东北大学 数值分析 07(研)数值分析

合集下载

东北大学数值分析实验报告

东北大学数值分析实验报告

数值分析实验班级 姓名 学号实验环境: MATLAB实验一 解线性方程组的迭代法(1)一、实验题目 对以下方程组分别采用Jacobi 迭代法, Gaaus-Seidel 迭代法求解和SOR 迭代法求解。

(2)线性方程组⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡--------------------------13682438141202913726422123417911101610352431205362177586832337616244911315120130123122400105635680000121324⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡10987654321x x x x x x x x x x =⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-2119381346323125 (2)对称正定线性方程组⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----------------------1924336021411035204111443343104221812334161206538114140231212200420424⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡87654321x x x x x x x x =⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡---4515221123660(3)三对角线性方程组⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡------------------4100000000141000000001410000000014100000000141000000001410000000014100000000141000000001410000000014⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡10987654321x x x x x x x x x x =⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----5541412621357 二、实验要求(1)应用迭代法求线性方程组, 并与直接法作比较。

《数值分析》课程教学大纲

《数值分析》课程教学大纲

《数值分析》课程教学大纲课程编号:07054352课程名称:数值分析英文名称:Numerical Analysis课程类型:学科基础课程要求:必修学时/学分:48/3 (讲课学时:40 上机学时:8)适用专业:计算机科学与技术;软件工程一、课程性质与任务“数值分析”是计算机科学与技术、软件工程等相关专业学生的学科基础课,也是其它理、工科专业本科生及研究生的必修或选修课。

数值分析是研究各种数学问题在计算机上通过数值运算,得到数值解答的方法和理论。

随着计算机系统能力的提高和新型数值软件的不断开发,无论在高科技领域还是在传统学科领域,数值分析的理论和方法的作用和影响巨大,是科学工作者和工程技术人员必备的基础知识和工具。

课程的任务是使学生能了解数值分析的基本概念,熟悉常用数值方法的构造原理,了解数值算法复杂性、误差与收敛性分析的基本方法,了解重要数值算法的软件实现过程,使学生系统掌握数值分析的基本概念和分析问题、解决问题的基本方法,为掌握更复杂的现代计算方法打好基础。

内容包括数值计算的基本方法、线性和非线性方程组解法、插值法、数值积分法及微分方程的数值解法。

二、课程与其他课程的联系先修课程:高等数学,线性代数,C语言程序设计,计算基础。

后续课程:人工智能,数字图像处理技术,大数据分析及应用。

三、课程教学目标1.学习使用计算机进行数值计算的基础知识和基本理论知识,能够分辨、选用合适的数值方法解决工程问题。

(支撑毕业能力要求1和2)2. 能掌握常用数值计算方法的构造原理,根据问题设计和综合运用算法设计问题解决方案。

(支撑毕业能力要求1和2)3. 能运用数值算法复杂性、误差与收敛性分析的基本方法初步进行算法分析。

4. 能用计算机语言实现典型的数值计算算法,得到实验技能的基本训练,并具有利用计算机解决常见数学问题的能力;(支撑毕业能力要求4)5.能通过查询阅读文献资料,了解数值分析的前沿和新发展动向,了解数值分析算法原理应用的典型工程领域。

东北大学数值分析考试题解析

东北大学数值分析考试题解析

数值分析提供了许多实用的算法, 这些算法可以解决各种实际问题, 如线性方程组、微分方程、积分 方程等。这些算法在科学计算、 工程仿真、数据分析等领域都有 广泛的应用。
数值分析在解决实际问题时具有 高效、精确和可靠的特点。通过 数值分析,我们可以快速地得到 问题的近似解,并且可以通过误 差分析来控制解的精度。这使得 数值分析成为解决实际问题的重 要工具。
详细描述
数值分析是一门应用广泛的学科,它通过数学方法将实际问题转 化为可计算的数学模型,并寻求高效的数值计算方法来求解这些 问题。数值分析在科学计算、工程、经济、金融等领域中发挥着 重要的作用,为实际问题的解决提供了有效的工具。
数值分析的应用领域
总结词
数值分析的应用领域非常广泛,包括科学计算、工程、经济、金融等。
非线性方程组的求解精度和速 度取决于所选择的方法和初值 条件。
非线性方程组的求解在科学计 算、工程技术和计算机图形学 等领域有广泛应用。
最优化方法
最优化方法是寻找使某个 函数达到最小或最大的参 数值的方法。
最优化方法的效率和精度 取决于所选择的算法和初 始参数值。
常用的最优化方法包括梯 度下降法、牛顿法和拟牛 顿法等。
数值分析在人工智能领域的应用
总结词
数值分析在人工智能领域的应用关键,涉及深度学习、神经 网络等领域。
详细描述
数值分析为人工智能提供了理论基础和算法支持,特别是在 深度学习和神经网络方面。通过数值分析的方法,可以优化 神经网络的参数和结构,提高人工智能的性能和准确性。
数值分析在金融领域的应用
总结词
常见的迭代法有雅可比迭代法 、高斯-赛德尔迭代法等。
牛顿法
牛顿法是一种基于泰勒级数 的迭代方法,用于求解非线 性方程的根。

