第七章 萃取-双水相萃取
合集下载
双水相萃取解析

➢ 一般采用室温操作: 成相系统聚合物PEG对蛋白质有稳定作用,常温下蛋 白质不会发生变性; 常温下溶液粘度较低, 容易相分离; 常温操作节省冷却费用。
4.双水相萃取技术的发展
(1)历史:
➢ 早在1896年,Beijerinck发现,当明胶与琼脂或明胶与 可溶性淀粉溶液相混时,得到一个混浊不透明的溶液,随 之分为两相,上相富含明胶,下相富含琼脂(或淀粉), 这种现象被称为聚合物的不相溶性(incompatibility); ➢ 20世纪60年代,瑞典Lund大学的Albertsson P A及同事 最先提出了双水相萃取技术; ➢ 1979年,西德的Kula M R等人首次将ATPE应用于生物产 品分离;
➢大量研究表明:生物分子的分配系数取决于溶质与双水相系统 间的各种相互作用,主要有静电作用、疏水作用和亲和作用等, 其分配系数可为各种相互作用之和。
ln m ln me ln mh ln ml
①静电作用:两相系统中若有带电溶质存在,会ห้องสมุดไป่ตู้大分子在两 相间的分配系数产生影响。(图5-15) Donnan Potential:当大分子或粒子带有静电荷时,在带有电荷 分配不相等时,就会在两相间产生电位差,称为道南电位。 ②疏水作用:某些大分子物质表面具有疏水区,溶质的表面疏 水性会对其在两相间的分配系数产生影响。
3.影响双水相分配的主要因素
高聚物的相对分子质量 高聚物的浓度 盐的种类和浓度 PH值 温度
(1)高聚物的相对分子质量:
➢在高聚物浓度保持不变的前提下,降低该高聚物的相对分子质 量,被分配的可溶性生物大分子如蛋白质或核酸,或颗粒如细 胞或细胞碎片和细胞器,将更多地分配于该相。
以PEG-Dextran体系为例,↓Dextran→K↓ ↓PEG→K↑(表5-4)
7双水相

这是因为成相聚合物的 疏水性对酶等亲水性物质的 分配产生较大的影响。
二、体系中无机盐离子的影响
无机盐离子在两相中也有不同的分配,因此在两相间形 成电位差。由于各相要保持电中性,使得带电生物大分子, 如蛋白质和核酸等分别向两相移动分配。
水相pH6.9时, (碱性) 溶菌酶带正电荷 (酸性) 卵蛋白带负电荷
双水相在细胞碎片分离中的应用:
细胞碎片的分布行为图
双水相组分表:
从图中可以看出,随着液相中无机盐浓度的 增加,细胞逐渐由下层向上层分配;先进入双 水相,最后完全进入上相。
从清除细胞碎片的角度考虑,在刚形成双水 相时细胞碎片的沉淀最完全,上清液最清,也 最有利于离心分离。
思考题: 1、双水相是怎样形成的? 2、图7-2中,T、B各表示什么,BM、TM表示什么? 3、结合图7-10、7-11,说明为什么细胞浓度对分配系
顺便提一下: 菌体细胞一般带负电荷,
指的是:中性水。但在 pH < 4.0以下,则带正电荷。
关键是要了解它的pI。
3、体系pH的影响
pH会影响蛋白质中可离 解基团的离解度,因而改变 蛋白质所带电荷和分配系数; 另外,pH还影响系统缓冲物 质磷酸盐的离解程度,影响 相间电位差,从而影响分配 系数。
根据这一原则测定蛋白质 等电点pI的方法,称为交错 分配法
当正负电荷完全中和时,即形成沉淀。 (5区)
(二)、双水相体系的相体积比:
对萃取分离体系而言,相体积比是影响萃取分 离效率的重要因素,正、负离子表面活性剂的配 比及总浓度对双水相体积比有很大影响:
1、正、负离子表面活性剂配比对相体积比的影响:
固定表面活性剂的总浓度为0.18mol/L,从图中 可看出,在能够形成双水相的两个浓度区间,随 着CTAB配比的增加,上相体积呈增加的趋势。这 主要是由于CTAB的极性较大,能够争夺更多的水 分子。
二、体系中无机盐离子的影响
无机盐离子在两相中也有不同的分配,因此在两相间形 成电位差。由于各相要保持电中性,使得带电生物大分子, 如蛋白质和核酸等分别向两相移动分配。
水相pH6.9时, (碱性) 溶菌酶带正电荷 (酸性) 卵蛋白带负电荷
双水相在细胞碎片分离中的应用:
细胞碎片的分布行为图
双水相组分表:
从图中可以看出,随着液相中无机盐浓度的 增加,细胞逐渐由下层向上层分配;先进入双 水相,最后完全进入上相。
从清除细胞碎片的角度考虑,在刚形成双水 相时细胞碎片的沉淀最完全,上清液最清,也 最有利于离心分离。
思考题: 1、双水相是怎样形成的? 2、图7-2中,T、B各表示什么,BM、TM表示什么? 3、结合图7-10、7-11,说明为什么细胞浓度对分配系
顺便提一下: 菌体细胞一般带负电荷,
指的是:中性水。但在 pH < 4.0以下,则带正电荷。
关键是要了解它的pI。
3、体系pH的影响
pH会影响蛋白质中可离 解基团的离解度,因而改变 蛋白质所带电荷和分配系数; 另外,pH还影响系统缓冲物 质磷酸盐的离解程度,影响 相间电位差,从而影响分配 系数。
根据这一原则测定蛋白质 等电点pI的方法,称为交错 分配法
当正负电荷完全中和时,即形成沉淀。 (5区)
(二)、双水相体系的相体积比:
对萃取分离体系而言,相体积比是影响萃取分 离效率的重要因素,正、负离子表面活性剂的配 比及总浓度对双水相体积比有很大影响:
1、正、负离子表面活性剂配比对相体积比的影响:
固定表面活性剂的总浓度为0.18mol/L,从图中 可看出,在能够形成双水相的两个浓度区间,随 着CTAB配比的增加,上相体积呈增加的趋势。这 主要是由于CTAB的极性较大,能够争夺更多的水 分子。
5.7双水相萃取

酵母菌存在下
肺炎克雷氏菌存在下
图5 细胞物质浓度对酶分配的影响
3、盐和缓冲液的影响
水溶液中存在的离子会影响溶质在两 相间的分配。因为阴阳离子的不均匀分配 会产生相界面电位,影响蛋白质、核酸等 荷电大分子的分配。通常增加盐浓度可提 高酶的分配系数。
图6 聚乙二醇4000/硫酸铵系统中,支链淀 粉酶的分配系数与硫酸铵总浓度的关系
葡聚糖本质上是一种几乎不能形成偶 极现象的球形分子,而PEG是一种具有共 享电子对的高密度直链聚合物。各个聚合 物分子都倾向于在其周围有相同形状、大 小和极性的分子,同时,由于不同类型分 子间的斥力大于同它们的亲水性有关的相 互吸引力,因此聚合物发生分离,形成二 个不同的相,这就是所谓的“聚合物不相 溶性”。
层析技术可分离蛋白质、核酸以及细胞混
合物。
食品工业中用来从酸水解产物中提取风味
物质:
二肽、氨基酸、核苷酸等
八、双水相萃取的工艺流程
目的产物的萃取
PEG的循环
无机盐的循环
连续错流萃取回收酶的流程图
九、成相聚合物的回收
膜处理
沉淀
离子交换和吸附
电泳或亲和分配和双水相萃取相结合
蛋白质分配在盐相:盐可用错流操作方式
系统聚合物组成
系统物化性质
盐及缓冲液 温度
1、双水相中聚合物组成的影响 当两种不同聚合物的溶液混合时,可能存 在三种情况:
完全混溶性(匀相溶液); 物理的不相溶性(相分离); 复杂的凝聚(相分离)。
eg. 离子和非离子型聚合物都可使用在双水 相系统的构成上,但当这两种聚合物是离 子化合物并带有相反电荷时,它们相互吸 引并发生复杂的凝聚。
细胞色素 牛血清蛋白
乳酸脱氢酶 过氧化氢酶
双水相萃取(精选双水相萃取PPT,超级有用)

