满足a 1=1,a n +1=a n a n +2(n ∈N *),且1a n +1+1=A ⎝ ⎛⎭⎪⎫1a n +1,则A =________,数列{a n }的通项公式为________. 解析 (1)原递推公式可化为a n +1=a n +1n -1n +1,则a 2=a 1+1-12,a 3=a 2+12-13,a 4=a 3+13-14,…,a n -1=a n -2+1n -2-1n -1,a n =a n -1+1n -1-1n ,累计相加得,a n =a 1+1-1n ,又n =1时也适合,故a n =4-1n .(2)∵a n +1=2na n ,∴a n +1a n=2n ,当n ≥2时,a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1=2n -1·2n -2·…·2·2=2n 2-n +22.又a 1=2也符合上式,∴a n =2n 2-n +22.(3)因为点P n (a n ,a n +1)(n ∈N *)在直线4x -y +1=0上, 所以4a n -a n +1+1=0.所以a n +1+13=4⎝ ⎛⎭⎪⎫a n +13.因为a 1=3,所以a 1+13=103.故数列⎩⎨⎧⎭⎬⎫a n +13是首项为103,公比为4的等比数列.所以a n +13=103×4n -1,故数列{a n }的通项公式为a n =103×4n -1-13.(4)由a n +1=a n a n +2,得1a n +1=1+2a n ,所以1a n +1+1=2⎝ ⎛⎭⎪⎫1+1a n ,故A =2,且⎩⎨⎧⎭⎬⎫1a n +1是首项为1a 1+1=2,公比为2的等比数列,则1a n+1=2n ,则a n =12n -1.答案 (1)4-1n (2)2n 2-n +22(3)103×4n -1-13(4)2 a n =12n -1考点三 数列的性质【例3】 (1)(2019·宜春期末)已知函数f (x )=⎩⎪⎨⎪⎧x +12,x ≤12,2x -1,12<x <1,x -1,x ≥1,若数列{a n}满足a 1=73,a n +1=f (a n )(n ∈N *),则a 2 019=( ) A.73B.43C.56D.13(2)(2020·衡水中学一调)已知数列{a n }的前n 项和S n =⎩⎨⎧2n -1,n ≤4,-n 2+(m -1)n ,n ≥5.若a 5是{a n }中的最大值,则实数m 的取值范围是________.解析 (1)由题意,知a 2=f ⎝ ⎛⎭⎪⎫73=43,a 3=f ⎝ ⎛⎭⎪⎫43=13,a 4=f ⎝ ⎛⎭⎪⎫13=56,a 5=f ⎝ ⎛⎭⎪⎫56=23,a 6=f ⎝ ⎛⎭⎪⎫23=13,a 7=f ⎝ ⎛⎭⎪⎫13=56,……,故数列{a n }从第三项起构成周期数列,且周期为3,故a 2 019=a 3=13.故选D.(2)因为S n =⎩⎨⎧2n -1,n ≤4,-n 2+(m -1)n ,n ≥5, 所以当2≤n ≤4时,a n =S n -S n -1=2n -1; 当n =1时,a 1=S 1=1也满足上式; 当n ≥6时,a n =S n -S n -1=-2n +m , 当n =5时,a 5=S 5-S 4=5m -45,综上,a n =⎩⎨⎧2n -1,n ≤4,5m -45,n =5,-2n +m ,n ≥6,因为a 5是{a n }中的最大值,所以有5m -45≥8且5m -45≥-12+m ,解得m ≥535. 答案 (1)D (2)⎣⎢⎡⎭⎪⎫535,+∞规律方法 1.在数学命题中,以数列为载体,常考查周期性、单调性.2.(1)研究数列的周期性,常由条件求出数列的前几项,确定周期性,进而利用周期性求值.(2)数列的单调性只需判定a n 与a n +1的大小,常用比差或比商法进行判断.【训练3】 (1)已知数列{a n }满足a n +1=11-a n ,若a 1=12,则a 2 021=( )A.-1B.12C.1D.2(2)已知等差数列{a n }的公差d <0,且a 21=a 211,则数列{a n }的前n 项和S n 项取得最大值时,项数n 的值为( ) A.5B.6C.5或6D.6或7解析 (1)由a 1=12,a n +1=11-a n 得a 2=2,a 3=-1,a 4=12,a 5=2,…,可知数列{a n }是以3为周期的数列,因此a 2 021=a 3×673+2=a 2=2.(2)由a 21=a 211,可得(a 1+a 11)(a 1-a 11)=0,因为d <0,所以a 1-a 11≠0,所以a 1+a 11=0, 又2a 6=a 1+a 11,所以a 6=0. 因为d <0,所以{a n }是递减数列,所以a 1>a 2>…>a 5>a 6=0>a 7>a 8>…,显然前5项和或前6项和最大,故选C. 