2012年威海中考数学复习试卷及答案

合集下载

中考数学复习专题17:三角形及其性质(含中考真题)

中考数学复习专题17:三角形及其性质(含中考真题)

专题17 三角形及其性质☞解读考点知识点名师点晴三角形的重要线段中线、角平分线、高线理解三角形有关的中线、角平分线、高线,并会作三角形的中线、角平分线、高线三角形的中位线理解并掌握三角形的中位线的性质三角形的三边关系两边之和大于第三边,两边之差小于第三边理解三角形的三边关系,并能确定三角形第三边的取值范围三角形的内角和定理三角形的内角和等于180°掌握三角形的内角和定理,并会证明三角形的内角和定理三角形的外角三角形的外角的性质能利用三角形的外角进行角的有关计算与证明☞2年中考【题组】1.(崇左)如果一个三角形的两边长分别是2和5,则第三边可能是()A.2 B.3 C.5 D.8【答案】C.【解析】试题分析:设第三边长为x,则由三角形三边关系定理得5﹣2<x<5+2,即3<x<7.故选C.考点:三角形三边关系.2.(来宾)如图,△ABC中,∠A=40°,点D为延长线上一点,且∠CBD=120°,则∠C=()A.40° B.60° C.80° D.100°【答案】C.【解析】试题分析:由三角形的外角性质得,∠C=∠CBD﹣∠A=120°﹣40°=80°.故选C.考点:三角形的外角性质.3.(柳州)如图,图中∠1的大小等于()A.40° B.50° C.60° D.70°【答案】D .考点:三角形的外角性质.4.(南通)下列长度的三条线段能组成三角形的是( )A .5,6,10B .5,6,11C .3,4,8D .4a ,4a ,8a (a >0) 【答案】A . 【解析】试题分析:A .∵10﹣5<6<10+5,∴三条线段能构成三角形,故本选项正确; B .∵11﹣5=6,∴三条线段不能构成三角形,故本选项错误; C .∵3+4=7<8,∴三条线段不能构成三角形,故本选项错误; D .∵4a+4a=8a ,∴三条线段不能构成三角形,故本选项错误. 故选A .考点:三角形三边关系.5.(宿迁)若等腰三角形中有两边长分别为2和5,则这个三角形的周长为( ) A .9 B .12 C . 7或9 D .9或12 【答案】B . 【解析】试题分析:当腰为5时,根据三角形三边关系可知此情况成立,周长=5+5+2=12; 当腰长为2时,根据三角形三边关系可知此情况不成立; 所以这个三角形的周长是12. 故选B .考点:1.等腰三角形的性质;2.三角形三边关系;3.分类讨论.6.(雅安)已知等腰三角形的腰和底的长分别是一元二次方程2430x x -+=的根,则该三角形的周长可以是( )A .5B .7C .5或7D .10 【答案】B .考点:1.解一元二次方程-因式分解法;2.三角形三边关系;3.等腰三角形的性质;4.分类讨论.7.(绵阳)如图,在△ABC 中,∠B 、∠C 的平分线BE ,CD 相交于点F ,∠ABC=42°,∠A=60°,则∠BFC=( )A .118°B .119°C .120°D .121° 【答案】C . 【解析】试题分析:∵∠A=60°,∴∠ABC+∠ACB=120°,∵BE ,CD 是∠B 、∠C 的平分线,∴∠CBE=21∠ABC ,∠BCD=21∠BCA ,∴∠CBE+∠BCD=21(∠ABC+∠BCA )=60°,∴∠BFC=180°﹣60°=120°,故选C . 考点:三角形内角和定理.8.(广州)已知2是关于x 的方程2230x mx m -+=的一个根,并且这个方程的两个根恰好是等腰三角形ABC 的两条边长,则三角形ABC 的周长为( )A .10B .14C .10或14D .8或10 【答案】B .考点:1.解一元二次方程-因式分解法;2.一元二次方程的解;3.三角形三边关系;4.等腰三角形的性质;5.分类讨论.9.(北海)三角形三条中线的交点叫做三角形的( ) A .内心 B .外心 C .中心 D .重心 【答案】D . 【解析】试题分析:三角形的重心是三角形三条中线的交点.故选D . 考点:三角形的重心.10.(百色)下列图形中具有稳定性的是( )A .正三角形B .正方形C .正五边形D .正六边形 【答案】A . 【解析】试题分析:∵三角形具有稳定性,∴A 正确,B .C 、D 错误.故选A .考点:三角形的稳定性.11.(百色)△ABC 的两条高的长度分别为4和12,若第三条高也为整数,则第三条高的长度是( )A .4B .4或5C .5或6D .6 【答案】B . 【解析】试题分析:设长度为4、12的高分别是a ,b 边上的,边c 上的高为h ,△ABC 的面积是S ,那么a=24S ,b=212S ,c=2S h ,又∵a ﹣b <c <a+b ,∴22222412412S S S S Sh -<<+,即2233S S Sh <<,解得3<h <6,∴h=4或h=5,故选B .考点:1.一元一次不等式组的整数解;2.三角形的面积;3.三角形三边关系;4.综合题.12.(广安)下列四个图形中,线段BE 是△ABC 的高的是( )A .B .C .D .【答案】D .考点:三角形的角平分线、中线和高.13.(宜昌)下列图形具有稳定性的是( )A .正方形B .矩形C .平行四边形D .直角三角形 【答案】D . 【解析】试题分析:直角三角形具有稳定性.故选D . 考点:1.三角形的稳定性;2.多边形.14.(长沙)如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( )A .B .C .D . 【答案】A . 【解析】试题分析:为△ABC 中BC 边上的高的是A 选项.故选A . 考点:三角形的角平分线、中线和高.15.(鄂尔多斯)如图,A .B 是边长为1的小正方形组成的网格上的两个格点,在格点中任意放置点C ,恰好能使△ABC 的面积为1的概率是( )A .256B .51C .254D .257【答案】A .考点:1.概率公式;2.三角形的面积.16.(淄博)如图,在四边形ABCD 中,DC ∥AB ,CB ⊥AB ,AB=AD ,CD=12AB ,点E 、F 分别为AB 、AD 的中点,则△AEF 与多边形BCDFE 的面积之比为( )A.17 B .16 C.15 D.14【答案】C.考点:1.相似三角形的判定与性质;2.三角形的面积;3.三角形中位线定理;4.综合题.17.(淮安)将一副三角尺按如图所示的方式放置,使含30°角的三角尺的短直角边和含45°角的三角尺的一条直角边重合,则∠1的度数是.【答案】75°.【解析】试题分析:如图,∵含30°角的三角尺的短直角边和含45°角的三角尺的一条直角边重合,∴AB ∥CD ,∴∠3=∠4=45°,∴∠2=∠3=45°,∵∠B=30°,∴∠1=∠2+∠B=30°+45°=75°,故答案为:75°.考点:1.三角形的外角性质;2.三角形内角和定理.18.(宜宾)如图,AB ∥CD ,AD 与BC 交于点E .若∠B=35°,∠D=45°,则∠AEC= .【答案】80°.考点:1.平行线的性质;2.三角形的外角性质.19.(巴中)若a 、b 、c 为三角形的三边,且a 、b 满足229(2)0a b -+-=,则第三边c 的取值范围是 .【答案】1<c <5. 【解析】试题分析:由题意得,290a -=,20b -=,解得a=3,b=2,∵3﹣2=1,3+2=5,∴1<c <5.故答案为:1<c <5.考点:1.三角形三边关系;2.非负数的性质:偶次方;3.非负数的性质:算术平方根. 20.(南充)如图,点D 在△ABC 边BC 的延长线上,CE 平分∠ACD ,∠A=80°,∠B=40°,则∠ACE 的大小是 度.【答案】60. 【解析】试题分析:∵∠ACD=∠B+∠A ,而∠A=80°,∠B=40°,∴∠ACD=80°+40°=120°,∵CE 平分∠ACD ,∴∠ACE=60°,故答案为:60.考点:三角形的外角性质.21.(佛山)各边长度都是整数、最大边长为8的三角形共有 个. 【答案】10. 【解析】试题分析:∵各边长度都是整数、最大边长为8,∴三边长可以为:1,8,8;2,7,8;2,8,8;3,6,8;3,7,8;3,8,8;4,5,8;4,6,8;4,7,8;4,8,8;故各边长度都是整数、最大边长为8的三角形共有10个.故答案为:10. 考点:三角形三边关系.22.(广东省)如图,△ABC 三边的中线AD 、BE 、CF 的公共点为G ,若ABC 12S =△,则图中阴影部分的面积是 .【答案】4.考点:1.三角形的面积;2.综合题.23.(长春)如图,点E 在正方形ABCD 的边CD 上.若△ABE 的面积为8,CE=3,则线段BE 的长为 .【答案】5. 【解析】试题分析:过E 作EM ⊥AB 于M ,∵四边形ABCD 是正方形,∴AD=BC=CD=AB ,∴EM=AD ,BM=CE ,∵△ABE 的面积为8,∴12×AB×EM=8,解得:EM=4,即AD=DC=BC=AB=4,∵CE=3,由勾股定理得:BE=22BC CE +=2243+=5,故答案为:5.考点:1.正方形的性质;2.三角形的面积;3.勾股定理.24.(昆明)如图,△ABC是等边三角形,高AD、BE相交于点H,BC=43,在BE上截取BG=2,以GE为边作等边三角形GEF,则△ABH与△GEF重叠(阴影)部分的面积为.【答案】53 2.考点:1.等边三角形的判定与性质;2.三角形的重心;3.三角形中位线定理;4.综合题;5.压轴题.25.(临沂)如图,在△ABC 中,BD ,CE 分别是边AC ,AB 上的中线,BD 与CE 相交于点O ,则OBOD = .【答案】2. 【解析】试题分析:∵△ABC 的中线BD 、CE 相交于点O ,∴点O 是△ABC 的重心,∴OBOD =2.故答案为:2.考点:1.三角形的重心;2.相似三角形的判定与性质.26.(六盘水)如图,已知, l1∥l2,C1在l1上,并且C1A ⊥l2,A 为垂足,C2,C3是l1上任意两点,点B 在l2上,设△ABC1的面积为S1,△ABC2的面积为S2,△ABC3的面积为S3,小颖认为S1=S2=S3,请帮小颖说明理由.【答案】理由见试题解析.考点:1.平行线之间的距离;2.三角形的面积.27.(达州)化简2221432a a a a a a +⋅----,并求值,其中a 与2、3构成△ABC 的三边,且a 为整数.【答案】13a -,1.【解析】试题分析:原式第一项约分后,两项通分并利用同分母分式的减法法则计算得到结果,把a 的值代入计算即可求出值.考点:1.分式的化简求值;2.三角形三边关系.28.(青岛)【问题提出】用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?【问题探究】不妨假设能搭成m种不同的等腰三角形,为探究m与n之间的关系,我们可以先从特殊入手,通过试验、观察、类比、最后归纳、猜测得出结论.【探究一】(1)用3根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?此时,显然能搭成一种等腰三角形.所以,当n=3时,m=1.(2)用4根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?只可分成1根木棒、1根木棒和2根木棒这一种情况,不能搭成三角形.所以,当n=4时,m=0.(3)用5根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?若分成1根木棒、1根木棒和3根木棒,则不能搭成三角形.若分成2根木棒、2根木棒和1根木棒,则能搭成一种等腰三角形.所以,当n=5时,m=1.(4)用6根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?若分成1根木棒、1根木棒和4根木棒,则不能搭成三角形.若分成2根木棒、2根木棒和2根木棒,则能搭成一种等腰三角形.所以,当n=6时,m=1.n 3 4 5 6m 1 0 1 1【探究二】(1)用7根相同的木棒搭一个三角形,能搭成多少种不同的三角形?(仿照上述探究方法,写出解答过程,并将结果填在表②中)(2)用8根、9根、10根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?(只需把结果填在表②中)n 7 8 9 10m你不妨分别用11根、12根、13根、14根相同的木棒继续进行探究,…【问题解决】:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(设n分别等于4k﹣1,4k,4k+1,4k+2,其中k是正整数,把结果填在表③中)表③n 4k﹣1 4k 4k+1 4k+2m【问题应用】:用根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(写出解答过程),其中面积最大的等腰三角形每腰用了根木棒.(只填结果)【答案】【探究二】:2;1;2;2;【问题解决】:k;k﹣1;k;k;【问题应用】:672.考点:1.作图—应用与设计作图;2.三角形三边关系;3.等腰三角形的判定与性质;4.探究型.【题组】1.(福建南平)下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()A.1,2,1 B.1,2,2 C.1,2,3 D.1,2,4【答案】B.【解析】试题分析:根据三角形的三边关系:三角形两边之和大于第三边,计算两个较小的边的和,看看是否大于第三边即可:A、1+1=2,不能组成三角形,故此选项错误;B、1+2>2,能组成三角形,故此选项正确;C、1+2=3,不能组成三角形,故此选项错误;D、1+2<4,能组成三角形,故此选项正确.故选B.考点:三角形的三边关系.2.(浙江台州)如图,跷跷板AB的支柱OD经过它的中点O,且垂直于地面BC,垂足为D,OD=50cm,当它的一端B着地时,另一端A离地面的高度AC为()A.25cm B.50cm C.75cm D.100cm【答案】D.考点:三角形的中位线.3.(•北海)如图△ABC中,D、E分别是边AB、AC的中点,已知DE=5,则BC的长为()A.8 B.9 C.10 D.11【答案】C.【解析】试题分析:∵D、E分别是边AB、AC的中点,∴DE是△ABC的中位线,∴BC=2DE=2×5=10.故选C.考点:三角形中位线定理.4.(•营口)如图,在△ABC中,点D、E分别是边AB、AC的中点,∠B=50°,∠A=26°,将△ABC沿DE折叠,点A的对应点是点A′,则∠AEA′的度数是()A.145°B.152°C.158°D.160°【答案】B.考点:翻折变换(折叠问题);三角形中位线定理.5.(•威海)如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是()A.∠BAC=70°B.∠DOC=90°C.∠BDC=35°D.∠DAC=55°【答案】B.【解析】试题分析:根据三角形的内角和定理列式计算即可求出∠BAC=70°,再根据角平分线的定义求出∠ABO,然后利用三角形的内角和定理求出∠AOB再根据对顶角相等可得∠DOC=∠AOB,根据邻补角的定义和角平分线的定义求出∠DCO,再利用三角形的内角和定理列式计算即可∠BDC,判断出AD为三角形的外角平分线,然后列式计算即可求出∠DAC.试题解析:∵∠ABC=50°,∠ACB=60°,∴∠BAC=180°-∠ABC-∠ACB=180°-50°-60°=70°,故A选项正确,∵BD平分∠ABC,∴∠ABO=12∠ABC=12×50°=25°,在△ABO中,∠AOB=180°-∠BAC-∠ABO=180°-70°-25°=85°,∴∠DOC=∠AOB=85°,故B选项错误;∵CD平分∠ACE,∴∠ACD=12(180°-60°)=60°,∴∠BDC=180°-85°-60°=35°,故C选项正确;∵BD、CD分别是∠ABC和∠ACE的平分线,∴AD是△ABC的外角平分线,∴∠DAC=12(180°-70°)=55°,故D选项正确.故选B.考点:角平分线的性质;三角形内角和定理.6.(江苏淮安)若一个三角形三边长分别为2,3,x,则x的值可以为(只需填一个整数)【答案】4(答案不唯一).考点:三角形的三边关系.7、(广东广州)△ABC中,已知∠A=60°,∠B=80°,则∠C的外角的度数是___________°.【答案】140..【解析】试题分析:∵∠A=60°,∠B=80°,∴∠C的外角=∠A+∠B=60°+80°=140°.考点:三角形的外角的性质.8.(湖北随州)将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板的一条直角边重合,则∠1的度数为度.【答案】75.【解析】试题分析:如答图.∵∠3=60°,∠4=45°,∴∠1=∠5=180°﹣∠3﹣∠4=75°.考点:1.三角形内角和定理;2.对顶角的性质.☞考点归纳归纳 1:三角形的有关线段基础知识归纳:中线:连接一个顶点与它对边中点的线段,三角形的三条中线的交点叫做三角形的重心高线:从三角形一个顶点到它对边所在直线的垂线段.角平分线:一个内角的平分线与这个角的对边相交,顶点与交点之间的线段中位线:连接三角形两边中点的线段基本方法归纳:三角形的中位线平行线于第三边,且等于第三边的一半注意问题归纳:三角形的中线将三角形分成面积相等的两部分【例1】如图,EF是△ABC的中位线,BD平分∠ABC交EF于点D,若AB=4,BC=6,则DF=_____.【答案】1.考点:1.三角形中位线定理;2.等腰三角形的判定与性质.归纳 2:三角形的三边关系基础知识归纳:三角形两边的和大于第三边,两边的差小于第三边.基本方法归纳:三角形的三边关系是判断三条线段能否构成三角形的依据,并且还可以利用三边关系列出不等式求某些量的取值范围.注意问题归纳:三角形的三边关系是中考的热点问题之一,是解决三角形的边的有关问题的重要依据.【例2】已知三角形两边长分别为3和8,则该三角形第三边的长可能是()A.5 B.10 C.11 D.12【答案】B.考点:三角形三边关系.归纳 3:内角和定理基础知识归纳:三角形三个内角的和等于180°.基本方法归纳:在同一个三角形中,大边对大角,小边对小角.注意问题归纳:三角形的内角和定理是求三角形一个角的度数或证明角相等的重要工具.【例3】如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是()A.45°B.54°C.40°D.50°【答案】C.【解析】试题分析:∵∠B=46°,∠C=54°,∴∠BAC=180°-∠B-∠C=180°-46°-54°=80°,∵AD平分∠BAC,∴∠BAD=12∠BAC=×80°=40°,∵DE∥AB,∴∠ADE=∠BAD=40°.故选C.考点:平行线的性质;三角形内角和定理.归纳 4:三角形的外角基础知识归纳:(1)三角形的外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任何一个和它不相邻的内角.基本方法归纳:三角形的外角等于与它不相邻的两个内角的和.注意问题归纳:三角形的外角是解决角的计算与角的大小比较的重要工具.【例4】如图,AB∥CD,AD与BC相交于点O,∠B=30°,∠D=40°,则∠AOC的度数为()A.60°B.70°C.80°D.90°【答案】B.考点:1.平行线的性质;2.三角形的外角性质.☞1年模拟1.(北京市平谷区中考二模)如图,将三角板的直角顶点放在直尺的一边上,若∠1=65°,则∠2的度数为()A.10° B.15° C.20° D.25°【答案】D.【解析】试题分析:根据平行线的性质及三角形的内角和定理,有图像可知∠1与∠2互余,因此∠2=90°-65°=25°.故选D.考点:1.平行线的性质;2.三角形内角和定理.2.(安徽省安庆市中考二模)如图所示,AB∥CD,∠D=26°,∠E=35°,则∠ABE的度数是()A.61° B.71° C.109° D.119°【答案】A .考点:1.平行线的性质;2.三角形的外角性质.3.(山西省晋中市平遥县九年级下学期4月中考模拟)如图,直线a∥b,直角三角形如图放置,∠DCB=90°.若∠1+∠B=70°,则∠2的度数为()A.20° B.40° C.30° D.25°【答案】A.【解析】试题分析:由三角形的外角性质,∠3=∠1+∠B=70°,∵a∥b,∠DCB=90°,∴∠2=180°﹣∠3﹣90°=180°﹣70°﹣90°=20°.故选A.考点:1.三角形的外角性质;2.平行线的性质.4.(广东省佛山市初中毕业班综合测试)如图,将△ABC三个角分别沿DE、HG、EF翻折,三个顶点均落在点O处,则∠1+∠2的度数为()A. 120° B. 135° C. 150° D. 180°【答案】D.考点:1.翻折变换(折叠问题);2.三角形内角和定理.5.(山东省济南市平阴县中考二模)如图,△ABC的各个顶点都在正方形的格点上,则sinA的值为()A55255225105【答案】A.【解析】试题分析:如图所示:延长AC交网格于点E,连接BE,∵55,AB=5,∴AE2+BE2=AB2,∴△ABE是直角三角形,∴sinA=55BEAB,故选A.考点:1.锐角三角函数的定义;2.三角形的面积;3.勾股定理;4.表格型.6.(山东省威海市乳山市中考一模)如图,已知S△ABC=8m2,AD平分∠BAC,且AD⊥BD于点D,则S△ADC= m2.【答案】4.考点:1.等腰三角形的判定与性质;2.三角形的面积.7.(四川省成都市外国语学校中考直升模拟)长为1、2、3、4、5的线段各一条,从这5条线段中任取3条,能构成钝角三角形的概率是.【答案】1 5.【解析】试题分析:从长度分别为1,2,3,4,5的五条线段中,任取三条,所有的情况共有10种,其中,取出的三边能构成钝角三角形时,必须最大边的余弦值小于零,即:较小的两个边的平方和小于第三边的平方,故满足构成钝角三角形的取法只有:2、3、4 和2、4、5两种,故取出的三条线段为边能构成钝角三角形的概率是21105 . 考点:1.列表法与树状图法;2.三角形三边关系.8.(广东省佛山市初中毕业班综合测试)如图,已知△ABC 中,∠A=40°,剪去∠A 后成四边形,则∠1+∠2= 度.【答案】220.考点:1.三角形的外角性质;2.三角形内角和定理.9.(湖北省黄石市6月中考模拟)如图,点A1,A2,A3,A4,…,An 在射线OA 上,点B1,B2,B3,…,Bn ﹣1在射线OB 上,且A1B1∥A2B2∥A3B3∥…∥An ﹣1Bn ﹣1,A2B1∥A3B2∥A4B3∥…∥AnBn ﹣1,△A1A2B1,△A2A3B2,…,△An ﹣1AnBn ﹣1为阴影三角形,若△A2B1B2,△A3B2B3的面积分别为1、4,则△A1A2B1的面积为__________;面积小于的阴影三角形共有__________个.【答案】12;6.【解析】试题分析:由题意得,△A2B1B2∽△A3B2B3,因此可知2132A B A B =212323A B B A B B S S=12,2233A B A B =212323A B B A B B SS=12,再由考点:1.相似三角形的判定与性质;2.平行线的性质;3.三角形的面积;4.规律型.。