基本流程
3.2.1 目的产物的萃取
原料匀浆液与PEG和无机盐在萃取器中混合,然 后进入分离器分相。 通过选择合适的双水相组成,一般使目标蛋白质 分配到上相(PEG相),而细胞碎片、核酸、多 糖和杂蛋白等分配到下相(富盐相)。 第二步萃取是将目标蛋白质转入富盐相,方法是 在上相中加入盐,形成新的双水相体系,从而将 蛋白质与PEG分离,以利于使用超滤或透析将 PEG回收利用和目的产物进一步加工处理。
K= ct/ cb
其中ct 、cb 分别代表溶质在上相、下相中的浓度
基本原理
系统固定时, 分配系数为一常数, 与 溶质的浓度无关。当目标物质进入双水 相体系后, 在上相和下相间进行选择性 分配, 这种分配关系与常规的萃取分配 关系相比, 表现出更大或更小的分配系 数。如各种类型的细胞粒子、噬菌体的 分配系数都大于100或者小于0101, 因此 为物质分离提供了可能[7]。
[7] 严希康,俞俊棠. 生化分离工程[M]. 北京: 化学工业出版社, 2001.1692187.
三、双水相萃系分类
双水相体系主要有以下几种: (1)高聚物/高聚物双水相体系 (2)高聚物/无机盐双水相体系 (3)低分子有机物/无机盐双水相体系 (4)表面活性剂双水相体系
发展历程 Kula教授研究小组对双水相的应用,工艺流程、 操作参数、工程设备、成本分析等进行了大量研 究,在应用上获得成功。1978年首先将双水相萃 取技术用于酶的大规模分离纯化,建成了一套工 业装置,达到20Kg/h的处理能力,分离纯化了几 十种酶,也应用于基因工程产品的分离[3,4]。 双水相萃取可分离多肽,蛋白质、酶、核酸、病 毒、细胞、细胞器、细胞组织、以及重金属离子 等,近年来,还应用于一些小分子,如抗生素, 氨基酸和植物的有效成分等的分离纯化。
第七章双水相解析

F——法拉第常数 T——温度
进一步可证明: ZiF(U2-U1) RT
InKi*= InKi+
Ki*——i组分带电时在体系中的分配系数 Ki——i组分不带电时在体系中的分配系数 Zi——i组分的离子价
意义:
A 荷电溶质的分配系数的对数与 溶质的净电荷数成正比. B 由于同一双水相系统中添加不 同的盐产生的不同,故k与Zi的 关系因盐而异。
盐离子在两相中有不同的分配,因而在两相间形成电位差,由 于各相要保持电中性,因此对于带电荷的蛋白质等物质的萃取 来说 ,盐的存在就会使系统的电荷状态改变 ,从而对分配产生显 著影响。 (P137) 盐的种类对双水相萃取也有一定的影响 ,因此变换盐的种类和 添加其他种类的盐有助于提高选择性。 在不同的双水相体系中盐的作用也不相同。在 PEG/磷酸盐 /水 中加入氯化钠可以使万古霉素的分配系数由 4提高到 1 2 0 ,而 在 PEG/DeX/水体系中只从 1 . 55提高到 5。
同种类的盐时,由于相间电 位不同, lnk–pH 关系曲线也 不一样。但在 pI 处, k 应相 同,即两条关系曲线交于一 点。所以 , 通过测定不同盐 类存在下 lnk–pH曲线的交点 , 可测定蛋白质 / 细胞器以及 微粒的pI。
血清蛋白
(4)体系温度的影响
一般地,临界点附近,温度对分配率的影响较大,远离临界 点时,影响较小。 大规模操作一般在室温下进行,不需冷却。这是基于: (1) 成相聚合物PEG对蛋白质有稳定作用,常温下蛋白质 不会发生变性; (2) 常温下溶液粘度较低,容易相分离; (3) 常温操作节省冷却费用。
(5)体系中微生物的影响。
1)表面自由能的影响
λ=γp2- γp1
7双水相

