高考物理光滑斜面自锁模型汇编
2022年高考物理模型专题突破-斜面体模型(附答案)

真题模型——斜面体模型受力分析、运动的图象、牛顿第二定律受力分析、滑动摩擦力、模型核心归纳斜面模型是中学物理中常见的模型之一。
斜面模型的基本问题有物体在斜面上的平衡、运动及受力问题。
1.常考的斜面模型(1)斜面中的“平衡类模型”(2)斜面中的“动力学模型”(3)斜面中的“连接体模型”2.模型解法(1)注意斜面的几何特点,尤其是斜面的角度关系的应用。
(2)利用共点力的平衡条件、牛顿运动定律、匀变速运动规律以及功能关系列方程。
(3)注意整体法与隔离法、合成法、正交分解法等物理方法的应用。
【预测1】(多选)如图13所示,地面上固定一个斜面,斜面上叠放着A、B两个物块并均处于静止状态。
现对物块A施加一斜向上的力F作用,A、B两个物块始终处于静止状态。
则木块B的受力个数可能是()图13A.3个B.4个C.5个D.6个解析对A受力分析可得,A受竖直向下的重力、斜向左上方的拉力F、竖直向上的支持力及水平向右的摩擦力,对B受力分析可得,B受重力、A对B的压力、斜面的支持力、A对B向左的摩擦力,且斜面若对B没有摩擦力则B受到4个力,若斜面对B有摩擦力则B受5个力,选项A、D错误,B、C正确。
答案BC【预测2如图14甲所示,一物块放在粗糙斜面体上,在平行斜面向上的外力F 作用下,斜面体和物块始终处于静止状态,当F按图乙所示规律变化时,物块与斜面体间的摩擦力大小变化规律可能是图中的()图14解析在t0时刻F为零,t0以后摩擦力和重力沿斜面向下的分力等大、反向,摩擦力恒定不变,故A、B错误;若刚开始F>mg sin θ,此时有F=mg sin θ+F f,随着F的减小,摩擦力也在减小,当F=mg sin θ时,摩擦力减小到零,F继续减小,有F+F f=mg sin θ,则摩擦力增大,当F减小到零后F f=mg sin θ,摩擦力恒定不变,这种情况下,摩擦力先减小后增大;若刚开始F<mg sin θ,有F+F f=mg sin θ,随着F 的减小摩擦力在增大,当F 减小到零后F f =mg sin θ,摩擦力恒定不变,这种情况下,摩擦力先增大,然后不变,故C 错误,D 正确。
高考物理建模之斜面模型

高考物理建模之斜面模型斜面模型是高中物理最重要也最常见模型,在历年月考、各地期末考乃至高考试卷中,斜面模型是常考题型。
涉及斜面模型的知识很多,有共点平衡问题、牛顿运动定律、电磁场知识、平抛规律、功能关系等。
题型变化多样,考查灵活多变,所以斜面模型是学生必需掌握的重要模型斜面共点力平衡问题这类问题往往涉及物体静止在斜面或在斜面上匀速运动,解题思路是利用"隔离法"或"整体法"受力,然后利用"合成法"或"正交分析法"求解。
经典例题如下图所示,质量为m的木块静止在斜面上,斜面质量为M,倾角为θ,求木块受到的支持力N1和摩擦力f1,以及地面对斜面的支持力N2和摩擦力f2。
解析:首先掌握木块的受力分析,如下图所示:由正交分析法可知:对木块有:f1=mgsinθ,N=mgcosθ(隔离法)对斜面来说,如果我们对斜面受力,显然很复杂,因为斜面受到很多力。
此时,可以考虑对斜面和木块作为一个整体进行受力分析(整体法)。
需要注意的是,使用整体法时我们只考虑外界物体对这个整体施加的力(外力),不考虑整体内部之间的力(内力)。
PS:何为外力,内力?所谓"外力",就是整体以外的物体对整体施加的力。
这里的整体指的是"斜面和木块",则与该整体接触的物体只有"地球"以及"地面"。