东北大学数值分析答案

东北大学数值分析答案

第一周解答:π=0.31415926×10M=1|π-3.141|=0.0005926<1/2 ×10m−n=0.5 ×101−n≤0.5×10−2所以n=3|π-3.142|=0.0004074<1/2 ×10m−n=0.5 ×101−n≤0.5×10−3所以n=4即3.141作为π的近似值具有3位有效数字3.142 有4位解答:√3=1.73205081…=0.173205081…M=1|√3−x|≤0.5×101−n|n=2时0.5×101−n=0.051.73205-x≤0.05x≥1.68205x=1.68205|√3−x|≤0.5×101−n|n=3时0.5×101−n=0.0051.73205-x≤0.005x≥1.72705x=1.72705解答:2256=2128×2128=264×264×2128=232×232×264×2128=216×216×232×264×2128=2×2×22×24×28×216×232×264×2128共计算8次乘法第二周解答:因为在n取一定位数时,1/n过于小导致系统计算为0.因此计算机求和在一定位数以后其余的数字都是0,结果为一常数解答:由于y0=28没有误差,可见误差是由√783引起的,设x=27.982σ=x-√783利用已知的递推算法,y n=y n−1−√783100和实际计算中的递推公式Y n=Y n−1−x/100(Y0=y0)两公式相减,e(Y n)=Y n−y n=Y n−1−y n−1−x−√783100e(Y n)= e(Y n−1)- σ/100此为绝对误差因为σ=x-√783数值恒定不变,因此该递推过程稳定解答:(1)原式=2x2(1−2x)(1−x)(2)e x 在x=0处的泰勒展开式可得: e x =1+x +12!x 2+⋯1n!x 2+R n (x) 所以1−e x x=x+12!x 2+⋯1n!x2x=1+12!x 2+⋯1n!x n−1第三周解答:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡61-12001-101-1131-11-301-101-11101112-2-211-11消元消元回代得解,;3,2,2321===x x x解答:1. 使用条件:当系数矩阵 A 的各阶顺序主子式非零时,顺序高斯消去法可以顺利进行;而一般只要系数矩阵 A 的行列式非零,列主元高斯消去法就可以顺利进行。

数值分析(07)矩阵的正交分解

数值分析(07)矩阵的正交分解
令单位阵I (1) R( k 1)( k 1),I ( 2) R( n k 1)( n k 1) , ( 对x ( 2)构造一个( n k 1)阶的初等阵H k2) , 使
H
(2) k
x
(2)
e
(k ) k 1
( 其中e1k ) (1, 0, , 0)T R n k 1 , 用前面介绍的方法 (2) 构造H k 。
U x y x i ei ( x1 , , xi i , , xn )T ,
有Hx y i ei
1 sign( x i ) 1
xi 0 xi 0
构造初等反射阵 UU T 1 T H I 2WW I 2 I UU T 2 U
解 : 3 sign( x3 ) x
2
4 0 4 1 3,因x3 2 0,
故取K 3 3 于是y 3e3 Ke3 (0, 0, 3, 0)T ,
U x y (2, 0, 5,1) , 3 ( 3 x3 ) 3(3 2) 15
数值分析
数值分析
function [H,y]=holder1(x) n=length(x); if x(1)<0 M=max(abs(x)); s=-s; if M==0, end; disp('M=0'); x(1)=s+x(1); return; p=s*x(1); else u=x; x=x/M; H=eye(n,n)-p\u*u'; end; y=zeros(n,1); s=norm(x); y(1)=-M*s;
1 T 1 2 2 其中 U U ( x1 ... ( xi i )2 xn ) 2 2 1 (2 xi i 2 i 2 ) i ( xi i ) 2