2012威海初四数学

2012威海初四数学

初 四 数 学 第Ⅰ卷(选择题,共36分)一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一个是正确的,每小题选对得3分,选错、不选或多选均不得分)1.已知y x ,是实数,096432=+-++y y x ,则xy 的值是A .4B .-4C .94D .-942.下列等式一定成立的是A . 325a a a += B . 222()a b a b +=+C . 2336(2)6a b a b = D . 2()()()x a x b x a b x ab --=-++ 3.一组数据:8,x ,8,10的平均数与众数相等,则这组数据方差为A .2B .4 CD.4.用5个小正方体搭成如图所示的几何体,从各个不同的方向观察这个几何体,可能看到的视图有( )A .①②B .②③④C .②④D .①③④5.两个正四面体骰子的各面上分别标明数字1,2,3,4,如同时投掷这两个正四面体骰子,则着地的面所得的点数之和等于5的概率为 A .41 B . 163 C . 43 D . 836. 扇形纸片,圆心角AOB ∠为120,弦AB 的长为32cm ,用它围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为 A .32cm B . π32cm C . 23cm D . π23cm ①②③④7.如图,梯形ABCD 中,∠ABC 和∠DCB 的平分线相交于梯形中位线EF 上的一点P ,若EF =3,则梯形ABCD 的周长为A . 9B . 10.5C . 12D . 158. 如图,点A ,B ,C 的坐标分别为(0,1),(0,2),(3,0)-.从下面四个点(3,3)M ,(3,3)N -,(3,0)P -,(3,1)Q -中选择一个点,以A ,B ,C 与该点为顶点的四边形不是中心对称图形,则该点是( )A . MB . NC . PD . Q9. 下列关于x 的方程一定有实数解的是A.210x ax ++= B.1111x x x +=-- Cm = D.210x ax +-=.10. 如图,AB 是半圆直径,半径OC ⊥AB 于点O ,AD 平分∠CAB 交弧BC 于点D ,连结CD 、OD ,给出以下四个结论:①AC ∥OD ;②CD DE =;③△ODE ∽△ADO ;④AB CE CD ⋅=22.其中正确结论的个数是A .1个B . 2个C . 3个D . 4个11. 二次函数2y ax bx c =++的图象如下图所示,则一次函数ac bx y -=与反比例函数ABCDEFP(第7题)(第10题)ADCOExxxxxcb a y +-=在同一坐标系内的图象大致为 12.为了求2320112012122222++++++的值,可令S =12++2322++20112+20122+,则2S =234200122013222222++++++ ,因此2S-S =201321-,所以2320121222++++=201321-. 仿照以上方法计算23201215555+++++的值是A 、201351-B 、201351+ C 、2013544-D 、2013514-一、选择题答案表第Ⅱ卷(非选择题,共84分)二、填空题(本大题共6小题,每小题3分,共18分,只要求填出最后结果)13.计算(的结果是________.14. 已知α,β是关于x 的一元二次方程2(1)10m x x --+=的两个实数根,且(1)(1)1m αβ++=+,则m 的值是____________.15.已知2y x -=,31x y -=-,则2243x xy y -+的值为______________16.如图,三角板ABC 中,︒=∠90ACB ,︒=∠30B ,6=BC . 三角板绕直角顶点C 逆时针旋转,当点A 的对应点'A 落在AB 边的起始位置上时即停止转动,则点B 转过的路径长为 .17.如图,把一张长方形纸条ABCD 沿EF 折叠,若∠1=50°,则∠AEG =________.B ' AE D18.坐标平面内,点P 是坐标轴上的点,以点P 为圆心,512为半径的圆与直线334y x =-相切,则点P 的坐标是______________________ .三、解答题(本大题共7小题,共66分) 19.(本题6分)先化简,再求值:222411(1)()442a a a a +-÷--, 其中tan 604sin30a =-.20.(本题8分)某商场购进160台空调准备在一定时间内销售,按计划销售40台后商场开展促销活动,每天比原计划多售出4台,结果提前5天完成销售任务,原计划每天销售多少台? 21.(本题8分)为了解体育大课间活动情况,某中学抽查了初四50名女同学1分钟跳绳的成绩,根据测试评分标准,将她们的成绩进行统计后分为A B C D,,,四个等级,并绘制成下面的扇形统计图和频数分布扇形统计图表(注:6~7的意义为大于等于6分且小于7分,其余类似)(如图). (1)等级A 所在扇形圆心角度数是____ 度; (2)求m n ,的值;(3)已知初四女生共300人,得分在6分以上(含6分)为及格,请你估计一下有多少女生1分钟跳绳成绩不及格.22.(本题10分)某工厂计划为灾区学校生产甲、乙两种型号的学生桌椅500套,以解决1250名学生的学习问题,一套甲型桌椅(一桌两椅)需木料0.5m 3,一套乙型桌椅(一桌三椅)需木料0.7m 3,工厂现有库存木料302m 3. (1)有多少种生产方案?频数分布表(2)现要把生产的全部桌椅运往灾区,已知每套甲型桌椅的生产成本为100元,运费2元;每套乙型桌椅的生产成本为120元,运费4元,求总费用y (元)与生产甲型桌椅x (套)之间的关系式,并确定总费用最少的方案和最少的总费用.(总费用=生产成本+运费)23.(本题10分) (1)观察与猜想:已知当o o060α<<时,下列关系式有且只有一个正确,正确的是________(填代号)A.o 2sin(30)sin αα+= B .o2s i n (30)2s 3αα+=C.o2sin(30)cos ααα+=+。