结论:正、负离子表面活性剂在水溶液中能形成 双水相体系,缺点是双水相区域较狭窄,正、负 离子的配比有较严格的要求。
双水相在细胞碎片分离中的应用:
细胞碎片的分布行为图 双水相组分表: 从图中可以看出,随着液相中无机盐浓度的 增加,细胞逐渐由下层向上层分配;先进入双 水相,最后完全进入上相。 从清除细胞碎片的角度考虑,在刚形成双水 相时细胞碎片的沉淀最完全,上清液最清,也 最有利于离心分离。
一些水溶性有机溶剂和无机盐能够形成双水相, 但是,有些双水相体系和有机溶剂萃取一样,仍然 很容易使生物活性物质失活。
研究表明,正、负离子表面活性剂在特定的浓度区域也
会形成双水相。这种双水相具有三个特点: (1)两相中表面活性剂浓度很稀,为生物活性物质的分离提 供了良好的分离环境。 (2)由于表面活性剂的加入,使体系的表面张力更低,物质 传递速率更快,萃取可在短时间内完成。 (3)表面活性剂来源广,价格便宜。
称为
道南电位
U 2 U1 RT (Z Z )F
_
ln
K BZ K AZ
当KAZ+ ≠ KBZ-时,U2 - U1 ≠ 0
ln K i* ln K i
Ki* 带电荷
Z i F (U 2 U1 ) RT
U2 U1 2相和1相电位 Z 盐的离子价 KB KA 盐离子分配系数 Ki i 组分分配系数 F 法拉第常数
VT VB
=
BM MT
下标表示: T:上相 B:下相
双节线的位置和形状 与聚合物的分子量有关。
聚合物Dex的分子量 越高,相分离所需的浓度 越低。 两种聚合物分子量相 差越大,双节线的形状越 不对称。
三、物质在两相中的分配
和溶剂萃取法一样,物质在两水相 中的分配用分配系数 K 表示。
第七章 双水相萃取技术

双水相萃取
双水相萃取:利用 物质在互不相溶的 两水相之间分配系 数的差异,进行萃 取的方法。
第一节 双水相分离理论
一、双水相的形成
当两种聚合物混合时,究竟是否分层或混合成一相, 取决于两种因素:
体系熵的增加:与分子数量有关,与分子大小无关。
分子间作用力:主要表现为分子中各个基团间的相互 作用力。分子量越大,分子间的作用力也越大。 对于大分子间的混合,分子间作用力决定是否分层。
双水相萃取技术的应用
要成功地运用双水相萃取方法,应满足一些要求:
(1)欲提取的酶和细胞碎片应分配在不同的相中;
(2)酶的分配系数应足够大,使在一定的相体积比 时,经过一次萃取,就能得到较高的收率; (3)两相用离心机很容易分离。
胞内酶连续双水相萃取工艺流程
第三节 双水相萃取技术的发展
lnK = -ΔE/(kT) 式中:ΔE — 溶质从相2转移到相1所需的功
k — 波尔兹曼常数(J/K)
T — 温度(K)
表面自由能的影响
lnK = -ΔE/(kT)
假设溶质分子或粒子为球形,它在两相中的表面 能分别为:4πR2γS1、4πR2γS2 ΔE = 4πR2γS1- 4πR2γS2 = 4πR2(γS1-γS2) 式中:R — 溶质分子或粒子半径 γS1 、γS2 — 溶质与相1间、相2间的表面张力 lnK = -4πR2(γS1-γS2)/(kT)
分配系数与pH的关系
影响分配平衡的参数
— 温度
影响分配平衡的参数
— 微生物
对于同一种双水相 体系,微生物影响 体系上下相的比例 以及胞内蛋白在体 系的分配系数。
双水相萃取详细资料(ppt 44页)

两种亲水性聚合物混合
1 混合熵的增加 —自发进行—分子的数目 2 分子间作用力 —分子间各基团相互作用之
和——分子的大小 • 对大分子而言,由于相对分子质量较大,
分子间作用力与熵增加相比占主导地位。