答案 (1)D (2)CA 级 基础巩固一、选择题1.(多选题)已知数列的前4项为2,0,2,0,则依此归纳该数列的通项可能是( ) A.a n =(-1)n -1+1 B.a n =⎩⎨⎧2,n 为奇数,0,n 为偶数C.a n =2sin n π2D.a n =cos(n -1)π+1解析 对n =1,2,3,4进行验证,a n =2sin n π2不合题意,其他都可能. 答案 ABD2.已知数列{a n }满足:任意m ,n ∈N *,都有a n ·a m =a n +m ,且a 1=12,那么a 5=( ) A.132B.116C.14D.12解析 由题意,得a 2=a 1a 1=14,a 3=a 1·a 2=18,则a 5=a 3·a 2=132. 答案 A3.(2020·江西重点中学盟校联考)在数列{a n }中,a 1=-14,a n =1-1a n -1(n ≥2,n ∈N *),则a 2 019的值为( ) A.-14B.5C.45D.54解析 在数列{a n }中,a 1=-14,a n =1-1a n -1(n ≥2,n ∈N *),所以a 2=1-1-14=5,a 3=1-15=45,a 4=1-145=-14,所以{a n }是以3为周期的周期数列,所以a 2019=a 673×3=a 3=45.答案 C4.已知数列{a n }的前n 项和为S n ,且a 1=2,a n +1=S n +1(n ∈N *),则S 5=( ) A.31B.42C.37D.47解析 由题意,得S n +1-S n =S n +1(n ∈N *),∴S n +1+1=2(S n +1)(n ∈N *),故数列{S n +1}为等比数列,其首项为3,公比为2,则S 5+1=3×24,所以S 5=47. 答案 D5.(2020·山东重点高中联考)已知数列{a n }的首项a 1=35,且满足a n -a n -1=2n -1(n ∈N *,n ≥2),则a nn 的最小值为( ) A.234B.595C.353D.12解析 数列{a n }的首项a 1=35,且满足a n -a n -1=2n -1(n ∈N *,n ≥2),可得a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=34+(1+3+5+…+2n -1)=34+ 12n (1+2n -1)=34+n 2(n ≥2),当n =1时,a 1=35符合上式,故a n =34+n 2(n ∈N *),则a n n =n +34n ≥234,等号成立时n =34n ,解得n =34,n 不为正整数,由于n 为正整数,所以n =5时,5+345=595;n =6时,6+346=353<595.则a n n的最小值为353,故选C. 答案 C 二、填空题6.已知S n =3n +2n +1,则a n =________________. 解析 因为当n =1时,a 1=S 1=6; 当n ≥2时,a n =S n -S n -1=(3n +2n +1)-[3n -1+2(n -1)+1]=2·3n -1+2, 由于a 1不适合此式, 所以a n =⎩⎨⎧6,n =1,2·3n -1+2,n ≥2.答案 ⎩⎨⎧6,n =1,2·3n -1+2,n ≥27.(2019·汕头一模)已知数列{a n }的前n 项和为S n ,已知a 1=1,a 2=2,且a n +2=3S n -S n +1+3(n ∈N *),则S 10=________________. 解析 因为a n +2=3S n -S n +1+3, 所以S n +2-S n +1=3S n -S n +1+3,整理得S n +2=3S n +3,即S n +2+32=3⎝ ⎛⎭⎪⎫S n +32,又S 2=a 1+a 2=3,所以S 10+32=S 10+32S 8+32·S 8+32S 6+32·S 6+32S 4+32·S 4+32S 2+32·⎝ ⎛⎭⎪⎫S 2+32,即S 10=S 10+32S 8+32·S 8+32S 6+32·S 6+32S 4+32·S 4+32S 2+32·⎝ ⎛⎭⎪⎫S 2+32-32=363.答案 3638.(2020·河北省级示范性高中联考)数列{a n }满足a 1=3,且对于任意的n ∈N *都有a n +1-a n =n +2,则a 39=________. 解析 因为a n +1-a n =n +2,所以a 2-a 1=3,a 3-a 2=4,a 4-a 3=5,……, a n -a n -1=n +1(n ≥2),上面(n -1)个式子左右两边分别相加 得a n -a 1=(n +4)(n -1)2(n ≥2),即a n =(n +1)(n +2)2(n ≥2),当n =1时,a 1=3适合上式,所以a n =(n +1)(n +2)2,n ∈N *,所以a 39=820.