山东威海中考数学试题及答.doc

山东威海中考数学试题及答.doc

2015年山东威海中考数学试题及答案-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。

学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。

适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。

适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。

适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。

适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。

适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。

该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。

适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。

2012年山东省威海市中考数学试卷详解版

2012年山东省威海市中考数学试卷详解版

2012年山东省威海市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分共36分,在每小题给出的四个选项中,只有一个是正确的,每小题选对得3分,选错、不选或多选,均不得分)1.(3分)(2012•威海)64的立方根是()A.8 B.±8 C.4 D.±4【考点】:平方根、算术平方根、立方根M11D【难易度】:容易题.【分析】:由立方根的定义:如果一个数x的立方等于a,那么x是a的立方根,则因为4的立方等于64,所以64的立方根等于4.【解答】:答案C.【点评】:此题考查了求一个数的立方根,属于送分题,难度不大,熟记一些数的立方根可直接得出答案。

2.(3分)(2012•威海)2012年是威海市实施校安全工程4年规划的收官年,截止4月底,全市已开工项目39个,投入资金4999万元,请将4999万用科学记数法表示(保留两个有效数字)()A.4999×104B.4.999×107 C.4.9×107D.5.0×107【考点】:有效数字M11B科学记数法M11C【难易度】:容易题.【分析】:由4999万=49990000,则用科学记数法表示为:49990000=4.999×107,保留两位有效数字为:5.0×107.【解答】:答案D.【点评】:本题考查了科学记数法以及有效数字的记数方法,属于基础题,难度不大,只要熟知科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值,有效数字是从左边第一位不为0的数开始记,需要几位就取几位.3.(3分)(2012•威海)如图,a∥b,点A在直线a上,点C在直线b上,∠BAC=90°,AB=AC,若∠1=20°,则∠2的度数为()A.25°B.65°C.70°D.75°【考点】:平行线的判定及性质M31B相交线(对顶角、邻补角、同位角、同旁内角、内错角、)M31A三角形内(外)角和M321【难易度】:容易题.【分析】:由题意,因为∠BAC=90°,AB=AC,所以∠B=∠ACB=45°,又∠1=20°,则∠ACE=20°+45°=65°,而a∥b,所以∠2=∠ACE=65°,【解答】:答案B.【点评】:此题考查了三角形的内角和定理以及平行线的性质,难度不大,一般在考查平行线时,都是牵涉到角的运算,需要熟记:两直线平行,内错角相等;两直线平行,同旁内角互补.两直线平行,同位角相等,一般利用图形中角之间的关系进行转换。