➢ 作用力为斥力:形成两个水相,两种高聚物分 别富集于上、下两相。
➢ 作用力为引力:也形成两个水相,但两种高聚 物都分配于一相,另一相几乎为溶剂。
A、双水相体系同生物转化相结合:
B、双水相萃取同膜分离技术相结合: C、双水相萃取同亲和层析相结合——亲和
萃取(亲和分配):
亲和分
配 蛋白质在两水相系统中的分配系数一般不是很大,为了提高分
配系数和萃取效率,可将亲和层析与两水相萃取结合起来,成 为亲和萃取或亲和分配,即把一种配基与一种成相聚合物以共 价相结合,使该配基随成相聚合物分配在某一相中。配基可也 是酶的底物,抑制剂,抗体,受体或染料等,对目标蛋白质有 很强的生物亲和力,因而使后者倾向于分配在配基—聚合物的 相中。 通常选择在PEG上接上配基,当配基—PEG的浓度增加时,蛋 白质的分配系数也增加。当蛋白质的结合位点都为配基所占据 时,即达到饱和,蛋白质的分配系数达到极大值。
结论:加入适当的 盐类,会大大促进 带相反电荷的生物 大分子的分离。
pH
pH值对分配的影响源于两个方面的原因: (一)pH值会影响蛋白质中可以解离基团
的解离度,因而改变蛋白质所带的电荷和 分配系数。
lnKlnK0R FT Z
(二)pH值会影响磷酸盐的解离程度, 改变H2PO4-和HPO42-之间的比例, 而影响分配系数。
• 操作简便,经济省时,易于放大.由于很容易达到 平衡,用商业上的离心机能使相分离完全,分配 系数的值重演性很好,故可直接放大
1 混合熵的增加 —自发进行—分子的数目 2 分子间作用力 —分子间各基团相互作用之
和——分子的大小 • 对大分子而言,由于相对分子质量较大,
分子间作用力与熵增加相比占主导地位。
➢ 作用力为斥力:形成两个水相,两种高聚物分 别富集于上、下两相。
➢ 作用力为引力:也形成两个水相,但两种高聚 物都分配于一相,另一相几乎为溶剂。
A、双水相体系同生物转化相结合:
B、双水相萃取同膜分离技术相结合: C、双水相萃取同亲和层析相结合——亲和
萃取(亲和分配):
亲和分
配 蛋白质在两水相系统中的分配系数一般不是很大,为了提高分
配系数和萃取效率,可将亲和层析与两水相萃取结合起来,成 为亲和萃取或亲和分配,即把一种配基与一种成相聚合物以共 价相结合,使该配基随成相聚合物分配在某一相中。配基可也 是酶的底物,抑制剂,抗体,受体或染料等,对目标蛋白质有 很强的生物亲和力,因而使后者倾向于分配在配基—聚合物的 相中。 通常选择在PEG上接上配基,当配基—PEG的浓度增加时,蛋 白质的分配系数也增加。当蛋白质的结合位点都为配基所占据 时,即达到饱和,蛋白质的分配系数达到极大值。
结论:加入适当的 盐类,会大大促进 带相反电荷的生物 大分子的分离。
pH
pH值对分配的影响源于两个方面的原因: (一)pH值会影响蛋白质中可以解离基团
的解离度,因而改变蛋白质所带的电荷和 分配系数。
lnKlnK0R FT Z
(二)pH值会影响磷酸盐的解离程度, 改变H2PO4-和HPO42-之间的比例, 而影响分配系数。
• 操作简便,经济省时,易于放大.由于很容易达到 平衡,用商业上的离心机能使相分离完全,分配 系数的值重演性很好,故可直接放大
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主要内容
一、概述 二、物质在两相中的分配 三、双水相萃取工艺流程 四、双水相萃取技术的应用 五、思考题
实用文档
3
一、 异)难于进行收集微生物的细胞器、分离除去细胞碎片、 提取和浓缩胞内物质的操作。
萃取已广泛用于液液分离,但一般的有机溶剂萃取难 于分离蛋白质?