答案 820 三、解答题9.已知各项都为正数的数列{a n }满足a 1=1,a 2n -(2a n +1-1)a n -2a n +1=0. (1)求a 2,a 3; (2)求{a n }的通项公式.解 (1)由题意得a 2=12,a 3=14. (2)由a 2n -(2a n +1-1)a n -2a n +1=0得 2a n +1(a n +1)=a n (a n +1).因为{a n }的各项都为正数,所以a n +1a n=12.故{a n }是首项为1,公比为12的等比数列,因此a n =12n -1.10.设数列{a n }的前n 项和为S n .已知a 1=a (a ≠3),a n +1=S n +3n ,n ∈N *,设b n =S n -3n .(1)求数列{b n }的通项公式;(2)若a n +1≥a n ,n ∈N *,求a 的取值范围. 解 (1)依题意,S n +1-S n =a n +1=S n +3n , 即S n +1=2S n +3n ,由此得S n +1-3n +1=2(S n -3n ), 即b n +1=2b n ,又b 1=S 1-3=a -3,所以数列{b n }的通项公式为b n =(a -3)2n -1,n ∈N *. (2)由(1)知S n =3n +(a -3)2n -1,n ∈N *, 于是,当n ≥2时,a n =S n -S n -1=3n +(a -3)2n -1-3n -1-(a -3)2n -2 =2×3n -1+(a -3)2n -2, a n +1-a n =4×3n -1+(a -3)2n -2=2n -2⎣⎢⎡⎦⎥⎤12⎝ ⎛⎭⎪⎫32n -2+a -3, 当n ≥2时,a n +1≥a n ⇒12⎝ ⎛⎭⎪⎫32n -2+a -3≥0⇒a ≥-9.又a 2=a 1+3>a 1.综上,a 的取值范围是[-9,3)∪(3,+∞).B 级 能力提升11.(2019·晋中高考适应性调研)“中国剩余定理”又称“孙子定理”.1852年,英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得到的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1至2 020这2 020个数中,能被3除余1且被7除余1的数按从小到大的顺序排成一列,构成数列{a n },则此数列共有( ) A.98项B.97项C.96项D.95项解析 能被3除余1且被7除余1的数就只能是被21除余1的数,故a n =21n -20,由1≤a n ≤2 020得1≤n ≤97321,又n ∈N *,故此数列共有97项. 答案 B12.(2020·邵阳月考)已知数列{a n }的通项为a n =2n +3(n ∈N *),数列{b n }的前n 项和为S n =3n 2+7n2(n ∈N *),若这两个数列的公共项顺次构成一个新数列{c n },则满足c n <2 020的n 的最大整数值为( ) A.338B.337C.336D.335解析 对于{b n },当n =1时,b 1=S 1=5,当n ≥2时,b n =S n -S n -1=3n 2+7n2-3(n -1)2+7(n -1)2=3n +2,它和数列{a n }的公共项构成的新数列{c n }是首项为5,公差为6的等差数列,则c n =6n -1,令c n <2 020,可得n <33656,因为n ∈N *,所以n 的最大值为336. 答案 C13.(2020·青岛调研)已知数列{a n },a 1=2,S n 为数列{a n }的前n 项和,且对任意n ≥2,都有2a na n S n -S 2n=1,则{a n }的通项公式为________________.解析 n ≥2时,由2a n a n S n -S 2n =1⇒2(S n -S n -1)(S n -S n -1)S n -S 2n=2(S n -S n -1)-S n -1S n =1⇒1S n -1S n -1=12.又1S 1=1a 1=12,∴⎩⎨⎧⎭⎬⎫1S n 是以12为首项,12为公差的等差数列. ∴1S n=n 2,∴S n =2n ,当n ≥2时,a n =S n -S n -1=2n -2n -1=-2n (n -1),当n =1时,a 1=2,所以a n =⎩⎪⎨⎪⎧2,n =1,-2n (n -1),n ≥2. 答案 a n =⎩⎪⎨⎪⎧2,n =1,-2n (n -1),n ≥2 14.已知数列{a n }中,a n =1+1a +2(n -1)(n ∈N *,a ∈R 且a ≠0).