2024年山东省威海市中考数学真题试卷及答案解析

2024年山东省威海市中考数学真题试卷及答案解析

威海市2024年初中学业考试数学注意事项:1.本试卷共6页,共120分.考试时间120分钟.考试结束后,将本试卷和答题卡一并交回.2.答题前,请务必用0.5毫米黑色签字笔将自己的姓名、考生号、座号填写在答题卡和试卷规定的位置上.3.所有的试题都必须在专用的“答题卡”上作答.写在试卷上或答题卡指定区域以外的答案................一律无效.....4.选择题用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号、作图题用2B铅笔(加黑加粗,描写清楚)或0.5毫米的黑色签字笔作答.其它题目用0.5毫米的黑色签字笔作答.如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带................5.不要求保留精确度的题目,计算结果保留准确值.一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个是正确的.每小题选对得3分,选错、不选或多选,均不得分)1.一批食品,标准质量为每袋454g.现随机抽取4个样品进行检测,把超过标准质量的克数用正数表示,不足的克数用负数表示.那么,最接近标准质量的是()A.7+B.5-C.3-D.102.据央视网2023年10月11日消息,中国科学技术大学中国科学院量子创新研究院与上海微系统所、国家并行计算机工程技术研究中心合作,成功构建了255个光子的量子计算原型机“九章三号”,再度刷新了光量子信息的技术水平和量子计算优越性的世界纪录.“九章三号”处理高斯玻色取样的速度比上一代“九章二号”提升一百万倍,在百万分之一秒时间内所处理的最高复杂度的样本,需要当前最强的超级计算机花费超过二百亿年的时间.将“百万分之一”用科学记数法表示为()A.5110-⨯B.6110-⨯ C.7110-⨯ D.8110-⨯3.下列各数中,最小的数是()A.2- B.()2-- C.12-D.4.下列运算正确的是()A.5510x x x +=B.21m m n n n÷⋅=C.624a a a ÷= D.()325a a -=-5.下列几何体都是由四个大小相同的小正方体搭成的.其中主视图、左视图和俯视图完全相同的是()A. B. C. D.6.如图,在扇形AOB 中,90AOB ∠=︒,点C 是AO 的中点.过点C 作CE AO ⊥交 AB 于点E ,过点E 作ED OB ⊥,垂足为点D .在扇形内随机选取一点P ,则点P 落在阴影部分的概率是()A.14B.13C.12D.237.定义新运算:①在平面直角坐标系中,{},a b 表示动点从原点出发,沿着x 轴正方向(0a ≥)或负方向(0a <).平移a 个单位长度,再沿着y 轴正方向(0b ≥)或负方向(0b <)平移b 个单位长度.例如,动点从原点出发,沿着x 轴负方向平移2个单位长度,再沿着y 轴正方向平移1个单位长度,记作{}2,1-.②加法运算法则:{}{}{},,,a b c d a c b d +=++,其中a ,b ,c ,d 为实数.若{}{}{}3,5,1,2m n +=-,则下列结论正确的是()A.2m =,7n =B.4m =-,3n =-C.4m =,3n = D.4m =-,3n =8.《九章算术》是我国古老的数学经典著作,书中提到这样一道题目:以绳测井.若将绳三折测之,绳多四尺;若将绳四折测之,绳多一尺.绳长、井深各几何?题目大意是:用绳子测量水井的深度.如果将绳子折成三等份,一份绳长比井深多4尺;如果将绳子折成四等份,一份绳长比井深多1尺.绳长、井深各是多少尺?若设绳长x 尺,井深y 尺,则符合题意的方程组是()A.3441x y x y -=⎧⎨-=⎩ B.3441x yx y +=⎧⎨+=⎩C.4314xy x y ⎧-=⎪⎪⎨⎪-=⎪⎩ D.4314xy x y ⎧+=⎪⎪⎨⎪+=⎪⎩9.如图,在ABCD Y 中,对角线AC ,BD 交于点O ,点E 在BC 上,点F 在CD 上,连接AE ,AF ,EF ,EF 交AC 于点G .下列结论错误的是()A.若CE ADCF AB=,则EF BD ∥B.若AE BC ⊥,AF CD ⊥,AE AF =,则EF BD ∥C.若EF BD ∥,CE CF =,则EAC FAC ∠=∠D.若AB AD =,AE AF =,则EF BD∥10.同一条公路连接A ,B ,C 三地,B 地在A ,C 两地之间.甲、乙两车分别从A 地、B 地同时出发前往C 地.甲车速度始终保持不变,乙车中途休息一段时间,继续行驶.下图表示甲、乙两车之间的距离y (km )与时间x (h )的函数关系.下列结论正确的是()A.甲车行驶8h 3与乙车相遇 B.A ,C 两地相距220km C.甲车的速度是70km /hD.乙车中途休息36分钟二、填空题(本大题共6小题,每小题3分,共18分.只要求填出最后结果)11.1286=________.12.因式分解:()()241x x +++=________.13.如图,在正六边形ABCDEF 中,AH FG ∥,BI AH ⊥,垂足为点I .若20EFG ∠=︒,则ABI ∠=________.14.计算:2422x x x+=--________.15.如图,在平面直角坐标系中,直线()10y ax b a =+≠与双曲线()20ky k x=≠交于点()1,A m -,()2,1B -.则满足12y y ≤的x 的取值范围______.16.将一张矩形纸片(四边形ABCD )按如图所示的方式对折,使点C 落在AB 上的点C '处,折痕为MN ,点D 落在点D '处,C D ''交AD 于点E .若3BM =,4BC '=,3AC '=,则DN =________.三、解答题(本大题共8小题,共72分)17.某公司为节能环保,安装了一批A 型节能灯,一年用电16000千瓦·时.后购进一批相同数量的B 型节能灯,一年用电9600千瓦·时.一盏A 型节能灯每年的用电量比一盏B 型节能灯每年用电量的2倍少32千瓦·时.求一盏A 型节能灯每年的用电量.18.为增强学生体质,某校在八年级男生中试行“每日锻炼,每月测试”的引体向上训练活动,设定6个及以上为合格.体育组为了解一学期的训练效果,随机抽查了20名男生2至6月份的测试成绩.其中,2月份测试成绩如表1,6月份测试成绩如图1(尚不完整).整理本学期测试数据得到表2和图2(尚不完整).2月份测试成绩统计表个数0136810人数484121表1本学期测试成绩统计表1平均数/个众数/个中位数/个合格率2月 2.6a120%3月 3.13425%4月44535%5月 4.555540%6月b86c表2请根据图表中的信息,解答下列问题:(1)将图1和图2中的统计图补充完整,并直接写出a ,b ,c 的值;(2)从多角度分析本次引体向上训练活动的效果;(3)若将此活动在邻校八年级推广,该校八年级男生按400人计算,以随机抽查的20名男生训练成绩为样本,估算经过一学期的引体向上训练,可达到合格水平的男生人数.19.某校九年级学生开展利用三角函数解决实际问题的综合与实践活动,活动之一是测量某护堤石坝与地平面的倾斜角.测量报告如下表(尚不完整)课题测量某护堤石坝与地平面的倾斜角成员组长:×××组员:×××,×××,×××测量工具竹竿,米尺测量示意图说明:AC 是一根笔直的竹竿.点D是竹竿上一点.线段DE 的长度是点D 到地面的距离.α∠是要测量的倾斜角.测量数据…………(1)设AB a =,BC b =,AC c =,CE d =,DE e =,CD f =,BE g =,AD h =,请根据表中的测量示意图,从以上线段中选出你认为需要测量的数据,把表示数据的小写字母填写在“测量数据”一栏.(2)根据(1)中选择的数据,写出求α∠的一种三角函数值的推导过程.(3)假设sin 0.86α≈,cos 0.52α≈,tan 1.66α≈,根据(2)中的推导结果,利用计算器求出α∠的度数,你选择的按键顺序为________.20.感悟如图1,在ABE 中,点C ,D 在边BE 上,AB AE =,BC DE =.求证:BAC EAD ∠=∠.应用(1)如图2,用直尺和圆规在直线BC 上取点D ,点E (点D 在点E 的左侧),使得EAD BAC ∠=∠,且DE BC =(不写作法,保留作图痕迹);(2)如图3,用直尺和圆规在直线AC 上取一点D ,在直线BC 上取一点E ,使得CDE BAC ∠=∠,且DE AB =(不写作法,保留作图痕迹).21.定义我们把数轴上表示数a 的点与原点的距离叫做数a 的绝对值.数轴上表示数a ,b 的点A ,B 之间的距离()AB a b a b =-≥.特别的,当0a ≥时,表示数a 的点与原点的距离等于0a -.当a<0时,表示数a 的点与原点的距离等于0a -.应用如图,在数轴上,动点A 从表示3-的点出发,以1个单位/秒的速度沿着数轴的正方向运动.同时,动点B 从表示12的点出发,以2个单位/秒的速度沿着数轴的负方向运动.(1)经过多长时间,点A ,B 之间的距离等于3个单位长度?(2)求点A ,B 到原点距离之和的最小值.22.如图,已知AB 是O 的直径,点C ,D 在O 上,且BC CD =.点E 是线段AB 延长线上一点,连接EC 并延长交射线AD 于点F .FEG ∠的平分线EH 交射线AC 于点H ,45H ∠=︒.(1)求证:EF 是O 的切线;(2)若2BE =,4CE =,求AF 的长.23.如图,在菱形ABCD 中,10cm AB =,60ABC ∠=︒,E 为对角线AC 上一动点,以DE 为一边作60DEF ∠=︒,EF 交射线BC 于点F ,连接BE DF ,.点E 从点C 出发,沿CA 方向以每秒2cm 的速度运动至点A 处停止.设BEF △的面积为2cm y ,点E 的运动时间为x 秒.(1)求证:BE EF =;(2)求y 与x 的函数表达式,并写出自变量x 的取值范围;(3)求x 为何值时,线段DF 的长度最短.24.已知抛物线()20y x bx c b =++<与x 轴交点的坐标分别为()1,0x ,()2,0x ,且12x x <.(1)若抛物线()2110y x bx c b =+++<与x 轴交点的坐标分别为()3,0x ,()4,0x ,且34x x <.试判断下列每组数据的大小(填写<、=或>):①12x x +________34x x +;②13x x -________24x x -;③23x x +________14x x +.(2)若11x =,223x <<,求b 的取值范围;(3)当01x ≤≤时,()20y x bx c b =++<最大值与最小值的差为916,求b 的值.参考答案一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个是正确的.每小题选对得3分,选错、不选或多选,均不得分)1.【答案】C【解析】【分析】本题考查了绝对值的意义,正负数的意义,直接利用正负数的意义以及绝对值的意义可得最接近标准是哪一袋.【详解】解:∵超过标准质量的克数用正数表示,不足的克数用负数表示.∴35710-<-<+<∴最接近标准质量的是3-故选:C .2.【答案】B【解析】【分析】本题考查了用科学记数法表示绝对值较小的数,用科学记数法表示绝对值较小的数,一般形式为10n a -⨯,其中110a ≤<,n 为整数.【详解】解:百万分之一=611101000000-=⨯.故选:B .3.【答案】A【解析】【分析】本题考查了实数的大小比较,根据实数的大小比较即可求解.【详解】解:()22--=,∵()1222-<<-<--∴最小的数是2-故选:A .4.【答案】C【解析】【分析】本题主要考查合并同类项、同底数幂的除法、积的乘方,根据合并同类项、同底数幂的除法、积的乘方的运算法则计算即可.【详解】A.5552x x x +=,运算错误,该选项不符合题意;B.223111m m n m n n n n÷⋅== ,运算错误,该选项不符合题意;C.62624a a a a -÷==,运算正确,该选项符合题意;D.()326a a -=-,运算错误,该选项不符合题意.故选:C5.【答案】D【解析】【分析】本题考查了三视图;分别判断四个选项中几何体的主视图、左视图与俯视图,通过比较即可得出答案.【详解】解:A.主视图为,左视图为,主视图与左视图不同,故该选项不符合题意;B.主视图为,左视图为,主视图与左视图不同,故该选项不符合题意;C.主视图为,左视图为,主视图与左视图不同,故该选项不符合题意;D.主视图为,左视图和俯视图为,主视图、左视图与俯视图完全相同,故该选项符合题意;6.【答案】B【解析】【分析】本题考查的是求不规则图形的面积,几何概率,根据阴影部分面积等于扇形OBE 的面积,即可求解.【详解】解:∵90AOB ∠=︒,CE AO ⊥,ED OB⊥∴四边形OCDE 是矩形,∴OCE ODES S = ∴ODE BDE OBES S S S =+= 阴影部分扇形∵点C 是AO 的中点∴12OC OE DE ==∴1sin 2ED EOD OE ∠==∴30EOD ∠=︒∴2230ππ36012ODE BDE OBE AO AO S S S S ⨯⨯=+=== 阴影部分扇形,2290ππ3604AOB AO AO S ⨯⨯==扇形,点P 落在阴影部分的概率是22π112π34AOB AO S AO S ⨯==⨯阴影部分扇形故选:B .7.【答案】B【解析】【分析】本题考查了新定义运算,平面直角坐标系,根据新定义得出31,52m n +=-+=,即可求解.【详解】解:∵{}{}{},,,a b c d a c b d +=++,{}{}{}3,5,1,2m n +=-∴31,52m n +=-+=解得:4m =-,3n =-8.【答案】C【解析】【分析】本题考查二元一次方程组的应用,此题中的等量关系有:①将绳三折测之,绳多四尺;②绳四折测之,绳多一尺,不变的是井深,据此即可得方程组.正确理解题意,找准等量关系解题的关键.【详解】解:设绳长x 尺,井深y 尺,依题意,得:4314x y x y ⎧-=⎪⎪⎨⎪-=⎪⎩.故选:C .9.【答案】D【解析】【分析】本题考查了相似三角形的性质与判定,菱形的性质与判定,垂直平分线的性质,全等三角形的性质与判定;根据相似三角形的性质与判定即可判断A ,根据题意可得四边形CA 是BCD ∠的角平分线,进而判断四边形ABCD 是菱形,证明Rt Rt ACE AFC ≌可得CE CF =则AC 垂直平分EF ,即可判断B 选项,证明四边形ABCD 是菱形,即可判断C 选项,D 选项给的条件,若加上BE DF =,则成立,据此,即可求解.【详解】解:∵四边形ABCD 是平行四边形,∴,AD BC AB CD==A.若CE AD CF AB=,即CE BC CF CD =,又ECF BCD ∠=∠,∴CEF CBD∽△△∴CEF CBD∠=∠∴EF BD ∥,故A 选项正确,B.若AE BC ⊥,AF CD ⊥,AE AF =,∴CA 是BCD ∠的角平分线,∴ACB ACD∠=∠∵AD BC∥∴DAC ACB∠=∠∴DAC DCA∠=∠∴AD DC=∴四边形ABCD 是菱形,∴AC BD⊥在Rt ,Rt ACE AFC 中,AE AF AC AC=⎧⎨=⎩∴Rt Rt ACE AFC≌∴CE CF=又∵AE AF=∴AC EF⊥∴EF BD ∥,故B 选项正确,C.∵CE CF =,∴CFE CEF∠=∠∵EF BD ∥,∴,CBD CEF CDB CFE∠=∠∠=∠∴CBD CDB∠=∠∴CB CD=∴四边形ABCD 是菱形,∴AC BD ⊥,又∵EF BD∥∴AC EF ⊥,∵CE CF =,∴AC 垂直平分EF ,∴AE AF=∴EAC FAC ∠=∠,故C 选项正确;D.若AB AD =,则四边形ABCD 是菱形,由AE AF =,且BE DF =时,可得AC 垂直平分EF ,∵AC BD⊥∴EF BD ∥,故D 选项不正确故选:D .10.【答案】A【解析】【分析】本题考查了函数图象,根据函数图象结合选项,逐项分析判断,即可求解.【详解】解:根据函数图象可得AB 两地之间的距离为402020-=(km )两车行驶了4小时,同时到达C 地,如图所示,在12-小时时,两车同向运动,在第2小时,即点D 时,两车距离发生改变,此时乙车休息,E 点的意义是两车相遇,F 点意义是乙车休息后再出发,∴乙车休息了1小时,故D 不正确,设甲车的速度为km /h a ,乙车的速度为km/h b ,根据题意,乙车休息后两车同时到达C 地,则甲车的速度比乙车的速度慢,a b<∵220240b a +-=即10b a -=在DE EF -时,乙车不动,则甲车的速度是4020601+=km /h ,∴乙车速度为601070+=km /h ,故C 不正确,∴AC 的距离为460240⨯=千米,故B 不正确,设x 小时两辆车相遇,依题意得,6027020x =⨯+解得:83x =即83小时时,两车相遇,故A 正确故选:A .