因此,对整体受力时,只考虑"地球"、"地面"对整体施加的"外力"。
所谓"内力",就是整体内部物体间存在相互作用力。
比如说斜面和木块间存在相互作用的一对摩擦力,相互作用的一对支持力和压力,这些就是内力,使用整体法时这些内力不用考虑。
基于上述分析,我们以"斜面"和"木块"整体受力,如下图所示:显然,由于整体处于静止状态,水平方向上有:F x(合)=0,竖直方向上有:Fy(合)=0。
高中物理重要方法典型模型突破9-模型专题(1) - 斜面模型

专题九模型专题(1)斜面模型【模型解读】在高中物理学习过程中,把物理问题进行抽象化处理,建立物理模型,在具体的物理问题的分析、解决的过程中,物理模型方法是解决问题的桥梁和工具作用,进一步培养通过建构模型来应用物理学知识和科学方法的意识,体会到物理问题解决过程中要有简化、抽象等科学思维斜面模型是高中物理中最常见的模型之一,斜面问题千变万化,斜面既可能光滑,也可能粗糙;既可能固定,也可能运动,运动又分匀速和变速;斜面上的物体既可以左右相连,也可以上下叠加。
物体之间可以细绳相连,也可以弹簧相连。
求解斜面问题,能否做好斜面上物体的受力分析,尤其是斜面对物体的作用力(弹力和摩擦力)是解决问题的关键。
图示或释义与斜面相关的滑块运动问题规律或方法(1)μ=tan θ,滑块恰好处于静止状态(v0=0)或匀速下滑状态(v0≠0),此时若在滑块上加一竖直向下的力或加一物体,滑块的运动状态不变(2)μ>tan θ,滑块一定处于静止状态(v0=0)或匀减速下滑状态(v0≠0),此时若在滑块上加一竖直向下的力或加一物体,滑块的运动状态不变(加力时加速度变大,加物体时加速度不变)(3)μ<tan θ,滑块一定匀加速下滑,此时若在滑块上加一竖直向下的力或加一物体,滑块的运动状态不变(加力时加速度变大,加物体时加速度不变) (4)若滑块处于静止或匀速下滑状态,可用整体法求出地面对斜面体的支持力为(M+m)g,地面对斜面体的摩擦力为0;若滑块处于匀变速运动状态,可用牛顿第二定律求出,地面对斜面体的支持力为(M+m)g-ma sin θ,地面对斜面体的摩擦力为ma cos θ;不论滑块处于什么状态,均可隔离滑块,利用滑块的运动状态求斜面对滑块的弹力、摩擦力及作用力(5)μ=0,滑块做匀变速直线运动,其加速度为a=g sin θ注意画好截面图斜面的变换模型加速运动的车上水杯液面可类似于物块放在光滑斜面上a=gtana tana=h/R【典例突破】【例1】如图所示,在水平地面上静止着一质量为M、倾角为θ的斜面体,自由释放的质量为m的滑块能在斜面上匀速下滑(斜面体始终静止),则下列说法中正确的是() A.滑块对斜面的作用力大小等于mgcos θ,方向垂直斜面向下B.斜面对滑块的作用力大小等于mg,方向竖直向上C.斜面体受到地面的摩擦力水平向左,大小与m的大小有关D.滑块能匀速下滑,则水平地面不可能是光滑的【练1】如图,在固定斜面上的一物块受到一外力F的作用,F平行于斜面向上。
高考物理专题分析及复习建议:斜面类问题模型(学生用)解析

高考物理专题分析及复习建议:斜面类问题模型(学生用)斜面类基本模型如图:质量为m的物体放在倾角为θ的斜面上,而斜面体的质量为M,放在水平地面上1.若物体与斜面的动摩擦因数为μ,讨论μ为怎样时,物体将静止于斜面?物体将沿斜面匀速下滑?物体将沿斜面加速下滑?例1.质量为m的滑块与倾角为θ的斜面间的动摩擦因数为μ,θμtg<,斜面底端有一个和斜面垂直放置的弹性挡板,滑块滑到底端与它碰撞时没有机械能损失,如图所示.若滑块从斜面上高为h处以速度v0开始沿斜面下滑,设斜面足够长,求:(1)滑块最终停在何处? (2)滑块在斜面上滑行的总路程是多少?2.若物体与斜面的动摩擦因数为μ,分别求当物体静止于斜面时,物体沿斜面匀速下滑时,物体沿斜面加速下滑时,地面对斜面的弹力及摩擦力。