(1)若a =-7,求数列{a n }中的最大项和最小项的值; (2)若对任意的n ∈N *,都有a n ≤a 6成立,求a 的取值范围. 解 (1)∵a n =1+1a +2(n -1)(n ∈N *,a ∈R ,且a ≠0),又a =-7,∴a n =1+12n -9(n ∈N *).结合函数f (x )=1+12x -9的单调性,可知1>a 1>a 2>a 3>a 4,a 5>a 6>a 7>…>a n >1(n ∈N *).∴数列{a n }中的最大项为a 5=2,最小项为a 4=0. (2)a n =1+1a +2(n -1)=1+12n -2-a2,已知对任意的n ∈N *,都有a n ≤a 6成立, 结合函数f (x )=1+12x -2-a 2的单调性,可知5<2-a2<6,即-10<a <-8. 即a 的取值范围是(-10,-8).C 级 创新猜想15.(多选题)已知数列{a n }的通项为a n =⎝ ⎛⎭⎪⎫23n -1·⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫23n -1-1,则下列表述正确的是( )A.最大项为0B.最大项不存在C.最小项为-14D.最小项为-2081 解析 由题意得a 1=⎝ ⎛⎭⎪⎫231-1×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫231-1-1=1×(1-1)=0,当n >1时,0<⎝ ⎛⎭⎪⎫23n -1<1,⎝ ⎛⎭⎪⎫23n -1-1<0,∴a n =⎝ ⎛⎭⎪⎫23n -1·⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫23n -1-1<0,∴{a n }的最大项为a 1=0.a 2=⎝ ⎛⎭⎪⎫232-1×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫232-1-1=23×⎝ ⎛⎭⎪⎫23-1=-29,a 3=⎝ ⎛⎭⎪⎫233-1×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫233-1-1=49×⎝ ⎛⎭⎪⎫49-1=-2081,a 4=⎝ ⎛⎭⎪⎫234-1×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫234-1-1=827×⎝⎛⎭⎪⎫827-1=-152729,a n +1-a n =⎝ ⎛⎭⎪⎫23n +1-1×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫23n +1-1-1-⎝ ⎛⎭⎪⎫23n -1×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫23n -1-1=⎝ ⎛⎭⎪⎫23n -1×3n -1-56×2n3n=⎝ ⎛⎭⎪⎫23n -1⎣⎢⎡⎦⎥⎤13-56⎝ ⎛⎭⎪⎫23n,∴当n ≥3时,a n +1-a n >0;当n <3时,a n +1-a n <0.∴{a n }的最小项为a 3=-2081,故选AD. 答案 AD16.(新背景题)(2019·福州二模)一元线性同余方程组问题最早可见于中国南北朝时期(公元5世纪)的数学著作《孙子算经》卷下第二十六题,叫做“物不知数”问题,原文如下:有物不知数,三三数之剩二,五五数之剩三,问物几何?即一个整数除以三余二,除以五余三,求这个整数.设这个整数为a ,当a ∈[2,2 019]时,符合条件的a 共有________个.解析 法一 由题设a =3m +2=5n +3,m ,n ∈N , 则3m =5n +1,m ,n ∈N ,当m =5k 时,n 不存在;当m =5k +1时,n 不存在; 当m =5k +2时,n =3k +1,满足题意; 当m =5k +3时,n 不存在; 当m =5k +4时,n 不存在.其中k ∈N .故2≤a =15k +8≤2 019,解得-615≤k ≤2 01115, 则k =0,1,2,…,134,共135个. 即符合条件的a 共有135个,故答案为135.法二一个整数除以三余二,这个整数可以为2,5,8,11,14,17,20,23,26,29,32,35,38,…,一个整数除以五余三,这个整数可以为3,8,13,18,23,28,33,38,…,则同时除以三余二、除以五余三的整数为8,23,38,…,构成首项为8,公差为15的等差数列,通项公式为a n=8+15(n-1)=15n-7,由15n-7≤2 019得15n≤2 026,n≤135 1 15,因为n∈N*,所以n=1,2,3,…,135,共有135个. 答案135。