二、填空题(本大题共6小题,每小题3分,共18分.只要求填出最后结果)11.【答案】-【解析】【分析】本题考查了二次根式的混合运算,根据二次根式的性质以及二次根式的乘法进行计算即可求解.==-故答案为:-12.【答案】()23x +【解析】【分析】本题主要考查了用完全平方公式分解因式,先按照多项式乘以多项式展开,然后利用完全平方公式分解因式即可.【详解】解:()()241x x +++24281x x x =++++269x x =++()23x =+故答案为:()23x +.13.【答案】50︒##50度【解析】【分析】本题考查了正六边形的内角和、平行线的性质及三角形内角和定理,先求出正六边形的每个内角为120︒,即120EFA FAB ∠=∠=︒,则可求得GFA ∠的度数,根据平行线的性质可求得FAH ∠的度数,进而可求出HAB ∠的度数,再根据三角形内角和定理即可求出ABI ∠的度数.【详解】解:∵正六边形的内角和(62)180720=-⨯=︒,每个内角为:7206120︒÷=︒,120EFA FAB ∴∠=∠=︒,20EFG ∠=︒ ,12020100GFA ∴∠=︒-︒=︒,AH FG ∥,180G FAH FA ∠=︒∴∠+,180********GFA FAH =︒-∠=︒-︒=︒∴∠,1208040HAB FA FAH B ∴∠=∠-︒-︒=︒∠=,BI AH ⊥ ,90BIA ∴∠=︒,904050ABI ∴∠=︒-︒=︒.故答案为:50︒.14.【答案】2x --##2x--【解析】【分析】本题考查分式的加减,根据同分母分式的加减法则解题即可.【详解】2422x x x+--2422x x x =---242x x -=-()()222x x x +-=-2x =--.故答案为:2x --.15.【答案】10x -≤<或2x ≥【解析】【分析】本题考查了一次函数与反比例函数的交点问题,根据图象解答即可求解,利用数形结合思想解答是解题的关键.【详解】解:由图象可得,当10x -≤<或2x ≥时,12y y ≤,∴满足12y y ≤的x 的取值范围为10x -≤<或2x ≥,故答案为:10x -≤<或2x ≥.16.【答案】32【解析】【分析】本题考查矩形的折叠问题,全等三角形的判定和性质,勾股定理,先根据勾股定理求出5C M CM '==,然后证明BC M AEC '' ≌,得到4BC AE '==,5MC C E =''=,即可得到4DE =,2D E '=,然后在Rt D EN '△中,利用222NE D E D N '+'=解题即可.【详解】解:在Rt C BM ' 中,5C M ='==,由折叠可得5C M CM '==,90D C M D D C ∠=∠=∠=∠'=''︒,又∵ABCD 是矩形,∴90A B ∠=∠=︒,∴90BC M AC E AEC AC E ∠︒'''+∠+'=∠∠=,∴BC M AEC ∠=∠'',又∵3AC BM '==,∴BC M AEC '' ≌,∴4BC AE '==,5MC C E =''=,∴7AB CD C D ''===,358BC AD BM CM ==+=+=,∴844DE AD AE =-=-=,752D E C D C E ''''=-=-=,设D N DN a '==,则4EN a =-,在Rt D EN '△中,222NE D E D N '+'=,即222(4)2a a -=+,解得:32a =,故答案为32.三、解答题(本大题共8小题,共72分)17.【答案】160千瓦·时【解析】【分析】本题考查分式方程的应用,根据题意列方程是关键,并注意检验.根据两种节能灯数量相等列式分式方程求解即可.【详解】解:设一盏B 型节能灯每年的用电量为x 千瓦·时,则一盏A 型节能灯每年的用电量为()232x -千瓦·时160009600232x x=-整理得53(232)x x =-解得96x =经检验:96x =是原分式方程的解.232160x -=答:一盏A 型节能灯每年的用电量为160千瓦·时.18.【答案】(1)见解析,1, 5.65,55%a b c ===(2)见解析(3)220【解析】【分析】(1)根据总人数减去引体向上为其他个数的人数,进而补充条形统计图,根据题意求得合格率c ,补充折线统计图,根据平均数,众数的定义,即可得出,a b 的值;(2)根据平均数,众数,中位数,合格率,分析;(3)根据样本估计总体即可求解.【小问1详解】解:6月测试成绩中,引体向上3个的人数为2041645----=164100%55%20c ++=⨯=根据表2可得,1a =()141531668410 5.6520b =⨯+⨯+⨯+⨯+⨯=;【小问2详解】解:本次引体向上训练活动的效果明显,从平均数和合格率看,平均数和合格率逐月增加,从中位数看,引体向上个数逐月增加,从众数看,引体向上的个数越来越大,(答案不唯一,合理即可)【小问3详解】解:40055%220⨯=(人)答:估算经过一学期的引体向上训练,可达到合格水平的男生人数为220人【点拨】本题考查了条形统计图,折线统计图,统计表,样本估计总体,以及求平均数,众数,中位数的意义;掌握相关的统计量的意义是解题的关键.19.【答案】(1)AB a =,AC c =,DE e =,CD f =;(2)sin ec af α=,推导见解析;(3)①.【解析】【分析】(1)根据题意选择需要的数据即可;(2)过点A 作AM CB ⊥于点M ,可得CDE CAM ∽,得到DE CD AM CA =,即得e f AM c=,得到ec AM f=,再根据正弦的定义即可求解;(3)根据(2)的结果即可求解;本题考查了解直角三角形,相似三角形的的判定和性质,正确作出辅助线是解题的关键.【小问1详解】解:需要的数据为:AB a =,AC c =,DE e =,CD f =;【小问2详解】解:过点A 作AM CB ⊥于点M ,则90AMB ∠=︒,∵DE CB ⊥,∴DE AM ∥,∴CDE CAM∽∴DE CD AM CA =,即e f AM c =∴ec AM f=,∴sin ecAM ec f AB a afα===;【小问3详解】解:∵sin ec afα=,∴按键顺序为,故答案为:①.20.【答案】见解析【解析】【分析】本题主要考查全等三角形的判定及性质、尺规作图:证明ABC AED ≌△△,即可求得BAC EAD ∠=∠;应用(1):以点A 为圆心,以AB 长度为半径作弧,交直线BC 于一点,该点即为点E ,以点A 为圆心,以AC 长度为半径作弧,交直线BC 于一点,该点即为点D ,连接AD ,AE ;应用(2):以点C 为圆心,以AC 长为半径作弧,交AC 的延长线于一点,该点即为点D ,以点C 为圆心,以BC 长为半径作弧,交直线BC 于一点,该点即为点E ,连接DE .【详解】感悟:∵AB AE =,∴B E ∠=∠.在ABC 和AED △中AB AE B E BC DE =⎧⎪∠=∠⎨⎪=⎩∴ABC AED ≌△△.∴BAC EAD ∠=∠.应用:(1):以点A 为圆心,以AB 长度为半径作弧,交直线BC 于一点,该点即为点E ,以点A 为圆心,以AC 长度为半径作弧,交直线BC 于一点,该点即为点D ,连接AD ,AE,图形如图所示.(2):以点C 为圆心,以AC 长为半径作弧,交AC 的延长线于一点,该点即为点D ,以点C 为圆心,以BC 长为半径作弧,交直线BC 于一点,该点即为点E ,连接DE ,图形如图所示.根据作图可得:CD AC CE BC ==,,又ACB DCE ∠=∠,∴ACB DCE ≌,∴CDE BAC DE AB ∠=∠=,.21.【答案】(1)过4秒或6秒(2)3【解析】【分析】本题考查了一元一次方程的应用,不等式的性质,绝对值的意义等知识,解题的关键是:(1)设经过x 秒,则A 表示的数为3x -+,B 表示的数为122x -,根据“点A ,B 之间的距离等于3个单位长度”列方程求解即可;(2)先求出点A ,B 到原点距离之和为3122x x -++-,然后分3x <,36x ≤≤,6x >三种情况讨论,利用绝对值的意义,不等式的性质求解即可.【小问1详解】解:设经过x 秒,则A 表示的数为3x -+,B 表示的数为122x -,根据题意,得()12233x x ---+=,解得4x =或6,答,经过4秒或6秒,点A ,B 之间的距离等于3个单位长度;【小问2详解】解:由(1)知:点A ,B 到原点距离之和为3122x x -++-,当3x <时,31223122153x x x x x -++-=-+-=-,∵3x <,∴1536x ->,即31226x x -++->,当36x ≤≤时,312231229x x x x x -++-=-+-=-,∵36x ≤≤,∴396x ≤-≤,即331226x x ≤-++-≤,当6x >时,31223212315x x x x x -++-=-+-=-,∵6x >,∴3153x ->,即31223x x -++->,综上,31223x x -++-≥,∴点A ,B 到原点距离之和的最小值为3.22.【答案】(1)见解析(2)245AF =【解析】【分析】本题考查切线的判定,勾股定理,相似三角形的判定和性质,圆周角定理,根据角平分线的定义得到90F ∠=︒是解题的关键.(1)连接OC ,根据圆周角定理得到12DAC CAB DAB ∠=∠=∠,即可得到OC AD ∥,然后根据角平分线的定义得到224590F FEG FAE H ∠=∠-∠∠=⨯︒=︒,然后得到90OCE F ∠=∠=︒即可证明切线;(2)设O 的半径为r ,根据222OC CE OE +=,可以求出r ,然后根据ECO EFA ∽,即可得到结果.【小问1详解】证明:连接OC ,则OAC OCA ∠=∠,又∵BC CD =,∴ BCCD =,∴12DAC CAB DAB ∠=∠=∠,∴DAC OCA ∠=∠,∴OC AD ∥,∴OCE F ∠=∠,∵EH 平分FEG ∠,∴2FEG HEG ∠=∠,∴()222224590F FEG FAE HEG CAB HEG CAB H ∠=∠-∠=∠-∠=∠-∠=∠=⨯︒=︒,∴90OCE F ∠=∠=︒,又∵OC 是半径,∴EF 是O 的切线;【小问2详解】解:设O 的半径为r ,则2OE OB BE r =+=+,∵222OC CE OE +=,即()22242r r +=+,解得3r =,∴228EA AB BE r =+=+=,5OE =,又∵OC AD ,∴ECO EFA ∽,∴EA AF OE OC =,即853AF =,解得245AF =.23.【答案】(1)证明见解析;(2)()205y x =+<≤;(3)52x =.【解析】【分析】(1)设CD 与EF 相交于点M ,证明()SAS BCE DCE ≌,可得CBE CDE ∠=∠,BE DE =,利用三角形外角性质可得CDE CFE ∠=∠,即得CBE CFE ∠=∠,即可求证;(2)过点E 作EN BC ⊥于N ,解直角三角形得到·sin60cm EN CE =︒=,·cos60cm CN CE x =︒=,可得()10cm BN BC CN x =-=-,由等腰三角形三线合一可得()210cm BF x =-,即可由三角形面积公式得到y 与x 的函数表达式,最后由0210x <≤,可得自变量x 的取值范围;(3)证明DEF 为等边三角形,可得BE DF =,可知线段DF 的长度最短,即BE 的长度最短,当BE AC ⊥时,BE 取最短,又由菱形的性质可得ABC 为等边三角形,利用三线合一求出CE 即可求解;本题考查了菱形的性质,全等三角形的判定和性质,三角形的外角性质,解直角三角形,求二次函数解析式,等腰三角形的性质,等边三角形的判定和性质,垂线段最短,掌握菱形的性质及等边三角形的判定和性质是解题的关键.【小问1详解】证明:设CD 与EF 相交于点M ,∵四边形ABCD 为菱形,∴BC DC =,BCE DCE ∠=∠,AB CD ∥,∵60ABC ∠=︒∴60DCF ∠=︒,在BCE 和DCE △中,BC DC BCE DCE CE CE =⎧⎪∠=∠⎨⎪=⎩,∴()SAS BCE DCE ≌,∴CBE CDE ∠=∠,BE DE =,∵DMF DEF CDE DCF CFE ∠=∠+∠=∠+∠,又∵60DEF DCF ∠=∠=︒,∴CDE CFE ∠=∠,∴CBE CFE ∠=∠,∴BE EF =;【小问2详解】解:过点E 作EN BC ⊥于N ,则90ENC ∠=︒,∵BE EF =,∴2BF BN =,∵四边形ABCD 为菱形,60ABC ∠=︒,∴10cm BC AB ==,1602ACB BCD ∠=∠=︒,即60ECN ∠=︒,∵2cm CE x =,∴3·sin602·3cm 2EN CE x x =︒==,1·cos602·cm 2CN CE x x =︒==,∴()10cm BN BC CN x =-=-,∴()210cm BF x =-,∴()211·2103310322y BF EN x x x x ==⨯-=-+,∵0210x <≤,∴05x <≤,∴()23305y x x =+<≤;【小问3详解】解:∵BE DE =,BE EF =,∴DE EF =,∵60DEF ∠=︒,∴DEF 为等边三角形,∴DE DF EF ==,∴BE DF =,∴线段DF 的长度最短,即BE 的长度最短,当BE AC ⊥时,BE 取最短,如图,∵四边形ABCD 是菱形,∴AB BC =,∵60ABC ∠=︒,∴ABC 为等边三角形,∴10cm BC AB AC ===,∵BE AC ⊥,∴15cm 2CE AC ==,∴522CE x ==,∴当52x =时,线段DF 的长度最短.24.【答案】(1)=;<;>;(2)43b -<<-(3)b 的值为32-或12-或2516-.【解析】【分析】本题考查根与系数的关系,二次函数图像与性质,不等式性质,二次函数最值情况,解题的关键在于熟练掌握二次函数图像与性质.(1)根据根与系数的关系得到12x x b +=-,以及34x x b +=-,即可判断①,利用二次函数的图像与性质得到1342x x x x <<<,进而得到2143x x x x ->-,利用不等式性质变形,即可判断②③.(2)根据题意得到2134x x <+<,结合12x x b +=-进行求解,即可解题;(3)根据题意得到抛物线()20y x bx c b =++<顶点坐标为24,24b c b ⎛⎫-- ⎪⎝⎭,对称轴为02b x =->;当0x =时,y c =,当1x =时,1y b c =++,由()20y x bx c b =++<最大值与最小值的差为916,分以下情况①当在0x =取得最大值,在1x =取得最小值时,②当在0x =取得最大值,在顶点取得最小值时,③当在1x =取得最大值,在顶点取得最小值时,建立等式求解,即可解题.【小问1详解】解: ()20y x bx c b =++<与x 轴交点的坐标分别为()1,0x ,()2,0x ,且12x x <,12x x b ∴+=-,且抛物线开口向上,()2110y x bx c b =+++<与x 轴交点的坐标分别为()3,0x ,()4,0x ,且34x x <.即()20y x bx c b =++<向上平移1个单位,∴1342x x x x <<<,且34x x b +=-,∴①12x x +=34x x +;2143x x x x ->-,∴2134x x x x ->-,即②13x x -<24x x -;∴2314x x x x +>+,即③23x x +>14x x +.故答案为;=;<;>;【小问2详解】解: 11x =,223x <<,∴2134x x <+<,∴34b <-<,∴43b -<<-;【小问3详解】解:抛物线()20y x bx c b =++<顶点坐标为24,24b c b ⎛⎫-- ⎪⎝⎭,对称轴为02b x =->;当0x =时,yc =,当1x =时,1y b c =++,①当在0x =取得最大值,在1x =取得最小值时,有()9116c b c -++=,解得b =2516-;②当在0x =取得最大值,在顶点取得最小值时,有249416c b c --=,解得32b =(舍去)或32b =-,③当在1x =取得最大值,在顶点取得最小值时,有2491416c b b c -++-=,解得72b =-(舍去)或12b =-;综上所述,b 的值为32-或12-或2516-.。