(设斜面是静止于地面的)例2.如图,质量为M的三角形木块A静止在水平面上.一质量为m的物体B正沿A的斜面下滑,三角形木块A仍然保持静止。
则下列说法中正确的是( )A.A对地面的压力可能小于(M+m)gB.水平面对A的静摩擦力可能水平向左C.水平面对A的静摩擦力不可能为零D.B沿A的斜面下滑时突然受到一沿斜面向上的力F的作用,当力F的大小满足一定条件时,三角形木块A可能会开始滑动mθ3.自由释放物体在斜面上匀速下滑时,对其施加一任意方向的力F,斜面是否受到地面摩擦力?4.若物体与斜面的动摩擦因数为μ,分别讨论当物体静止于斜面时,物体沿斜面匀速下滑时,物体沿斜面加速下滑时,在物体的竖直方向上加一重物,物体的运动情况。
(设斜面是静止于地面的)例3.如图,物体P静止于固定的斜面上,P的上表面水平,现把物体Q轻轻地叠放在P上,则A.P向下滑动B.P静止不动C.P所受的合外力增大D.P与斜面间的静摩擦力增大例4.如图所示,质量为m的物体A在竖直向上的力F(F<mg)作用下静止于斜面上。
若减小力F,则A.物体A所受合力不变B.斜面对物体A的支持力不变C.斜面对物体A的摩擦力不变D.斜面对物体A的摩擦力可能为零5.若斜面与物体无摩擦,斜面静止在水平地面上时,求地面对斜面的摩擦力。
高中物理模型法解题——斜面问题模型

高中物理模型法解题模板————斜面问题模型【模型概述】在每年各地的高考卷中几乎都有关于斜面模型的试题.我们对这一模型的例举和训练也比较多,遇到这类问题时,以下结论可以帮助大家更好、更快地理清解题思路和选择解题方法.1.自由释放的滑块能在斜面上(如图1-1 甲所示)匀速下滑时,m与M之间的动摩擦因数μ=g tan θ.图1-1甲2.自由释放的滑块在斜面上(如图1-1 甲所示):(1)静止或匀速下滑时,斜面M对水平地面的静摩擦力为零;(2)加速下滑时,斜面对水平地面的静摩擦力水平向右;(3)减速下滑时,斜面对水平地面的静摩擦力水平向左.3.自由释放的滑块在斜面上(如图1-1乙所示)匀速下滑时,M对水平地面的静摩擦力为零,这一过程中再在m上加上任何方向的作用力,(在m停止前)M 对水平地面的静摩擦力依然为零.图1-1乙4.悬挂有物体的小车在斜面上滑行(如图2-2所示):图1-2(1)向下的加速度a =g sin θ时,悬绳稳定时将垂直于斜面; (2)向下的加速度a >g sin θ时,悬绳稳定时将偏离垂直方向向上; (3)向下的加速度a <g sin θ时,悬绳将偏离垂直方向向下. 5.在倾角为θ的斜面上以速度v 0平抛一小球(如图2-3所示):图1-3(1)落到斜面上的时间t =2v 0tan θg;(2)落到斜面上时,速度的方向与水平方向的夹角α恒定,且tan α=2tanθ,与初速度无关;(3)经过t c =v 0tan θg 小球距斜面最远,最大距离d =(v 0sin θ)22g cos θ.6.如图1-4所示,当整体有向右的加速度a =g tan θ时,m 能在斜面上保持相对静止(斜面光滑).图1-47.在如图1-5所示的物理模型中,当回路的总电阻恒定、导轨光滑时,ab 棒所能达到的稳定速度v m =mgR sin θB 2L 2.图1-58.如图1-6所示,当各接触面均光滑时,在小球从斜面顶端滑下的过程中,斜面后退的位移s=mm+ML.图1-6【知识链接】斜面问题涉及知识点多,它几乎可以和力、电相关的物理知识相关。