东北大学数值分析-总复习+习题

东北大学数值分析-总复习+习题
解 由2=b+c+1,5=6+2b+c,8=12+2b,可得
二、(13分)设函数(x)=x2-sinx-1 (1)试证方程(x)=0有唯一正根; (2)构造一种收敛的迭代格式xk+1=(xk),k=0,1,2,…计算精度为=10-2的近似根; (3)此迭代法的收敛阶是多少?说明之.
解 (1)因为0<x1时,(x)<0,x2时,(x)>0,所以(x)仅在(1,2)内有零点,而当1<x<2 时,(x)>0,故(x)单调.因此方程(x)=0有唯一正根,且在区间(1,2)内.
(1) xkp阶收敛于是指: (2) 若()0,则迭代法线性收敛.
lim xk1 C k xk p
4.会建立Newton迭代格式;知道Newton迭代法的优缺点.了解Newton迭代法的变形.
xk 1
xk
f (xk ) f (xk )
局部平方收敛.
五、矩阵特征值问题
1. 了解Gerschgorin圆盘定理, 会估计特征值. 2. 了解乘幂法、反幂法的思想及加速技巧. 3. 了解Jacobi方法的思想以及平面旋转矩阵的构造.
总复习
一、绪论
1.掌握绝对误差、绝对误差限、相对误差、相对误差限及有效数字的概念。掌握误差 限和有效数字之间的关系。会计算误差限和有效数字。
一般地,凡是由精确值经过四舍五入得到的近似值,其绝对误差限等于该近似值末位的 半个单位。
定义1 设数x是数x*的近似值,如果x的绝对误差限是它的某一数位的半个单位,并 且从x左起第一个非零数字到该数位共有n位,则称这n个数字为x的有效数字,也 称用x近 似x*时具有n位有效数字。
是不是一种向量范数_____. 是

数值分析第一章绪论20140907

数值分析第一章绪论20140907

I4 0.1035 I3 0.1268 I2 0.1709 I1 0.2642 I0 0.6321 可见,I0已精确到小数点后四位。
第一章练习题
习题1(第10页) 1-1,1-2,1-3,1-4
课间休息
实际 问题
数学 模型
数值计 算方法
程序 设计
计算机计算 求出结果
对数学模型建立数值计算方法,并对方法进行理论分 析,直到编程上机计算出结果,以及对结果的分析,这就 是数值分析研究的对象和任务。 如何评价不同算法的好坏呢? 一个好的算法应具有如下特点:
一个好的算法应具有如下特点: (1) 结构简单,易于计算机实现; (2) 理论上要保证方法的收敛性和数值稳定性;
(3) 计算效率高:计算速度快,节省存储量;
(4) 经过数值实验检验,证明行之有效。 我们在学习的过程中,要注意掌握数值方法 的基本原理和思想,要注意方法处理的技巧及其 与计算机的结合,要重视误差分析、收敛性和稳 定性的基本理论。 随着计算机的飞速发展,数值分析方法已深入到计算 物理、计算力学、计算化学、计算生物学、计算经济学等
利用分部积分法可得计算In的递推公式 In=1-nIn-1,n=1,2,… 由于,n=0时
In x e
1 0
n x 1
dx
I0 e
1 0
x 1
dx 1 e 0.632120558 ......
1
取I0具有四位有效数字的近似值I0≈0.6321,递推可得: I0 0.6321 I1 0.3679 I2 0.2642 I3 0.2074 I4 0.1704 I5 0.1480 I6 0.1120 I7 0.2160 I8 -0.7280 I9 7.5520
对两个相近的数相减,若找不到适当方法代替,只能