2024年山东省威海市中考数学试题(含答案)

2024年山东省威海市中考数学试题(含答案)

威海市2024年初中学业考试数学注意事项:1.本试卷共6页,共120分.考试时间120分钟.考试结束后,将本试卷和答题卡一并交回.2.答题前,请务必用0.5毫米黑色签字笔将自己的姓名、考生号、座号填写在答题卡和试卷规定的位置上.3.所有的试题都必须在专用的“答题卡”上作答.写在试卷上或答题卡指定区域以外的答案一律无效.4.选择题用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号、作图题用2B铅笔(加黑加粗,描写清楚)或0.5毫米的黑色签字笔作答.其它题目用0.5毫米的黑色签字笔作答.如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.5.不要求保留精确度的题目,计算结果保留准确值.一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个是正确的.每小题选对得3分,选错、不选或多选,均不得分)1.一批食品,标准质量为每袋.现随机抽取4个样品进行检测,把超过标准质量的克数用正数表示,不足的克数用负数表示.那么,最接近标准质量的是()A. B. C. D.【答案】C【解析】【分析】本题考查了绝对值的意义,正负数的意义,直接利用正负数的意义以及绝对值的意义可得最接近标准是哪一袋.【详解】解:∵超过标准质量的克数用正数表示,不足的克数用负数表示.∴∴最接近标准质量的是故选:C.2.据央视网2023年10月11日消息,中国科学技术大学中国科学院量子创新研究院与上海微系统所、国家并行计算机工程技术研究中心合作,成功构建了255个光子的量子计算原型机“九章三号”,再度刷新了光量子信息的技术水平和量子计算优越性的世界纪录.“九章三号”处理高斯玻色取样的速度比上一代“九章二号”提升一百万倍,在百万分之一秒时间内所处理的最高复杂度的样本,需要当前最强的超级计算机花费超过二百亿年的时间.将“百万分之一”用科学记数法表示为()A. B. C. D.【答案】B【解析】【分析】本题考查了用科学记数法表示绝对值较小的数,用科学记数法表示绝对值较小的数,一般形式为,其中,为整数.【详解】解:百万分之一.故选:B.3.下列各数中,最小的数是()A. B. C. D.【答案】A【解析】【分析】本题考查了实数的大小比较,根据实数的大小比较即可求解.【详解】解:,∵∴最小的数是故选:A.4.下列运算正确的是()A. B.C. D.【答案】C【解析】【分析】本题主要考查合并同类项、同底数幂的除法、积的乘方,根据合并同类项、同底数幂的除法、积的乘方的运算法则计算即可.【详解】A、,运算错误,该选项不符合题意;B、,运算错误,该选项不符合题意;C、,运算正确,该选项符合题意;D、,运算错误,该选项不符合题意.故选:C5.下列几何体都是由四个大小相同的小正方体搭成的.其中主视图、左视图和俯视图完全相同的是()A. B. C. D.【答案】D 【解析】【分析】本题考查了三视图;分别画出四个选项中几何体的左视图与俯视图,通过比较即可得出答案.【详解】解:A 、主视图为,左视图为,主视图与左视图不同,故该选项不符合题意;B 、主视图为,左视图为,主视图与左视图不同,故该选项不符合题意;C 、主视图为,左视图为,主视图与左视图不同,故该选项不符合题意;D 、主视图为,左视图为,主视图与左视图相同,故该选项符合题意;故选:D .6.如图,在扇形中,,点是的中点.过点作交于点,过点作,垂足为点.在扇形内随机选取一点,则点落在阴影部分的概率是()A. B. C. D.【答案】B 【解析】【分析】本题考查的是求不规则图形的面积,几何概率,根据阴影部分面积等于扇形的面积,即可求解.【详解】解:∵,,∴四边形是矩形,∴∴∵点是的中点∴∴∴∴,,点落在阴影部分的概率是故选:B.7.定义新运算:①在平面直角坐标系中,表示动点从原点出发,沿着轴正方向()或负方向().平移个单位长度,再沿着轴正方向()或负方向()平移个单位长度.例如,动点从原点出发,沿着轴负方向平移个单位长度,再沿着轴正方向平移个单位长度,记作.②加法运算法则:,其中,,,为实数.若,则下列结论正确的是()A.,B.,C.,D.,【答案】B【解析】【分析】本题考查了新定义运算,平面直角坐标系,根据新定义得出,即可求解.【详解】解:∵,∴解得:,故选:B.8.《九章算术》是我国古老的数学经典著作,书中提到这样一道题目:以绳测井.若将绳三折测之,绳多四尺;若将绳四折测之,绳多一尺.绳长、井深各几何?题目大意是:用绳子测量水井的深度.如果将绳子折成三等份,一份绳长比井深多尺;如果将绳子折成四等份,一份绳长比井深多尺.绳长、井深各是多少尺?若设绳长尺,井深尺,则符合题意的方程组是()A. B.C. D.【答案】C【解析】【分析】本题考查二元一次方程组的应用,此题中的等量关系有:①将绳三折测之,绳多四尺;②绳四折测之,绳多一尺,不变的是井深,据此即可得方程组.正确理解题意,找准等量关系解题的关键.【详解】解:设绳长x尺,井深y尺,依题意,得:.故选:C.9.如图,在中,对角线,交于点,点在上,点在上,连接,,,交于点.下列结论错误的是()A.若,则B.若,,,则C.若,,则D.若,,则【答案】D【解析】【分析】本题考查了相似三角形的性质与判定,菱形的性质与判定,垂直平分线的性质,全等三角形的性质与判定;根据相似三角形的性质与判定即可判断A,根据题意可得四边形是的角平分线,进而判断四边形是菱形,证明可得则垂直平分,即可判断B选项,证明四边形是菱形,即可判断C选项,D选项给的条件,若加上,则成立,据此,即可求解.【详解】解:∵四边形是平行四边形,∴A.若,即,又,∴∴∴,故A选项正确,B.若,,,∴是的角平分线,∴∵∴∴∴∴四边形是菱形,∴在中,∴∴又∵∴∴,故B选项正确,C.∵,∴∵,∴∴∴∵∴∴四边形是菱形,又∵∴,则∴∴∴,故C选项正确;D.若,则四边形是菱形,由,且时,可得垂直平分,∵∴,故D选项不正确故选:D.10.同一条公路连接,,三地,地在,两地之间.甲、乙两车分别从地、地同时出发前往地.甲车速度始终保持不变,乙车中途休息一段时间,继续行驶.下图表示甲、乙两车之间的距离()与时间()的函数关系.下列结论正确的是()A.甲车行驶与乙车相遇B.,两地相距C.甲车的速度是D.乙车中途休息分钟【答案】A【解析】【分析】本题考查了函数图象,根据函数图象结合选项,逐项分析判断,即可求解.【详解】解:根据函数图象可得两地之间的距离为()两车行驶了小时,同时到达地,如图所示,在小时时,两侧同向运动,在第2小时,即点时,两者距离发生改变,此时乙车休息,点的意义是两车相遇,点意义是乙车休息后再出发,∴乙车休息了1小时,故D不正确,设甲车的速度为,乙车的速度为,根据题意,乙车休息后两者同时到达地,则甲车的速度比乙车的速度慢,∵即在时,乙车不动,则甲车的速度是,∴乙车速度为,故C不正确,∴的距离为千米,故B不正确,设小时两辆车相遇,依题意得,解得:即小时时,两车相遇,故A正确故选:A.二、填空题(本大题共6小题,每小题3分,共18分.只要求填出最后结果)11.计算:________.【答案】【解析】【分析】本题考查了二次根式的混合运算,根据二次根式的性质以及二次根式的乘法进行计算即可求解.【详解】解:故答案为:.12.因式分解:________.【答案】【解析】【分析】本题主要考查了用完全平方公式分解因式,先按照多项式乘以多项式展开,然后利用完全平方公式分解因式即可.【详解】解:故答案为:.13.如图,在正六边形中,,,垂足为点I.若,则________.【答案】##50度【解析】【分析】本题考查了正六边形的内角和、平行平行线的性质及三角形内角和定理,先求出正六边形的每个内角为,即,则可求得的度数,根据平行线的性质可求得的度数,进而可求出的度数,再根据三角形内角和定理即可求出的度数.【详解】解:∵正六边形的内角和,每个内角为:,,,,,,,,,,.故答案为:.14.计算:________.【答案】##【解析】【分析】本题考查分式的加减,根据同分母分式的加减法则解题即可.【详解】.故答案为:.15.如图,在平面直角坐标系中,直线与双曲线交于点,.则满足的的取值范围______.【答案】或【解析】【分析】本题考查了一次函数与反比例函数的交点问题,根据图象解答即可求解,利用数形结合思想解答是解题的关键.【详解】解:由图象可得,当或时,,∴满足的的取值范围为或,故答案为:或.16.将一张矩形纸片(四边形)按如图所示的方式对折,使点C落在上的点处,折痕为,点D落在点处,交于点E.若,,,则________.【答案】【解析】【分析】本题考查矩形的折叠问题,全等三角形的判定和性质,勾股定理,先根据勾股定理求出,然后证明,得到,,即可得到,,然后在中,利用解题即可.【详解】解:在中,,由折叠可得,,又∵是矩形,∴,∴,∴,又∵,∴,∴,,∴,,∴,,设,则,在中,,即,解得:,故答案为.三、解答题(本大题共8小题,共72分)17.某公司为节能环保,安装了一批型节能灯,一年用电千瓦·时.后购进一批相同数量的型节能灯,一年用电千瓦·时.一盏型节能灯每年的用电量比一盏型节能灯每年用电量的倍少千瓦·时.求一盏型节能灯每年的用电量.【答案】千瓦·时,过程见详解【解析】【分析】本题考查分式方程,根据题意列方程是关键,并注意检验.根据两种节能灯数量相等列式分式方程求解即可.【详解】解:设一盏型节能灯每年的用电量为千瓦·时,则一盏型节能灯每年的用电量为千瓦·时整理得解得经检验:是原分式方程的解.答:一盏型节能灯每年的用电量为千瓦·时18.为增强学生体质,某校在八年级男生中试行“每日锻炼,每月测试”的引体向上训练活动,设定6个及以上为合格.体育组为了解一学期的训练效果,随机抽查了20名男生2至6月份的测试成绩.其中,2月份测试成绩如表1,6月份测试成绩如图1(尚不完整).整理本学期测试数据得到表2和图2(尚不完整).2月份测试成绩统计表个数人数表1本学期测试成绩统计表1平均数/个众数/个中位数/个合格率2月3月4月5月6月表2请根据图表中的信息,解答下列问题:(1)将图1和图2中的统计图补充完整,并直接写出a,b,c的值;(2)从多角度分析本次引体向上训练活动的效果;(3)若将此活动在邻校八年级推广,该校八年级男生按400人计算,以随机抽查的20名男生训练成绩为样本,估算经过一学期的引体向上训练,可达到合格水平的男生人数.【答案】(1)见解析,(2)见解析(3)【解析】【分析】(1)根据总人数减去引体向上为其他个数人数,进而补充条形统计图,根据题意求得合格率,补充折线统计图,根据平均数,众数的定义,即可得出的值;(2)根据平均数,众数,中位数,合格率,分析;(3)根据样本估计总体即可求解.【小问1详解】解:月测试成绩中,引体向上个的人数为根据表2可得,;【小问2详解】解:本次引体向上训练活动的效果明显,从平均数和合格率看,平均数和合格率逐月增加,从中位数看,引体向上个数逐月增加,从众数看,引体向上的个数越来越大,(答案不唯一,合理即可)【小问3详解】解:(人)答:估算经过一学期的引体向上训练,可达到合格水平的男生人数为人【点睛】本题考查了条形统计图,折线统计图,统计表,样本估计总体,以及求平均数,众数,中位数的意义;掌握相关的统计量的意义是解题的关键.19.某校九年级学生开展利用三角函数解决实际问题的综合与实践活动,活动之一是测量某护堤石坝与地平面的倾斜角.测量报告如下表(尚不完整)课题测量某护堤石坝与地平面的倾斜角成员组长:×××组员:×××,×××,×××测量工具竹竿,米尺测量示意图说明:是一根笔直的竹竿.点是竹竿上一点.线段的长度是点到地面的距离.是要测量的倾斜角.测量数据…………(1)设,,,,,,,,请根据表中的测量示意图,从以上线段中选出你认为需要测量的数据,把表示数据的小写字母填写在“测量数据”一栏.(2)根据()中选择的数据,写出求的一种三角函数值的推导过程.(3)假设,,,根据()中的推导结果,利用计算器求出的度数,你选择的按键顺序为________.【答案】(1),,,;(2),推导见解析;(3).【解析】【分析】()根据题意选择需要的数据即可;()过点作于点,可得,得到,即得,得到,再根据正弦的定义即可求解;()根据()的结果即可求解;本题考查了解直角三角形,相似三角形的的判定和性质,正确作出辅助线是解题的关键.【小问1详解】解:需要的数据为:,,,;【小问2详解】解:过点作于点,则,∵,∴,∴∴,即∴,∴;【小问3详解】解:∵,∴按键顺序为,故答案为:.20.感悟如图1,在中,点,在边上,,.求证:.应用(1)如图2,用直尺和圆规在直线上取点,点(点在点的左侧),使得,且(不写作法,保留作图痕迹);(2)如图3,用直尺和圆规在直线上取一点,在直线上取一点,使得,且(不写作法,保留作图痕迹).【答案】见解析【解析】【分析】本题主要考查全等三角形的判定及性质、尺规作图:证明,即可求得;应用(1):以点为圆心,以长度为半径作圆,交直线于一点,该点即为点,以点为圆心,以长度为半径作圆,交直线于一点,该点即为点,连接,;应用(2):以点为圆心,以长为半径作圆,交的延长线于一点,该点即为点,以点为圆心,以长为半径作圆,交直线于一点,该点即为点,连接.【详解】∵,∴.在和中∴.∴.应用(1):以点为圆心,以长度为半径作圆,交直线于一点,该点即为点,以点为圆心,以长度为半径作圆,交直线于一点,该点即为点,连接,,图形如图所示.应用(2):以点为圆心,以长为半径作圆,交的延长线于一点,该点即为点,以点为圆心,以长为半径作圆,交直线于一点,该点即为点,连接,图形如图所示.21.定义我们把数轴上表示数a的点与原点的距离叫做数a的绝对值.数轴上表示数a,b的点A,B之间的距离.特别的,当时,表示数a的点与原点的距离等于.当时,表示数a的点与原点的距离等于.应用如图,在数轴上,动点A从表示的点出发,以1个单位/秒的速度沿着数轴的正方向运动.同时,动点B从表示12的点出发,以2个单位/秒的速度沿着数轴的负方向运动.(1)经过多长时间,点A,B之间的距离等于3个单位长度?(2)求点A,B到原点距离之和的最小值.【答案】(1)过4秒或6秒(2)3【解析】【分析】本题考查了一元一次方程的应用,不等式的性质,绝对值的意义等知识,解题的关键是:(1)设经过x秒,则A表示的数为,B表示的数为,根据“点A,B之间的距离等于3个单位长度”列方程求解即可;(2)先求出点A,B到原点距离之和为,然后分,,三种情况讨论,利用绝对值的意义,不等式的性质求解即可.【小问1详解】解:设经过x秒,则A表示的数为,B表示的数为,根据题意,得,解得或6,答,经过4秒或6秒,点A,B之间的距离等于3个单位长度;【小问2详解】解:由(1)知:点A,B到原点距离之和为,当时,,∵,∴,即,当时,,∵,∴,即,当时,,∵,∴,即,综上,,∴点A,B到原点距离之和的最小值为3.22.如图,已知是的直径,点C,D在上,且.点E是线段延长线上一点,连接并延长交射线于点F.的平分线交射线于点H,.(1)求证:是切线;(2)若,,求的长.【答案】(1)见解析(2)【解析】【分析】本题考查切线的判定,勾股定理,相似三角形的判定和性质,圆周角定理,根据角平分线的定义得到是解题的关键.(1)连接,根据圆周角定理得到,即可得到,然后根据角平分线的定义得到,然后得到即可证明切线;(2)设的半径为,根据,可以求出,然后根据,即可得到结果.【小问1详解】证明:连接,则,又∵,∴,∴,∴,∴,∴,∵平分,∴,∴,∴,又∵是半径,∴是的切线;【小问2详解】解:设的半径为,则,∵,即,解得,∴,,又∵∴,∴,即,解得.23.如图,在菱形中,,,为对角线上一动点,以为一边作,交射线于点,连接.点从点出发,沿方向以每秒的速度运动至点处停止.设的面积为,点的运动时间为秒.(1)求证:;(2)求与的函数表达式,并写出自变量的取值范围;(3)求为何值时,线段长度最短.【答案】(1)证明见解析;(2);(3).【解析】【分析】()设与相交于点,证明,可得,,利用三角形外角性质可得,即得,即可求证;()过点作于,解直角三角形得到,,可得,由等腰三角形三线合一可得,即可由三角形面积公式得到与的函数表达式,最后由,可得自变量的取值范围;()证明为等边三角形,可得,可知线段的长度最短,即的长度最短,当时,取最短,又由菱形的性质可得为等边三角形,利用三线合一求出即可求解;本题考查了菱形的性质,全等三角形的判定和性质,三角形的外角性质,解直角三角形,求二次函数解析式,等腰三角形的性质,等边三角形的判定和性质,垂线段最短,掌握菱形的性质及等边三角形的判定和性质是解题的关键.【小问1详解】证明:设与相交于点,∵四边形为菱形,∴,,,∵在和中,,∴,∴,,∵,又∵,∴,∴,∴;【小问2详解】解:过点作于,则,∵,∴,∵四边形为菱形,,∴,,即,∵,∴,,∴,∴,∴,∴,∴;【小问3详解】解:∵,,∴,∵,∴为等边三角形,∴,∴,∴线段的长度最短,即的长度最短,当时,取最短,如图,∵四边形是菱形,∴,∵,∴为等边三角形,∴,∵,∴,∴,∴当时,线段的长度最短.24.已知抛物线与x轴交点的坐标分别为,,且.(1)若抛物线与x轴交点的坐标分别为,,且.试判断下列每组数据的大小(填写、或):①________;②________;③________.(2)若,,求b的取值范围;(3)当时,最大值与最小值的差为,求b的值.【答案】(1);;;(2)(3)b的值为或或或.【解析】【分析】本题考查根与系数的关系,二次函数图像与性质,不等式性质,二次函数最值情况,解题的关键在于熟练掌握二次函数图像与性质.(1)根据根与系数关系得到,以及,即可判断①,利用二次函数的图像与性质得到,进而得到,利用不等式性质变形,即可判断②③.(2)根据题意得到,结合进行求解,即可解题;(3)根据题意得到抛物线顶点坐标为,对称轴为;当时,,当时,,由最大值与最小值的差为,分以下情况①当在取得最大值,在取得最小值时,②当在取得最大值,在顶点取得最小值时,③当在取得最大值,在顶点取得最小值时,建立等式求解,即可解题.【小问1详解】解:与x轴交点的坐标分别为,,且,,且抛物线开口向上,与x轴交点的坐标分别为,,且.即向上平移1个单位,,且,①;,,即②;,即③.故答案为;;;;【小问2详解】解:,,,,;【小问3详解】解:抛物线顶点坐标为,对称轴为;当时,,当时,,①当在取得最大值,在取得最小值时,有,解得;②当在取得最大值,在顶点取得最小值时,有,解得(舍去)或,③当在取得最大值,在顶点取得最小值时,有,解得或;综上所述,b值为或或或.。