斜面模型(解析版)--2024年高三物理二轮常见模型

2024年高三物理二轮常见模型专题斜面模型特训目标特训内容目标1高考真题(1T-4T)目标2三大力场中有关斜面模型的平衡问题(5T-10T)目标3三大力场中有关斜面模型的动力学问题(11T-16T)目标4三大力场中有关斜面模型的能量动量问题(17T-22T)【特训典例】一、高考真题1(2023·江苏·统考高考真题)滑块以一定的初速度沿粗糙斜面从底端上滑,到达最高点B后返回到底端。
利用频闪仪分别对上滑和下滑过程进行拍摄,频闪照片示意图如图所示。
与图乙中相比,图甲中滑块()A.受到的合力较小B.经过A点的动能较小C.在A、B之间的运动时间较短D.在A、B之间克服摩擦力做的功较小【答案】C【详解】A.频闪照片时间间隔相同,图甲相邻相等时间间隔内发生的位移差大,根据匀变速直线运动的推论,可知图甲中滑块加速度大,根据牛顿第二定律可知图甲中滑块受到的合力较大,故A错误;B.设斜面倾角为θ,动摩擦因数为μ,上滑阶段根据牛顿第二定律有a1=g sinθ+μg cosθ下滑阶段根据牛顿第二定律有a2=g sinθ-μg cosθ可知上滑阶段阶段加速度大于下滑阶段加速度,图甲为上滑阶段,从图甲中的A点到图乙中的A点,先上升后下降,重力不做功,摩擦力做负功,根据动能定理可知图甲经过A点的动能较大,故B错误;at2可知图甲在A、B之间的运动时间较短,故C正C.由逆向思维,由于图甲中滑块加速度大,根据x=12确;D.由于无论上滑或下滑均受到滑动摩擦力大小相等,故图甲和图乙在A、B之间克服摩擦力做的功相等,故D错误。
故选C。
2(2023·重庆·统考高考真题)如图所示,与水平面夹角为θ的绝缘斜面上固定有光滑U型金属导轨。
质量为m、电阻不可忽略的导体杆MN沿导轨向下运动,以大小为v的速度进入方向垂直于导轨平面向下的匀强磁场区域,在磁场中运动一段时间t后,速度大小变为2v。
运动过程中杆与导轨垂直并接触良好,导轨的电阻忽略不计,重力加速度为g。
专题04 斜面模型(2)-高考物理模型法之对象模型法(解析版

3.涉及斜面的平抛(类平抛)运动问题解题时可从物体在斜面上的落点位置作出水平线,进而确定物体在做平抛运动过程中的水平位移与竖直位移,注意在应用平抛运动特点的同时更要善于利用斜面的优势,如倾角等。
(i )物体从斜面上抛出的情景在倾角为θ的斜面上以速度v 0平抛一小球(如图5所示),当物体落在斜面上时物体发生的位移一定平行于斜面:①落到斜面上的时间t =2v 0tan θg;②落到斜面上时,速度的方向与水平方向的夹角α恒定,且tan α=2tan θ,与初速度无关,即以不同初速度平抛的物体落在斜面上各点的速度是互相平行的;③平抛物体落在斜面上时的动能:02)tan 41(E E kθ+=④经过t c =v 0tan θg 小球距斜面最远,最大距离d =(v 0sin θ)22g cos θ.例9.如图,跳台滑雪运动员经过一段加速滑行后从O点水平飞出,经过3.0s罗到斜坡上的A点。
已知O点是斜坡的起点,斜坡与水平面的夹角θ=37°,运动员的质量m=50kg.不计空气阻力。