东北大学硕士研究生入学考试复试科目参考书

东北大学硕士研究生入学考试复试科目参考书
《管理心理学》李磊马华维主编南开大学出版社2006年1月第1版
120404社会保障
西方经济学
《现代西方经济学(宏观经济学)》宋承先著复旦大学出版社1997年以后各版均可
490100公共管理硕士
公共政策学
《公共政策学》娄成武主编东北大学出版社2003年版
070101基础数学
1、代数与几何2、分析与方程(两门选一)
1、《通信原理》第6版国防工业出版社
2、《高频电子线路》第三版张啸文主编高等教育出版社
081002信号与信息处理
1、数字信号处理50%;2、单片机原理50%
1、《数字信号处理教程》,程佩清编著,清华大学出版社,2001年,2、《单片机原理及接口技术》李朝青编著北京航空航天大学出版社简明修订版2001年
2、《单片机原理及接口技术》李朝青编著北京航空航天大学出版社简明修订版2001年
3、《单片机的C语言应用程序设计》(修订版)马忠梅、籍顺心、张凯、马岩主编北京航空航天大学出版社2003
080802电力系统及其自动化
综合知识(1、电路原理部分30%,2、微机原理部分30%,3、计算机控制系统部分40%)
《工程材料学》连法增东北大学出版社2005年1月
430106冶金工程
冶金学(2)
《冶金学》(钢铁冶金卷)朱苗勇冶金工业出版2005年《冶金学》(有色冶金部分)邱竹贤东北大学出2000年
080402测试计量技术及仪器
综合知识(1、自动化30%;2、单片机30%;3、逻辑与编程能力40%)
1、《过程控制仪表及控制系统》林德杰主编机械工业出版社2004
《近世代数》第二版扬子胥高等教育出版社2003年
《解析几何》第二版丘维声北京大学出版社1996年
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数值分析试题 2007.12一、简答下列各题:(每题4分,共20分)1.为了提高计算精度,求方程x 2-72x+1=0的根,应采用何种公式,为什么?2.设⎪⎪⎭⎫ ⎝⎛=2112A ,求)(A ρ和2)(A Cond 。

3.设⎪⎪⎪⎭⎫ ⎝⎛=131122321A ,求A 的LU 分解式。

4.问23221)2(x x x x ++=是不是3R 上的向量范数,为什么? 5.求数值积分公式⎰-≈ba ab a f dx x f ))(()(的截断误差R[ƒ]。

二、解答下列各题:(每题8分,共56分)1.已知线性方程组⎪⎩⎪⎨⎧=-+=-+=-+3532314321321321x x x x x x x x x ,问能用哪些方法求解?为什么?2.解线性方程组b Ax =的Gauss-Seidel 迭代法是否收敛?为什么?其中:⎪⎪⎪⎭⎫ ⎝⎛--=211111112A3.设]2,0[)(4C x f y ∈=,且0)0(,0)2(,2)1(,1)0(='===f f f f ,试求)(x f 的三次插值多项式)(3x H ,并写出余项)()()(33x H x f x R -=。

4.给定离散数据试求形如3bx a y +=的拟合曲线。

5.求区间[0,1]上权函数为x x =)(ρ的正交多项式)(0x p ,)(1x p 和)(2x p 。

6.确定求积系数321,,A A A ,使求积公式:⎰+++-≈31321)532()2()532()(f A f A f A dx x f具有尽可能高的代数精度,并问代数精度是多少?7. 利用2=n 的复化Simpson 公式计算计算定积分 ,并估计误差][f R 。

三、(12分)已知方程0cos 2=-x x , 1.证明此方程有唯一正根α;2.建立一个收敛的迭代格式,使对任意初值]1,0[0∈x 都收敛,说明收敛理由和收敛阶。

3.若取初值00=x ,用此迭代法求精度为510-=ε的近似根,需要迭代多少步? 四、(12分)已知求解常微分方程初值问题:⎩⎨⎧∈=='],[,)(),(b a x a y y x f y α的差分公式:⎪⎪⎪⎩⎪⎪⎪⎨⎧=++==++=+α0121211)32,32(),()3(4y hk y h x f k y x f k k k h y y n n n n n n 1.证明:此差分公式是二阶方法;2.用此差分公式求解初值问题1)0(,10=-='y y y 时,取步长h=0.25,所得数值解是否稳定,为什么?⎰10sin xdx数值分析试题(参考答案)一、1.应采用公式:1211221)13636(,13636---+==-+=x x x ,避免相近数相减。

2.A 的特征值为3,121==λλ,所以)(A ρ=3;2)(A Cond =3⨯1=1。

3.由⎪⎪⎪⎭⎫ ⎝⎛=131122321A ⎪⎪⎪⎭⎫ ⎝⎛----→2/92/11522321,故⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛-=2/95232112/11121A 。

4.不是,不满足非负性(如0)2,1,0(≠-=T x ,但0=x )。

5.⎰--=ba ab a f dx x f f R ))(()()(),(,2)()())((2b a a b f dx a x f bax ∈-'=-'=⎰ξξξ.二、1.由于系数矩阵各阶顺序主子式都不为零,所以可用顺序Gauss 消元法; 由于系数矩阵行列式不为零,也可以用列主元(全主元)Gauss 消元法; 由于系数矩阵各阶顺序主子式都不为零,所以可用直接三角分解法(LU ). 由于系数矩阵是严格对角占优矩阵,可用J-法,G-S 法和SOR(10≤<ω)法。