2024年山东威海中考数学真题及答案

2024年山东威海中考数学真题及答案

2024年山东威海中考数学真题及答案注意事项:1.本试卷共6页,共120分.考试时间120分钟.考试结束后,将本试卷和答题卡一并交回.2.答题前,请务必用0.5毫米黑色签字笔将自己的姓名、考生号、座号填写在答题卡和试卷规定的位置上.3.所有的试题都必须在专用的“答题卡”上作答.写在试卷上或答题卡指定区域以外的答案一律无效.....................4.选择题用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号、作图题用2B 铅笔(加黑加粗,描写清楚)或0.5毫米的黑色签字笔作答.其它题目用0.5毫米的黑色签字笔作答.如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液.......、.胶带纸...、.修正带....5.不要求保留精确度的题目,计算结果保留准确值.一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个是正确的.每小题选对得3分,选错、不选或多选,均不得分)1.一批食品,标准质量为每袋454g .现随机抽取4个样品进行检测,把超过标准质量的克数用正数表示,不足的克数用负数表示.那么,最接近标准质量的是()A.7+ B.5- C.3- D.102.据央视网2023年10月11日消息,中国科学技术大学中国科学院量子创新研究院与上海微系统所、国家并行计算机工程技术研究中心合作,成功构建了255个光子的量子计算原型机“九章三号”,再度刷新了“九章三号”处理高斯玻色取样的速度比上一代“九章二号”提升一百万倍,在百万分之一秒时间内所处理的最高复杂度的样本,需要当前最强的超级计算机花费超过二百亿年的时间.将“百万分之一”用科学记数法表示为()A.5110-⨯ B.6110-⨯ C.7110-⨯ D.8110-⨯3.下列各数中,最小的数是()A.2- B.()2-- C.12-D.4.下列运算正确的是()A.5510x x x +=B.21m m n n n÷⋅=C.624a a a ÷= D.()325a a -=-5.下列几何体都是由四个大小相同的小正方体搭成的.其中主视图、左视图和俯视图完全相同的是()A.B.C.D.6.如图,在扇形AOB 中,90AOB ∠=︒,点C 是AO 的中点.过点C 作CE AO ⊥交 AB 于点E ,过点E 作ED OB ⊥,垂足为点D .在扇形内随机选取一点P ,则点P 落在阴影部分的概率是()A.14B.13C.12D.237.定义新运算:①在平面直角坐标系中,{},a b 表示动点从原点出发,沿着x 轴正方向(0a ≥)或负方向(0a <).平移a 个单位长度,再沿着y 轴正方向(0b ≥)或负方向(0b <)平移b 个单位长度.例如,动点从原点出发,沿着x 轴负方向平移2个单位长度,再沿着y 轴正方向平移1个单位长度,记作{}2,1-.②加法运算法则:{}{}{},,,a b c d a c b d +=++,其中a ,b ,c ,d 为实数.若{}{}{}3,5,1,2m n +=-,则下列结论正确的是()A.2m =,7n =B.4m =-,3n =-C.4m =,3n = D.4m =-,3n =8.《九章算术》是我国古老的数学经典著作,书中提到这样一道题目:以绳测井.若将绳三折测之,绳多四尺;若将绳四折测之,绳多一尺.绳长、井深各几何?题目大意是:用绳子测量水井的深度.如果将绳子折成三等份,一份绳长比井深多4尺;如果将绳子折成四等份,一份绳长比井深多1尺.绳长、井深各是多少尺?若设绳长x 尺,井深y 尺,则符合题意的方程组是()A .3441x y x y -=⎧⎨-=⎩ B.3441x y x y+=⎧⎨+=⎩C.4314xy x y ⎧-=⎪⎪⎨⎪-=⎪⎩ D.4314xy x y ⎧+=⎪⎪⎨⎪+=⎪⎩9.如图,在ABCD Y 中,对角线AC ,BD 交于点O ,点E 在BC 上,点F 在CD 上,连接AE ,AF ,EF ,EF 交AC 于点G .下列结论错误的是()A.若CE ADCF AB=,则EF BD ∥B.若AE BC ⊥,AF CD ⊥,AE AF =,则EF BD ∥C .若EF BD ∥,CE CF =,则EAC FAC∠=∠D .若AB AD =,AE AF =,则EF BD∥10.同一条公路连接A ,B ,C 三地,B 地在A ,C 两地之间.甲、乙两车分别从A 地、B 地同时出发前往C 地.甲车速度始终保持不变,乙车中途休息一段时间,继续行驶.下图表示甲、乙两车之间的距离y (km )与时间x (h )的函数关系.下列结论正确的是()A.甲车行驶8h 3与乙车相遇 B.A ,C 两地相距220km C.甲车的速度是70km /hD.乙车中途休息36分钟二、填空题(本大题共6小题,每小题3分,共18分.只要求填出最后结果)11.=________.12.因式分解:()()241x x +++=________.13.如图,在正六边形ABCDEF 中,AH FG ∥,BI AH ⊥,垂足为点I .若20EFG ∠=︒,则ABI ∠=________.14.计算:2422x x x+=--________.15.如图,在平面直角坐标系中,直线()10y ax b a =+≠与双曲线()20ky k x=≠交于点()1,A m -,()2,1B -.则满足12y y ≤的x 的取值范围______.16.将一张矩形纸片(四边形ABCD )按如图所示的方式对折,使点C 落在AB 上的点C '处,折痕为MN ,点D 落在点D '处,C D ''交AD 于点E .若3BM =,4BC '=,3AC '=,则DN =________.三、解答题(本大题共8小题,共72分)17.某公司为节能环保,安装了一批A 型节能灯,一年用电16000千瓦·时.后购进一批相同数量的B 型节能灯,一年用电9600千瓦·时.一盏A 型节能灯每年的用电量比一盏B 型节能灯每年用电量的2倍少32千瓦·时.求一盏A 型节能灯每年的用电量.18.为增强学生体质,某校在八年级男生中试行“每日锻炼,每月测试”的引体向上训练活动,设定6个及以上为合格.体育组为了解一学期的训练效果,随机抽查了20名男生2至6月份的测试成绩.其中,2月份测试成绩如表1,6月份测试成绩如图1(尚不完整).整理本学期测试数据得到表2和图2(尚不完整).2月份测试成绩统计表个0136810数人484121数表1本学期测试成绩统计表请根据图表中的信息,解答下列问题:(1)将图1和图2中的统计图补充完整,并直接写出a ,b ,c 的值;(2)从多角度分析本次引体向上训练活动的效果;(3)若将此活动在邻校八年级推广,该校八年级男生按400人计算,以随机抽查的20名男生训练成绩为样本,估算经过一学期的引体向上训练,可达到合格水平的男生人数.19.某校九年级学生开展利用三角函数解决实际问题的综合与实践活动,活动之一是测量某护堤石坝与地平面的倾斜角.测量报告如下表(尚不完整)(1)设AB a =,BC b =,AC c =,CE d =,DE e =,CD f =,BE g =,AD h =,请根据表中的测量示意图,从以上线段中选出你认为需要测量的数据,把表示数据的小写字母填写在“测量数据”一栏.(2)根据(1)中选择的数据,写出求α∠的一种三角函数值的推导过程.(3)假设sin 0.86α≈,cos 0.52α≈,tan 1.66α≈,根据(2)中的推导结果,利用计算器求出α∠的度数,你选择的按键顺序为________.20.感悟如图1,在ABE 中,点C ,D 在边BE 上,AB AE =,BC DE =.求证:BAC EAD ∠=∠.应用(1)如图2,用直尺和圆规在直线BC 上取点D ,点E (点D 在点E 的左侧),使得EAD BAC ∠=∠,且DE BC =(不写作法,保留作图痕迹);(2)如图3,用直尺和圆规在直线AC 上取一点D ,在直线BC 上取一点E ,使得CDE BAC ∠=∠,且DE AB =(不写作法,保留作图痕迹).21.定义我们把数轴上表示数a 的点与原点的距离叫做数a 的绝对值.数轴上表示数a ,b 的点A ,B 之间的距离()AB a b a b =-≥.特别的,当0a ≥时,表示数a 的点与原点的距离等于0a -.当a<0时,表示数a 的点与原点的距离等于0a -.应用如图,在数轴上,动点A 从表示3-的点出发,以1个单位/秒的速度沿着数轴的正方向运动.同时,动点B从表示12的点出发,以2个单位/秒的速度沿着数轴的负方向运动.(1)经过多长时间,点A ,B 之间的距离等于3个单位长度?(2)求点A ,B 到原点距离之和的最小值.22.如图,已知AB 是O 的直径,点C ,D 在O 上,且BC CD =.点E 是线段AB 延长线上一点,连接EC 并延长交射线AD 于点F .FEG ∠的平分线EH 交射线AC 于点H ,45H ∠=︒.(1)求证:EF 是O 的切线;(2)若2BE =,4CE =,求AF 的长.23.如图,在菱形ABCD 中,10cm AB =,60ABC ∠=︒,E 为对角线AC 上一动点,以DE 为一边作60DEF ∠=︒,EF 交射线BC 于点F ,连接BE DF ,.点E 从点C 出发,沿CA 方向以每秒2cm 的速度运动至点A 处停止.设BEF △的面积为2cm y ,点E 的运动时间为x 秒.(1)求证:BE EF =;(2)求y 与x 的函数表达式,并写出自变量x 的取值范围;(3)求x 为何值时,线段DF 的长度最短.24.已知抛物线()20y x bx c b =++<与x 轴交点的坐标分别为()1,0x ,()2,0x ,且12x x <.(1)若抛物线()2110y x bx c b =+++<与x 轴交点的坐标分别为()3,0x ,()4,0x ,且34x x <.试判断下列每组数据的大小(填写<、=或>):①12x x +________34x x +;②13x x -________24x x -;③23x x +________14x x +.(2)若11x =,223x <<,求b 的取值范围;(3)当01x ≤≤时,()20y x bx c b =++<最大值与最小值的差为916,求b 的值.参考答案注意事项:1.本试卷共6页,共120分.考试时间120分钟.考试结束后,将本试卷和答题卡一并交回.2.答题前,请务必用0.5毫米黑色签字笔将自己的姓名、考生号、座号填写在答题卡和试卷规定的位置上.3.所有的试题都必须在专用的“答题卡”上作答.写在试卷上或答题卡指定区域以外的答案一律无效.....................4.选择题用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号、作图题用2B铅笔(加黑加粗,描写清楚)或0.5毫米的黑色签字笔作答.其它题目用0.5毫米的黑色签字笔作答.如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液...、.修正带...........、.胶带纸5.不要求保留精确度的题目,计算结果保留准确值.一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个是正确的.每小题选对得3分,选错、不选或多选,均不得分)【1题答案】【答案】C【2题答案】【答案】B【3题答案】【答案】A【4题答案】【答案】C【5题答案】【答案】D【6题答案】【答案】B【7题答案】【答案】B【8题答案】【答案】C【9题答案】【答案】D【10题答案】【答案】A二、填空题(本大题共6小题,每小题3分,共18分.只要求填出最后结果)【11题答案】【答案】-【12题答案】【答案】()23x +【13题答案】【答案】50︒##50度【14题答案】【答案】2x --##2x--【15题答案】【答案】10x -≤<或2x ≥【16题答案】【答案】32三、解答题(本大题共8小题,共72分)【17题答案】【答案】160千瓦·时【18题答案】【答案】(1)见解析,1, 5.65,55%a b c ===(2)见解析(3)220【19题答案】【答案】(1)AB a =,AC c =,DE e =,CD f =;(2)sin ec afα=,推导见解析;(3)①.【20题答案】【答案】见解析【21题答案】【答案】(1)过4秒或6秒(2)3【22题答案】【答案】(1)见解析(2)245AF =【23题答案】【答案】(1)证明见解析;(2)()205y x =+<≤;(3)52x =.【24题答案】【答案】(1)=;<;>;(2)43b -<<-(3)b 的值为32-或12-.。