(取sin37°=0.60,cos37°=0.80;g 取10m/s 2)求(1)A 点与O 点间的距离; (2)运动员离开0点时的速度大小; (3)运动员落到A 点时的动能。
【答案】(1)75m (2)20m/s (3)32500J图5例9题图例10.如图所示,AB为斜面,BC为水平面,从A点以水平初速度向右抛出一小球,其落点与A 的水平距离为,从A点以水平初速度向右抛出一小球,其落点与A的水平距离为,不计空气阻力可能为()例10题图A. B. C. D.【答案】ABC【解析】若两物体都落在水平面上,则运动时间相等,有,A正确。
若两物体都落在斜面上,由公式得,运动时间分别为,。
水平位移,C正确。
若第一球落在斜面上,第二球落在水平面上(如图所示),例10答图不会小于,但一定小于,故是可能的,不可能。
故可能为ABC。
高中物理-斜面模型专题(打印)

高中物理斜面模型专题模型解读:斜面模型是高中物理中最常见的模型之一,斜面问题千变万化,斜面既可能光滑,也可能粗糙;既可能固定,也可能运动,运动又分匀速和变速;斜面上的物体既可以左右相连,也可以上下叠加。
物体之间可以细绳相连,也可以弹簧相连。
求解斜面问题,能否做好斜面上物体的受力分析,尤其是斜面对物体的作用力(弹力和摩擦力)是解决问题的关键。
对沿粗糙斜面自由下滑的物体做受力分析,物体受重力mg 、支持力F N 、动摩擦力f ,由于支持力θcos mg F N =,则动摩擦力θμμcos mg F f N ==,而重力平行斜面向下的分力为θsin mg ,所以当θμθcos sin mg mg =时,物体沿斜面匀速下滑,由此得θμθcos sin =,亦即θμtan =。
所以物体在斜面上自由运动的性质只取决于摩擦系数和斜面倾角的关系。
当θμtan <时,物体沿斜面加速速下滑,加速度)cos (sin θμθ-=g a ;当θμtan =时,物体沿斜面匀速下滑,或恰好静止;当θμtan >时,物体若无初速度将静止于斜面上;模型拓展1:物块沿斜面运动性质的判断例1.(多选)物体P 静止于固定的斜面上,P 的上表面水平,现把物体Q 轻轻地叠放在P 上,则( )A.、P 向下滑动B 、P 静止不动C 、P 所受的合外力增大D 、P 与斜面间的静摩擦力增大模型拓展2:物块受到斜面的摩擦力和支持力的分析例2.如图,在固定斜面上的一物块受到一外力F 的作用,F 平行于斜面向上。
若要物块在斜面上保持静止,F 的取值应有一定的范围,已知其最大值和最小值分别为F 1和F 2(F 2>0)。
由此可求出( )A 、物块的质量B 、斜面的倾角C 、物块与斜面间的最大静摩擦力D 、物块对斜面的压力例3.如图所示,细线的一端系一质量为m 的小球,另一端固定在倾角为θ的光滑斜面体顶端,细线与斜面平行。
在斜面体以加速度a 水平向右做匀加速直线运动的过程中,小球始终静止在斜面上,小球受到细线的拉力T 和斜面的支持力为F N 分别为(重力加速度为g )( )A . T=m (gsin θ+ acosθ),F N = m(gcosθ- asinθ)B . T=m (gsinθ+ acosθ) ,F N = m(gsinθ- acosθ)C . T=m (acosθ- gsinθ) ,F N = m(gcosθ+ asinθ)D . T=m (asinθ- gcos θ) ,F N = m(gsinθ+ acosθ)模型拓展3:叠加物块沿斜面运动时的受力问题例4.如图,光滑斜面固定于水平面,滑块A 、B 叠放后一起冲上斜面,且始终保持相对静止,A 上表面水平。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光滑斜面自锁模型:如图4-1所示,当整体有向右的加速度a =g tan θ时,m 能在斜面上保持相对静止。