数学知识点:数列的概念及简单表示法_知识点总结

数学知识点:数列的概念及简单表示法_知识点总结

数学知识点:数列的概念及简单表示法_知识点总结
一般地按一定次序排列的一列数叫作数列,数列中的每一个数叫作这个数列的项,数列的一般形式可以写成,简记为数列{an},其中数列的第一项a1也称首项,an是数列的第n项,也叫数列的通项2、数列的递推公式:如果已知数列的第1项(或前几项),且从第2项(或某一项)开始的任一项an与它的前一项an-1(或前几项)间的关系可以用一个公式表示,那么这个公式就叫做这个数列的递推公式,递推公式也是给出数列的一种方法。

从函数角度看数列:
数列可以看作是一个定义域为正整数集N'(或它的有限子集{l,2,3,…,n})的函数,即当自变量从小到大依次取值时对应的一列函数值,这里说的函数是一种特殊函数,其特殊性为自变量只能取正整数,且只能从I开始依次增大.可以将序号作为横坐标,相应的项作为纵坐标描点画图来表示一个数列,从数列的图象可以看出数列中各项的变化情况。

特别提醒:
①数列是一个特殊的函数,因此在解决数列问题时,要善于利用函数的知识、函数的观点、函数的思想方法来解题,学习规律,即用共性来解决特殊问题;
②还要注意数列的特殊性(离散型),由于它的定义域是N'或它的子集{1,2,…,n},因而它的图象是一系列孤立的点,而不像我们前面所研究过的初等函数一般都是连续的曲线,因此在解决问题时,要充分利用这一特殊性.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列的三种表示方法
摘要:
一、数列的定义与意义
二、数列的三种表示方法
1.顺序表示法
2.通项表示法
3.递推表示法
三、各种表示方法的优缺点及适用场景
四、如何选择合适的表示方法
五、数列在实际问题中的应用案例
正文:
数列是数学中一个重要的概念,它在数学分析、概率论、物理学等多个领域有着广泛的应用。

为了更好地理解和研究数列,我们有必要了解数列的三种表示方法:顺序表示法、通项表示法和递推表示法。

1.顺序表示法
顺序表示法是指用自然数表示数列中的每一个元素。

例如,等差数列{a1, a2, a3, ...},其中a1表示数列的第一个元素,a2表示第二个元素,以此类推。

顺序表示法直观地反映了数列中元素的位置关系,但当数列的项数较多时,记忆和计算都会变得复杂。

2.通项表示法
通项表示法是用一个公式来表示数列中任意一项的方法。

例如,等差数列
的通项公式为an = a1 + (n - 1)d,其中an表示第n项,a1表示首项,d表示公差。

通项表示法简洁地反映了数列的规律,方便进行分析和计算。

但需要注意的是,通项表示法适用于具有规律性的数列,对于无规律的数列,通项表示法可能不适用。

3.递推表示法
递推表示法是用前一项与当前项之间的关系来表示数列的方法。

例如,斐波那契数列的递推关系式为:fn = fn-1 + fn-2。

递推表示法揭示了数列中项之间的内在联系,有助于发现数列的性质和规律。

但递推表示法在实际应用中可能涉及到复杂的递推关系,计算和分析难度较大。

在实际问题中,选择合适的表示方法至关重要。

一般来说,顺序表示法适用于描述简单有序的数据,通项表示法适用于研究具有规律的数列,递推表示法适用于分析复杂数列之间的关系。

根据问题的需求,我们可以灵活地选择合适的表示方法。

例如,在研究等差数列的求和公式时,我们可以采用通项表示法,将求和公式表示为Sn = n/2 * (a1 + an),其中Sn表示前n项和,a1表示首项,an 表示第n项。

而在分析斐波那契数列的性质时,我们通常使用递推表示法,通过迭代计算来揭示数列的规律。

总之,掌握数列的三种表示方法,有助于我们更好地理解和研究数列的性质和规律。

相关文档
最新文档