威海中考数学及答案(word版)

威海中考数学及答案(word版)

2012年中考数学试题(山东威海卷)(本试卷满分120分,考试时间120分钟)第Ⅰ卷 (选择题 共36分)一、选择题:(本大题共12小题,每小题3分,共36分) 1. 64的立方根是【 】A.8B.±8C.4D.±4 【答案】C 。

2. 2012年是威海市实施校安工程4年规划的收官年。

截止4月底,全市已开工项目39个,投入资金4999万元。

请将4999万用科学计数法表示【 】(保留两个有效数字) A.4999×104 B. 4.999×107 C. 4.9×107 D. 5.0×107 【答案】D 。

3.如图,a ∥b ,点A 在直线a 上,点C 在直线b 上,∠BAC=900,AB=AC 。

若∠1=200,则∠2的度数为【 】A.250B.650C.700D.750 【答案】B 。

4.下列运算正确的是【 】A.326a a a ⋅=B. 5510a +a a =C. 23a a a -÷=D. ()223a 9a -=- 【答案】C 。

5.如图所示的零件的左视图是【 】【答案】C 。

6.函数1y=x 3-的自变量x 的取值范围是【 】A. x >3B. x≥3C. x≠3D. x <-3 【答案】A 。

7.某外贸公司要出口一批食品罐头,标准质量为每听454克,现抽取10听样品进行检测,它们的质量与标准质量的差值(单位:克)如下:-10,+5,0,+5,0,0,-5,0,+5,+10。

则这10听罐头质量的平均数及众数为【 】A.454,454B.455,454C.454,459D.455,0 【答案】B 。

8.化简22x 1+x 93x--的结果是【 】 A. 1x 3- B. 1x+3 C. 13x- D. 23x+3x 9-【答案】B 。

9.下列选项中,阴影部分面积最小的是【 】【答案】C 。

10.如图,在ABCD 中,AE ,CF 分别是∠BAD 和∠BCD 的平分线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C EF2012年威海中考数学复习试卷及答案姓名一、填空题:1.361的平方根是 ,64的立方根是 。

2在π,31,—3,0,12345,2003,2—1这些数中,是无理数的为3.已知函数y=xk的图象经过点(2,—6),则函数y=kx 的图象不经过第 象限,函数的图象在每一个象限内从左到右 4.在函数y=12+x x 中,自变量x 的取值范围是5在平面直角坐标系中,点P (3,—4)关于y 轴的对称点的坐标是 6. 如图,D 是AB 的中点,DE ∥BC,DE 交AC 于E,DE :BC= , △ADE 的面积:梯形DBCE 的面积=7.如果菱形的两条对角线的长分别是2和238.如图,D 为AB 上一点,只要具备一个条件: ,就可使△ACD ∽△9.2)1x -(+2)2(+x (x>1)化简的结果是 10、盒字里装有10棵水果糖、2棵奶糖、3颗巧克力糖,随手拿出一棵,恰好是水果糖的机会是 ,恰好是巧克力糖的机会是 。

11则y (千克)之间的函数关系式为 二、选择题:1.下列计算正确的是( ) (A )6=3 (B)9=3 (C) 9=±3 (D)39=32、下列是同类二次根式的是( ) (A )2和12 (B )2和21(C )3和30 (D )1—a 和1+a 3、某人沿坡度i=1:3的桥向上走50米,这时,他离地面的高度是( )米(A )20 (B )24 (C )253 ( D ) 254.已知一次函数y=(4—2m)x+(m+1)的图象经过一、三、四象限,则m 的取值范围是( )(A ) m >—1 (B ) m <—1或m >2 (C ) m < 2 ( D ) —1 < m < 2 5、在下列函数中,当x (x > 0) 增大时,y 反而减小的函数是( )(A y = 32x (B ) y= —x 8 (C )y= 5 x (D )y = x36.如图,DE ∥BC ,FE ∥AC ,下列比例式成立的是 (A )DB AB = BC DE (B )DB AD =AC AE (C )FC BF =EC AE (D )AC DF =BCDE7、如图,在矩形ABCD 中,DE ⊥AC 于E ,设∠ADE=a,且cos a=3, AB=4,则 AD 的长为( )(A )4.5 ( B )5 (C )5.2 (D )68、样本101,98,102,100,99的标准差是( ) (A )2 (B )0 (C )1 (D )29.在△ABC 中,AB=24,AC=18,D 为 AC 上一点,AD=12,在AB 上 取一点E ,使得以A 、D 、E 为顶点的三角形与△ABC 相似,则AE 的长应为( )(A )16 (B )14 (C )16或 14 (D )16或910、张老师有4件不同的衬衣和4条不同花色的领带,他要把领带和衬衣搭配,可以有( )种不同的配法(A)12 (B)16 (C)8三 解答下列各题: 1、 计算:32—(48—21×6)2、如图,△ABC 在平面直角坐标系中:(1)作△ABC 关于y (2)以点A 为位似中心,将△ABC 放大到原来的33、小莉有红色、白色、蓝色上衣各一件,黄色、黑色长裤各一条。

(1)用树状图分析小莉穿法的搭配情况; (2)小莉共有多少种不同的穿法;(3)小莉上衣穿红色,长裤穿黑色的机会是多少?4、如图 ,两建筑物的水平距离BC 为24米,从点A 测得点D 的俯角a=30°,测得点C 的俯角 =60°,求AB 和CD 两建筑物的高。

A B5、若直线()0≠+=k b kx y 与双曲线()0≠=m xmy 都经过点()1,4-A ,且点()1,0B 又在直线上。

试求直线和双曲线的解析式。

6、为防水患,在漓江上游修筑了防洪堤,其横截面为一梯形(如图所示).堤的上底宽AD 和提高DF 都是6米,其中∠B =∠CDF .(1)求证:△ABE ∽△CDF ;(2)如果tanB =2,求堤的下底BC 的长.四、应用题:1、如图,某货船以20海里/时的速度将一批重要物资由A 处运往正西方向的B 处,经16小时的航行到达,到达后必须立即卸货.此时,接到气象部门通知,一台风中心正以40海里/时的速度由A 向北偏西60°方向移动.距台风中心200海里的圆形区域(包括边界)均会受到影响. (1)问:B 处是否会受到台风的影响?请说明理由.(2)为避免受到台风的影响,该船应在多少小时内卸完货物?2.有一种螃蟹,从海上捕获后不放养最多只能存活两天,如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去,假设放养期内蟹的个体重量基本保持不变.现有一经销商,按市场价收购了这种活蟹1000千克放养在塘内,此时市场价为每千克30元.据测算,此后每千克活蟹的市场价每天可上升1元,但是,放养一天需各种费用支出400元,且平均每天还有10千克蟹死去,假定死蟹均于当天售出,售价都是每千克20元.(1)设x 天后每千克活蟹的市场价为P 元,写出P 关于x 的函数关系式;(2)如果放养x 天后将活蟹一次性出售,并记1000千克蟹的销售总额为Q 元,写Q 出关于x 的函数关系式;A B C D E 12A B C a A C D EA B C D EF 初中数学“能力提高”培训题(12)(综合2) 姓名一、填空题:1、(—3)2的算术平方根为 ,—64的立方根为 。

2、化简:221)(- = , 1236= 。

3、已知两个相似三角形的面积比为9:4,则它们的相似比为 ,其中一个周长为36,则另一个为 。

4、函数23-+=x x y 的自变量x 的取值范围是 。

5、如图,若∠1=∠2=∠B ,则此图中有 组相似三角形,分别是 。

6、如图,已知AD 是Rt △ABC 斜边BC 上的高,且AB=6,,BC=10,则AC= ,sin α=7、如图,△ABC 中,DE ∥BC ,已知,52=BC DE 则=ECAE,S ⊿ADE :S 四边形DBCE = 8、tan50°×tan α=1,则α= , 4sin 260°=9、一断公路路面,坡度i=1:3,这段路面长100米,那么公路升高 米。

10、边长为2的等边三角形的面积是11、直线y=-x+m 与直线y=4x —1交于x 轴上一点,则m=12、如图,小正方形的边长是1,把图形剪开重新拼成最大的正方形后,正方形的边长是 13、如图,在平行四边形ABCD 中,AE=ED ,则S △ACE :S △BFC = 14、五个数1,2,4,5,a 的平均数是3,则a= ,这五个数的方差是 .15、 某市出租车计费标准如下:行程不超过3千米收费8元,超过3千米的部分按每千米1.60元计费,车费y 和行使路程x 之间的函数关系式是 二 选择题(每题3分,共30分)1、下列各式中,最简二次根式是( )A )a 27B )24a +C )a1D )b a 23 2、下列各式的计算中,成立的是( )A )2+5=25B )45—33=1C )22y x +=x+y D 52045=-A BD E A 123、根据下列条件,能判断 △ABC ∽△DEF 的是( ) A )∠A=52°,∠B=58°;∠E=58°,∠F=80° B )∠C=102°,∠E=102°,BC AC =DFDEC )AB=1,AC=1.5,BC=2;EF=8,DE=10,FD=16D )∠C=∠F=Rt ∠ ,AC=5, BC=13, DF=10, EF=26.4、如果点P (2m+1,—2)在第四象限内,那么的取值范围是( )A) m > —21 B) m ≥—21 C) m <— 21 D) m ≤ —21 5、下列函数中,在全体实数范围内,y 随x 的增大而增大的是( ) A )y=2x 2B )y= —x2C )y=-2xD )y= -2+x 6、一多边形面积扩大到原来的2倍,且与原多边形相似,则其周长是原来的( )倍A )2B )2C )4D )21 7、“早穿皮袄午穿纱”是对一天中温度的最佳写照,它的含义是一天中的( ) A )最高气温 B )最低温度 C )平均温度 D )温度极差8、在Rt △ABC 中,∠C=90°,下列式子不一定成立的是( )A) tanA=cot B B) tanA ×cotB=1 C)sin 2 A + cos 2A = 1 D) sin 2A + sin 2B = 19、1口袋中有一个红球和2个白球,搅匀后从中摸出第一个球,然后放回口袋,搅匀后摸出第二个球,两次摸的球都是红球的机会是( )A)91 B) 61 C) 41 D) 31 三 解答题: 1、计算:122 +18 —421(4分)2、在Rt △ABC 中,∠C=Rt ∠,c=42,b=26,求边a,及∠A 、∠B 。

3、某班全体同学在“献爱心”活动中都捐了图书,捐书的情况如下表:根据题目中所给的条件回答下列问题:(1)该班的学生共____________名; (2)全班一共捐了___________册图书;(3)若该班所捐图书拟按右图所示比例分送给山区学校,本市兄弟学校和本校其它班级,则送给山区学校的书比送给本市兄弟学校的书多________册。

4、如图,已知∠1=∠2=∠3,则△ABC 与△ADE 相似吗?为什么?该班所捐图书分送方案图A O-1x 125、如图,一个正比例函数的图像和一个一次函数的图像交于点 A (—1,2),且△ABO 的面积为5,求这两个函数的解析式。

6、城市规划期间,欲拆除一电线杆AB (如图)已知距电线杆AB 水平距离14米的D 处有一大坝,背水坡CD 的坡度i=2:1,坝高CF 为2米.在坝顶C 处测得杆顶A 的仰角为30,D 、E 之间是宽为2米的人行道.试问:在拆除电线杆AB 时,为确保行人安全,是否需要将此人行道封上?请说明理由(在地面上,以点B 为圆心、以AB 为半径的圆形区域为危险区域) .7、辽南素以“苹果之乡”著称,某乡组织20辆汽车装运三种苹果42吨到外地销售。

按规定每辆车只装同一种苹果,且必须装满,每种苹果不少于2车。

(1)设用x 辆车装运A 种苹果,用y 辆车装运B 种苹果,根据下表提供的信息求y 与x 之间的函数关系式,并求x 的取值范围;(2)设此次外销活动的利润为W (百元),求W 与x 的函数关系式以及最大利润,并安排相应的车辆分配方案。

初中数学“能力提高”培训题(13)(综合3) 姓名一、填空题 1、若m 2的算术平方根是2,则m=________ ;2、若|-a+5b+1|+224b 4ab -a =0,则a=________,b=________3、梯形的上底长为8cm ,下底长为10cm ,则中位线长为________;4、同一时刻,一竿的高为2.5米,影长为1米,某旗杆的影长为6米,则旗杆的高为________。

相关文档
最新文档