【证明】对m 受力分析,根据牛顿第二定律:mgtan?=ma所以a =g tan θ如图所示,在水平面上有一个质量为M 的楔形木块AA 的斜面上.现对A 施以水平推力F ,恰使B 与A 不发生相对滑动.忽略一切摩擦,则对的压力大小为( ) A .mg cos α B . mgcosC .mF (M+m)cos ?D . mF(M+m )sin ?(2013四川资阳市诊断)如图所示,质量M ,中空为半球型的光滑凹槽放置于光滑水平地面上,光滑槽内有一质量为m 的小铁球,现用一水平向右的推力F 推动凹槽,小铁球与光滑凹槽相对静止时,凹槽圆心和小铁球的连线与竖直方向成?角。
则下列说法正确的是( ) A .小铁球受到的合外力方向水平向左 B .凹槽对小铁球的支持力为mgsin ?C .系统的加速度为a=gtan?D .推力=tan F Mg α(2013辽宁省五校协作体第二次联合考试)运动员手持网球拍托球沿水平面匀加速跑,设球拍和球质量分别为M 、m ,球拍平面和水平面之间的夹角为θ,球拍与球保持相对静止,它们间摩擦及空气阻力不计,则 A .运动员的加速度为g tan θB .球拍对球的作用力θcos mgC .运动员对球拍的作用力为Mg cos θD .若加速度大于g sin θ,球一定沿球拍向上运动(改编)如图所示,质量为m 的球置于斜面上,被一个竖直挡板挡住.现用一个力F 推斜面,使斜面在水平面上做加速度为a 的匀加速直线运动,忽略一切摩擦,以下说法中正确的是( ) A .若加速度足够大,竖直挡板对球的弹力可能为零 B .若加速度足够小,斜面对球的弹力可能为零 C .斜面和挡板对球的弹力的合力等于ma D .斜面对球的弹力不仅有,而且是一个定值【2014宁波八校联考】如图所示,水平桌面上有一斜面,斜面上固定了一竖直挡板,在挡板与斜面间如图放置一圆柱体,圆柱与斜面、挡板之间均不存在摩擦。
已知斜面倾角θ=37°,斜面质量M =2kg ,圆柱体质量m =1kg ,桌面与斜面体之间的滑动摩擦因数μ=。
(cos37°= ,重力加速度g=10m/s 2)问:(1)当斜面处于静止状态时,求圆柱体对斜面压力的大小和方向。
图4-1 F N图4-2GN(2)现对斜面体施加一个水平向右的推力F 使它们一起向右匀加速运动,为保证圆柱体不离开竖直挡板,求力F 的最大值。
解:(1)N cos θ=GN sin θ=F 1N = (2分) 根据牛顿第三定律N ’=N = (1分) 方向垂直于斜面向下 (1分) (2 )当F 增大时,整体水平向右加速,挡板弹力逐渐减小,当弹力减小到0时,达到临界状态,外力F 达到最大值. 对圆柱体分析:N cos θ=G N sin θ=ma 得 a =7.5 m/s2(2分)对整体分析F -μ(Mg+mg)=(M+m)a (1分)得F = (1分)11(单选)如图,水平地面上的矩形箱子内有一倾角为θ的固定斜面,斜面上放一质量为m 的光滑球。
静止时,箱子顶部与球接触但无压力。
箱子由静止开始向左匀加速运动,则光滑球受力的个数可能为( ) A .2个或3个 B .3个或4个 C .2个或4个 D .2个或3个或4个【命题意图】本题改编自2014上海卷第31题,考查受力分析,光滑斜面自锁条件。