② 对胞内蛋白萃取,使碎片分配于下相中, 来增大两相的密度差,达到快速分离,降 低操作成本和操作时间。
③ 根据目标蛋白质和共存杂质的表面疏水性、 相对分子质量、等电点和表面电荷等性质 的差别,来选择萃取目标产物。如调pH、 添加盐、提高成相系统的浓度(系线长度)
实用文档
18
双水相萃取过程放大较容易,一般10mL刻度离 心管内结果即可直接放大到产业化规模。具体的实 验步骤: ①配制一系列不同浓度、pH值及离子强度的双水相, 每个双水相改变一个参数。
②加入料液后,再加水使整个系统的质量达到5-10g。 离心管封口后充分混合。(反复倒置或涡旋混合器)
③在1800-2000g下离心3-5min,分相。
④分别吸出上下相,测定上、下相中目标产物的浓 度或生物活性,计算分配系数。
⑤分析目标产物的收率和纯化倍数,确定最佳双水 相系统。
实用文档
19
2、相平衡与相分离
27
3、人生长激素、β-干扰素的提取
用PEG4000 6.6%/磷酸盐14%体系从大肠杆菌 提取。
4、病毒的提取、纯化
5、生物活性物质的分析检测
实用文档
28
何谓双水相萃取? 在一定条件下,水相可形以成两相。将 水溶性的酶、蛋白质等生物活性物质从 一个水相转移到另一水相的过程。
10
2、影响分配的因素
(1)双水相中聚合物(组成和浓度)的影响 分子量的影响
如在PEG/Dex双水相体系中,PEG分子量的减 少,会使蛋白质在两相中的分配系数明显增大。
实用文档
11
(2)体系中无机盐离子的影响
▪ 无机盐离子在两相中的分配不同,会导致两 上中的电位差。
实用文档
12
如图,当pH6.9时,溶菌酶带正电,卵蛋白带负电, 对照上表知,KCl->KNa+,有电位差,U2-U1>0,导 致带正电荷的溶菌酶迁移到1相,其K值增大,而带
▪ 相平衡:双水相系统的表面张力很小, 相间混合所需能量很低,通过机械搅拌 很容易分散成微小液滴,达到相平衡所 需时间很短,一般只需几秒钟。
▪ 相分离:重力沉降(静置分层)或离心 沉降法。
实用文档
20
3、多步萃取
实用文档
21
4、大规模双水相萃取
▪ 双水相放大后,溶质的分配系数和相体积比保持不 变,溶质的浓度随匀浆液的加入量线性增大。
实用文档
22
四、双水相萃取技术的应用
目前广泛应用于蛋白质的分离与纯化。 1、胞内酶提取: 一般是破碎细胞(匀浆液粘度大,碎片很小)—— ▪ 离心分离(能耗大,且碎片不易清除干净) ▪ 双水相萃取(易除去碎片,同时使酶得到精制) 目前应用最多的是PEG/盐体系。
酶主要分配在上相,碎片在下相或界面上,收率 能达到90%;料液中湿细胞浓度可达30%,分配系 数在3-20之间。如下表
负电荷的卵蛋白迁移到2相,其K值减少,两者达到
较好的分离。
实用文档
13
(3)体系pH值的影响
蛋白质的离解度——改变蛋白质的电荷— —改变分配系数。
缓冲物质磷酸盐的离解度——改变电位 差——分配系数。