2.令021112=--λλλλλλ得:0)12(2=+λλ,所以G-S 迭代矩阵G 的特征值为:2/1,0321-===λλλ,于是12/1)(<=G ρ,所以G-S 迭代法收敛。

3.设002211003)()()()()(y x y x y x y x x H '+++=ψϕϕϕ)(2)(10x x ϕϕ+= 其中,)2)(1)(()(0--+=x x b ax x ϕ)2)(1)(23(4/1--+=x x x)2()(21-=x Cx x ϕ)2(2--=x x所以,)2(2)2)(1)(23(4/1)(23----+=x x x x x x H )2)(25(4/12-++-=x x x 〔或令)2)(()(23-++=x c bx ax x H ,用待定系数法求出。

〕余项为:)2,0(,)2)(1(!4)()()()(2)4(33∈--=-=x x x x x f x H x f x R ξξ 4.取310)(,1)(x x x ==ϕϕ,则有T T T f x )2,0,1,1(,)8,1,0,1()(,)1,1,1,1(10-=-==ϕϕ,正则方程组为⎩⎨⎧=+=+15668284b a b a ,拟合曲线:3322.006.05011503x x y -=+=。

5.区间[0,1]上x x =)(ρ的正交多项式:1)(0=x p ,32),(),()(1010200001-=-=-=⎰⎰x xdxdx x x p p p p x x x p ,)32()3/2()3/2()(12103110322-----=⎰⎰⎰⎰x dxx x dxx x xdx dxx x x p 103562+-=x x 。

6.令公式对f(x)=1,x,x 2精确成立,得2321=++A A A ,4)5/32(2)5/32(321=+++-A A A , 解得:98,95231===A A A3/26)5/32(4)5/32(32212=+++-A A A所以,公式为:)]5/32(5)2(8)5/32(5[91)(31+++-≈⎰f f f dx x ff(x)=x 3时,左=20,右=180/9=20,公式精确成立,f(x)=x 4时,左=242/5,右=2178/5/9=242/5,公式精确成立, f(x)=x 5时,左=364/3,右=1092/9=364/3,公式精确成立, f(x)=x 6时,公式不精确成立,所以,公式的代数精度为5。

7.=++++=≈⎰]1sin 43sin 441sin 421sin 20[sin 121sin 210S xdx 0.459707744000018261.01628801sin 22880)01(|)(|445≈⨯=⨯-≤M f R 三、1.记x x x f cos 2)(-=,由于0sin 2)(>+='x x f ,所以)(x f 是严格单调增函数,又由于01)0(<-=f ,01cos 2)1(>-=f ,所以方程0)(=x f 有唯一正根α,且在区间(0,1)内。

2.将方程改写为:2/cos x x =可建立迭代格式:,...2,1,0,cos 2/11==+k x x k k ,且迭代函数为:x x cos 2/1)(=ϕ。

由于]1,0[,12/1)(1cos 2/10∈<≤≤<x x ϕ ,且]1,0[,121sin sin 21)(∈<≤='x x x ϕ,所以,对任意]1,0[0∈x 此迭代法收敛,又由于)1,0(,0sin 21)(∈≠='αααϕ此迭代法是线性收敛的,即收敛阶为1。

3.128.13)1sin 2/1ln(/2/1)1sin 2/11(10ln ln /||)1(ln 501≈-=--≥-L x x L k ε,k =14。

若取L=1/2,可得k ≥16.6096,则取k =17。

四、1.由于+∂∂+∂∂+=++=)(32)32,32(12n nn n n n f yf x f h f hk y h x f k)()9494294(23222222222h O f h yf f h y x f h x f h n n n n n +∂∂+∂∂∂+∂∂+ 所以有:+∂∂+∂∂++=+)(221n n n n n n f y f x f h hf y y )()2(642222223h O f yf f y x f x f h n n n n n +∂∂+∂∂∂+∂∂+ 又由于:)()(!31)(21)()()()(4321h O h x y h x y h x y x y h x y x y n n n n n n +'''+''+'+=+=+ +∂∂+∂∂++=)(22n nn n n f yf x f h hf y )()(!643h O x y h n +''' 所以有:)()(311h O y x y n n =-++,此差分公式是二阶方法。

2.对1)0(,10=-='y y y ,由于)320(10,1021n n n hy y k y k --=-=,差分公式为: n n n y h h k k hy y )50101()3(42211+-=++=+ 当h =0.25时,由于|1-10h+50h 2|=1.625>1,所以,所得数值解不稳定。

相关文档
最新文档