(单选)运动员手持网球拍托球沿水平面直线移动一段位移s ,设球拍和球质量分别为M 、m ,球拍平面和水平面之间的夹角为θ,球拍与球保持相对静止,它们间摩擦及空气阻力不计,则( ) A .运动员可能做匀速直线运动B .运动员对球拍的作用力方向竖直向上C .运动员对球拍不做功D .运动员对球拍做功为(M+m )gs tan θ【猜题理由】斜面自锁问题,包括粗糙斜面自锁问题(2011安徽卷,2013安徽广东卷…)和光滑斜面自锁问题(2012年山东卷,2012年重庆卷,2014上海卷…),在全国新课标卷还未曾涉及。
(2015武汉二月调考)如图所示,一辆小车静止在水平地面上,车内固定着一个倾角为︒60的光滑斜面OA ,光滑挡板OB 可绕转轴O 在竖直平面内转动。
现将一重力为G 的圆球放在斜面与挡板之间,挡板与水平面的夹角︒=60θ。
下列说法正确的是(AD )A .若保持挡板不动,则球对斜面的压力大小为GB .若挡板从图示位置顺时针方向缓慢转动︒60,则球对斜面的压力逐渐增大C .若挡板从图示位置顺时针方向缓慢转动︒60,则球对挡板的压力逐渐减小D .若保持挡板不动,使小车水平向右做匀加速直线运动,则球对挡板的压力可能为零(多选)如图所示,水平地面上一辆小车内固定着一个倾角为θ滑斜面OA ,挡板OB 可绕转轴O 在竖直平面内转动。
现将一重力为G 的圆球放在斜面与挡板之间,挡板竖直放置,设球对斜面的压力大小为N 1,球对挡板的压力大小为N 2。
不计任何摩擦,则以下说法正确的是( ) A .若小车保持静止,使挡板从图示位置顺时针方向缓慢转到水平位置,则N 1逐渐减小B .若小车保持静止,使挡板从图示位置顺时针方向缓慢转到水平位置,则N 2逐渐增大C .若保持挡板相对小车不动,使球和小车一起水平向右做加速度逐渐增大的直线加速运动,则N 1逐渐增大D .若保持挡板相对小车不动,使球和小车一起小车水平向右做加速度逐渐增大的直线加速运动,则N 2逐渐减小(单选)如图所示,中空为半球形的光滑凹槽置于水平地面上,凹槽内有一小球(可视为质点)。
现用一水平向左的推力F 推动凹槽,使凹槽与小球由静止开始一起向左运动,经过时间t 后凹槽撞到竖直墙立即停止运动,再经过时间t 后小球恰好落在凹槽底部。
已知凹槽停止运动之前小球与凹槽始终相对静止,且凹槽圆心和小球的连线与竖直方向成θ角,则( )A .sin θ=35B . sin θ=23C .cos θ=35D .cos θ=23如图所示,一个质量为M 的凹槽(中间为空的半球形)置于水平地面上,凹槽内有一质量为m 小球(可视为质点)。
现用一水平向左的推力推动凹槽,使凹槽与小球由静止开始一起向左运动,经过一段时间后凹槽撞到竖直墙立即停止运动,再经过相同时间后小球恰好落在凹槽底部。
已知凹槽停止运动之前小球与凹槽始终相对静止,不计任何摩擦。
设重力加速度为g ,求: (1)推力的大小;(2)小球开始离底部的高度。
【解析】小球与凹槽一起向左匀加速运动时, 对小球:N sin θ=ma ,N cos θ=mg得 a =g tan θ凹槽停止运动后,小球以速度v 为初速度做平抛运动v =at R sin θ=vt R (1?cos θ)= 12gt 2联解得cos θ=23,tan θ=52对整体有:F =(M +m )a=52(M +m )g 小球高度h =R (1?cos θ)=R3如图所示,倾角为θ、光滑斜面体上有一个小球,用平行于斜面细绳系于斜面上。