pH的微小变化会使蛋白质的分配系数改变 2-3个数量级。
实用文档
14
(4)体系温度的影响
温度的变化——分配率——蛋白质的生物活性。
实用文档
23
实用文档
24
▪ 例子:以甲酸脱氢酶(FDH)的分步提取纯 化来进一步说明胞内酶的提取。
实用文档
25
实用文档
26
2、核酸的分离及纯化
特点:盐组成的微小变化引起分配系数的急
剧变动。 有活性的DNA与无活性的DNA的分配系数差别 较大。 可通过多级逆流分配平衡将两者几乎完全分开。
实用文档
/ DEX等)(PEG:polyethylene glycol聚乙二
醇 DEX:葡聚糖)
▪其中一种是离子型高聚物(羧甲基纤维素钠/葡聚 糖DEX)
▪两种都是离子型高聚物(羧甲基纤维素钠/羧甲基 葡聚糖钠)
▪其中一种是无机盐(磷酸盐、硫酸盐等)( PEG
/硫酸盐)
实用文档
9
二、物质在两相中的分配
实用文档
(1)许多蛋白质有极强的亲水性,不溶于有机溶剂;
(2)蛋白质在有机溶剂相中易变性失活。
在一定条件下,水相也可形成两相甚至多相。将水
溶性的酶、蛋白质等生物活性物质从一个水相转移到另
一水相中成为可能。
实用文档
4
1、最早的双水相萃取现象:
▪ 1896年Be jerinck,把明胶与琼脂或把明胶 和可溶性淀粉的水溶液混合,可分为两相, 聚合物之间的“不相溶性”。
7
3、双水相体系形成
▪ 聚合物混合时,是分层或成一相,取决 于分子间的作用力:
分子间作用力,与分子量有关,分子 量越大,分间作用力也越大。
分子之间作用力: (1)A-A >A-B 相分离 (2)A-A<A-B 混合 (3)A-B>>A-A 凝聚复合
实用文档
8
4、双水相体系类型
▪两种都是非离子型高聚物(PEG / DEX、聚丙二醇
聚合物的多元醇或多糖结构对蛋白质有 保护作用,增加了蛋白质的稳定性,故可 在室温一操作,且一般温度变化不大。
实用文档
15
(5)体系中微生物的影响 影响:上下相体积、胞内蛋白的分配系数。
实用文档
16
三、双水相萃取工艺流程
实用文档
17
1、双水相系统的选择
① 相系统应易于用静置沉降或离心沉降法进 行分离。
第七章 双水相萃取
萃取
以超临界流
体为萃取剂,
以液体为萃取剂,
含有目标产物原 料为液体
液液萃取
含目标 产物的
液固萃取
含有目标产
超临界 物的原料可
原料为 或浸取 流体萃取 以是液体,
固体
根据萃取剂的种类和形式的不同分为:
也可以是固 体。
有机溶剂萃取 简称溶剂萃取
双水相萃取
液膜萃取 反胶团萃取
实用文档
2
多种不相溶的聚 合物可得到多相 体系
原因?
聚合物的空间阻 碍作用,相互间 无法渗透。
聚合物还可以与无机盐可形成聚合物-盐双
水相。
实用文档
5
2、优势
实用文档
6
(1) 条件温和,保留产物活性 (2) 含水量高,表面张力低,耗能少 (3) 大分子及小分子(红霉素、氨基酸
等)都可萃取 (4) 易于放大
实用文档