斜面处于水平面上。
求: (1)若绳的拉力为零,则加速度方向 ,大小等于 。
(2)若斜面支持力等于零,则加速度方向 ,大小等于 。
(改编)小车内有一个空心直角“V ”型槽,其斜边M 和斜边N 与水平面分别成30和600。
小车在水平面内以加速度a 水平向右做匀加速直线运动过程中,要使光滑小球始终处在槽内最底部,则小车加速度的范围为多大?【例】如图(a)a 点:【参考解析】分析液面上一个液滴受力情况,如图(c)所示,要使液滴相对液体斜面静止不动,根据牛顿第二定律有mgtan??=ma ,即a=gtan??,得?=arctg(a/g)。
(2014上海卷—改编)如图,水平地面上的矩形箱子内有一倾角为θ的固定斜面,斜面上放一质量为m 的光滑球。
静止时,箱子顶部与球接触但无压力。
箱子由静止开始向右做匀加速运动,然后改做加速度大小为a 的匀减速运动直至静止,经过的总路程为s ,运动过程中的最大速度为v 。
(1)求箱子加速阶段的加速度大小a '。
(2)若a >g tan θ,求减速阶段球受到箱子左壁和顶部的作用力; (3)若a <g tan θ,求减速阶段球受到箱子左壁和顶部的作用力。
(2012重庆卷)某校举行托乒乓球跑步比赛,赛道为水平直道,比赛距离为s 。
比赛时.某同学将球置于球拍中心,以大小为a 的加速度从静止开始做匀加速直线运动,当速度达到v 0时,再以v 0做匀速直线运动跑至终点。
整个过程中球一直保持在球拍中心不动。
比赛中,该同学在匀速直线运动阶段保持球拍的倾角为θ0,如图所示,设球在运动中受到的空气阻力大小与其速度大小成正比,方向与运动方向相反,不计球与球拍之间的摩擦,球的质量为m ,重力加速度为g 。
(1)求空气阻力大小与球速大小的比例系数k ;(2)求在加速跑阶段球拍倾角θ随速度v 变化的关系式;(3)整个匀速跑阶段,若该同学速度仍为v 0,而球拍的倾角比θ0大了β并保持不变,不计球在球拍上的移动引起的空气阻力变化,为保证到达终点前球不从球拍上距离中心为r 的下边沿掉落,求β应满足的条件。
【2014?攀枝花模拟—改编】如图所示,静放在水平面上的34圆形,C 为最高点,B 现用一装置将小球锁定在P 点,过P 点的半径OP (a ) (b ) (c )平向右的恒力F,同时解除对小球的锁定,管道沿水平面向右做匀加速运动,小球相对管道仍保持静止.管道运动一段位移后遇一障碍墙突然停止运动,小球能到达管道的A点.小球和管道质量分别m和M,小球大小及管道内径释不计,重力加速度为g.求.(1)恒力F;(2)管道运动位移s的可能值.对整体,F=(M+m)a得F=(M+m) g tanθ;(2)设圆形管道在运动过程中突然停止前进的速度为v,由匀变速直线运动公式得:v2=2as;圆形管道停止时,小球沿管道半径方向的速度变为零,沿切线方向的速度保持不变,对速度v沿切向和径向进行分解,则小球速度变为v′=v cosθ;小球能运动到管道右侧圆心上方至最高点C之间的区域则可返程到达A点,或从C点飞出做平抛运动到达A点;若小球能运动到管道右侧圆心上方至最高点C之间的区域,则由机械能守恒得:m(vcosθ)2=mg(R cosθ+h),其中0≤h<R联立以上相关各式得:≤s<若小球从C点飞出做平抛运动到达A点,则由机械能守恒及平抛运动的规律得:R=gt2,R=v C tm(vcosθ)2=mgR(1+cosθ)+mv c2联立以上相关各式得:s=圆形管道从开始运动到突然停止过程中运动距离的可能值为:≤s<及s=。